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Abstract: Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-
derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated
using NMR and mass spectroscopic data, while the relative configurations were established through
the analysis of NOESY data. The absolute configurations of 1 were determined by the modified
Mosher’s method as well as vibrational circular dichroism (VCD) spectra calculation and it was
determined as 6R, 7R, 9R, and 10R. It was found that compound 1 was not cytotoxic to human
cancer cells, including A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) below
the concentration of 25 µM. However, compound 1 was shown to significantly decrease cancer-cell
migration and invasion and soft-agar colony-formation ability at concentrations ranging from 1 to
5 µM by downregulating the expression level of KITENIN and upregulating the expression level
of KAI1. Compound 1 suppressed β-catenin-mediated TOPFLASH activity and its downstream
targets in AGS, A549, and Caco-2 and slightly suppressed the Notch signal pathway in three cancer
cells. Furthermore, 1 also reduced the number of metastatic nodules in an intraperitoneal xenograft
mouse model.

Keywords: marinobazzanan; bazzanane-type sesquiterpenoid; Acremonium sp.; cytotoxicity;
anticancer

1. Introduction

There were an estimated 19.3 million new cancer cases in 2020 and almost 10 million
cancer deaths worldwide [1]. Lung cancer is the leading cause of cancer death, with
colorectal cancer being the second. Further, gastric cancer is the fourth most common cause
of cancer death globally [2]. The World Health Organization estimates that there will be
28.4 million cancer cases worldwide by 2040 [1].

Metastasis refers to secondary tumors which develop in a different part of the body
compared to the original cancer. Epithelial-to-mesenchymal transition (EMT) is one of the
reasons for metastasis. The invasiveness and metastatic potential of solid tumors increase
with EMT. The EMT transcription factors, Snail, Slug, and Twist, are promoted by EMT
processes [3]. The Wnt/β-catenin pathway, which promotes the stemness, deterioration,
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and metastasis of cancer cells, could be another contributing factor to cancer. β-catenin
promotes the transcription of a wide range of oncogenes, including c-Myc and CyclinD-1
in the nucleus [4]. Several human malignancies exhibit an increased ability to invade
and metastasize when KAI1 (a metastatic suppressor gene) expression is suppressed and
KITENIN is promoted. Cancer invasion and metastasis are also mediated through the
KITENIN/AP-1 axis, another signal transduction component [5]. The Notch signaling
pathway is found in a wide range of solid tumors and can be responsible for both cell
proliferation and metastasis, including EMT. The Notch ligand is a single transmembrane
protein, and activation of Notch occurs when it binds to the Notch ligand of neighboring
cells. The transcriptional targets of HES genes can be also regulated by Notch [6]. Therefore,
suppressing EMT, the Wnt/β-catenin pathway, KITENIN/AP-1 axis, and the Notch signal
pathway has become an important goal for developing anticancer therapeutics.

The biological and geochemical roles of marine fungi have attracted the attention of
researchers in many scientific communities [7,8]. Marine fungi and marine-derived fungi
are regarded as prolific sources of natural products with unique chemical structures and
diverse biological activities [9–11]. Therefore, many research groups have focused their
attention on culturing marine fungi to discover novel natural products [12–14]. In partic-
ular, the marine-derived genus Acremonium has been studied intensively as a proficient
producer of natural products with a wide range of bioactivities [15,16]. Previously, a cyclic
pentadepsipeptide, acremonamide, with wound-healing properties has been isolated from
the Acremonium strain CNQ-049 [17].

Thus, as part of continuing efforts to investigate the chemical components of the
Acremonium strain CNQ-049, derived from marine sediments collected off the coast of
Southern California, we isolated a new bazzanane-type sesquiterpenoid: marinobazzanan
(1). Although the cancer-cell cytotoxicity of sesquiterpene lactones and their applications
for developing anticancer agents have been extensively explored [18], little is known
about the bioactivities of bazzanane-type sesquiterpenoids. Hence, the isolation, structural
elucidation, and anti-cancer activities of compound 1 (Figure 1) are examined herein.
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Figure 1. Chemical structure of marinobazzanan (1).

2. Results and Discussion

Marinobazzanan (1) was obtained as a pale-yellow amorphous powder. The molecular
formula of 1 was determined as C15H22

35ClNO2 based on a protonated adduct at m/z
284.1415 [M + H]+ (calculated for C15H23

35ClNO2, 284.1417) in a high-resolution electro-
spray ionization mass spectrum (HR-ESI-MS), which indicated five degrees of unsaturation.
The 1H NMR spectrum of 1 displayed one olefinic (δH 6.66), two exo-methylene (δH 5.44,
5.21), eight methylene (δH 1.54, 1.65, 1.79, 1.87, 2.05, 2.21, 2.21, 2.39), two methine (δH
3.86, 4.29), and two methyl singlet (δH 1.20, 0.92) hydrogens. The 13C and HSQC NMR
spectroscopic data revealed one carbonyl (δC 172.2), four quaternary (δC 153.7, 131.3, 48.5,
36.8), three methine (δC 134.0, 75.6, 69.2), five methylene (δC 111.9, 40.5, 33.0, 27.4, 21.8),
and two methyl singlets (δC 24.5, 17.1) carbons (Table 1, Figures S1 and S2). The molecular
formula and the HSQC NMR spectroscopic data of 1 suggested that compound 1 possessed
a bicyclic ring system.
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Table 1. NMR Data for Marinobazzanan (1) (CD3OD) a.

Position δC, Type δH, Mult b (J in Hz) COSY HMBC

1 27.4, CH2 1.65, m 2 C-2, 6, 7, 14
1.54, m

2 21.8, CH2 2.39, m 1 C-1, 3, 4, 6
2.21, m

3 131.3, qC
4 134.0, CH 6.66, d (4.8) 5 C-5, 2, 6, 12
5 33.0, CH2 2.21, m 4 C-1, 3, 4, 6, 14

2.05, br. D (18.0)
6 36.8, qC
7 48.5, qC
8 153.7, qC
9 69.2, CH 4.29, dt (10.0, 2.7) 10 C-8, 10, 15

10 75.6, CH 3.86, td (10.0, 7.5) 9, 11 C-9, 11
11 40.5, CH2 1.87, dd (13.0, 10.0) 10 C-6, 7, 8, 9, 10, 13

1.79, dd (13.0, 7.5)
12 172.2, qC
13 24.5, CH3 1.20, s C-6, 7, 8, 11
14 17.1, CH3 0.92, s C-1, 5, 6, 7
15 111.9, CH2 5.44, d (2.7) C-7, 8, 9

5.21, d (2.7)
a 400 MHz for 1H NMR and 75 MHz for 13C NMR. b Numbers of attached protons were determined by analysis
of 2D spectra.

The interpretation of 2D NMR spectra (Figures S3–S5) allowed the construction of a
bazzanane-type sesquiterpenoid framework for 1. The COSY NMR crosspeaks [H-9 (δH
4.29)/H-10 (δH 3.86)/H-11 (δH 1.87, 1.79)] and the long-range HMBC correlations from
H-9 (δH 4.29) to C-8 (δC 153.7), C-15 (δC 111.9), from exo-methylene H-15 (δH 5.44, 5.21)
to C-7 (δC 48.5), C-8 (δC 153.7), and from the methyl singlet H-13 (δH 1.20) to C-7 (δC
48.5), C-8 (δC 153.7), and C-11 (δC 40.5) allowed the construction of the five-membered
ring (ring A) of bazzanane. The six-membered ring (ring B) was established by analyzing
the COSY crosspeaks [H-1 (δH 1.65, 1.54)/H-2 (δH 2.39, 2.21) and H-4 (δH 6.66)/H-5 (δH
2.21, 2.05)], along with the long-range HMBC correlations from H-5 (δH 2.21, 2.05) to C-1
(δC 27.4), C-3 (δC 131.3), C-4 (δC 134.0), C-6 (δC 36.8), and C-14 (δC 17.1). In addition, the
HMBC NMR correlations from H-4 (δH 6.66) to the carbonyl carbon C-12 (δC 172.2) allowed
the connection of the amide group to ring B. Meanwhile, the connection of C-6/C-7 was
secured by observing the HMBC correlations from H-13 (δH 1.20) to C-6 (δC 36.8), C-7 (δC
48.5) and from H-14 (δH 0.92) to the same two carbons. Furthermore, the attachment of a
hydroxy group at C-10 was assigned through the presence of the carbon chemical shifts
at δC 75.6. In addition, a chlorine atom at C-9 was established by considering the isotope
ratio (3:1) of the two protonated adduct [M + H]+ and [M + H+2]+ in the low-resolution
electrospray ionization mass spectrum (LR-ESI-MS) and the chemical shift at δC 69.2 in the
chlorinated methine, which completed the planar structure of 1, as shown in Figure 2.
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The relative stereochemistry of 1 was determined by analysis of the NOESY NMR
spectroscopic data. A NOESY correlation (Figure S6) between H-9 (δH 4.29) and H-14
(δH 0.92) indicated that these protons should be located on the same face of the molecule.
Meanwhile, a NOESY crosspeak between H-10 (δH 3.86) and H-13 (δH 1.20) as well as
its coupling constant (3JH−H = 10.0 Hz) established their syn relationship. Therefore, the
relative configuration of 1 was assigned as 6S*, 7S*, 9S*, and 10S* (Figure 2b).

The absolute configuration of 1 was established using the modified Mosher’s
method [19,20], combined with a comparison between the measured and calculated vi-
brational circular dichroism (VCD) spectra [21]. First, esterification of 1 with (R)- and
(S)-MTPA-Cl (α-methoxy-α-(trifluoromethyl) phenylacetyl chloride) yielded the (S)- and
(R)-MTPA esters of 1 (1a and 1b, respectively). Analysis of the 1H NMR (Figures S7 and S8)
∆δ(S−R) values revealed a consistent sign distribution, thus verifying the R configuration at
C-10 (Figure 3). Therefore, the absolute stereochemistry of the three chiral centers of ring
A in 1 was determined as 7R, 9R, and 10R. The absolute configurations of C-6 were also
confirmed by comparing the experimental and calculated VCD spectra. The VCD spectra
were calculated using density functional theory (DFT) at the B3LYP/6-31+G(d) level using
the Gaussian 09 software (Gaussian, Inc., Wallingford, CT 06492, United States) and the
calculated VCD spectrum of the (6R, 7R) configuration showed good agreement with the
experimental spectrum of 1, with a confidence level of 87% (Figure 4).
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Bazzanane-type sesquiterpenes have been mainly found in liverworts, including the
Bazzania genus. After the first reported isolation of bazzanene from Bazzania pompeana (Lac.)
Mitt. in 1969 [22], only a few bazzanane-type sesquiterpenes have been reported, indicating
that they are very rare in nature [23,24]. The most similar compound to 1 was isolated
from the New Zealand liverwort Frullania falciloba [25]. However, previously reported
bazzanane-type sesquiterpenes are neither chlorinated nor possess an amide group in the
molecule, as in 1. Furthermore, 1 is the first bazzanane-type sesquiterpenoid to be isolated
from a strain of the genus Acremonium and the first reported chlorinated bazzanane-type
sesquiterpene with an amide group in its structure.

A methyl thiazolyl tetrazolium (MTT) cytotoxicity bioassay was used to evaluate the
effect of 1 treatment in various concentrations (10, 25, 50, and 100 µM) on the viability
of AGS (gastric cancer), A549 (lung cancer), and Caco-2 (colorectal cancer) cells. The cell
viability of A549 was unaffected during the treatment with 10–50 µM of 1 for 48 h; however,
the viability decreased marginally during the treatment with 100 µM of 1, as shown in
Figure 5. Similarly, the viability of AGS and Caco-2 did not decrease with treatment of
10–25 µM of 1 but decreased significantly at concentrations of 50–100 µM. Thus, these
observations demonstrate that treatment with 1 is relatively non-toxic toward A549, AGS,
and Caco-2 cells at concentrations less than 25 µM.
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Cell viability was measured using MTT assay. The data represent the mean ± standard deviation,
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Next, migration and invasion assays were performed using non-toxic concentrations (1,
2.5, and 5 µM) to determine whether 1 inhibits the motility of A549, AGS, and Caco-2 cells.
As shown in Figure 6, 1 displayed a dose-dependent inhibitory effect on the migration of
all three cell types at concentrations from 1 to 5 µM (Figure 6a,b) alongside dose-dependent
inhibition of invasion by each cell type by up to ~45% at 5 µM concentrations (Figure 6c,d).

In addition, the potential anti-tumorigenic activity of 1 was evaluated by examining
the soft agar colony formation of A549, AGS, and Caco-2 cells exposed to non-toxic con-
centrations (1, 2.5, and 5 µM). As shown in Figure 6e,f, compound 1 dose-dependently
decreased the colony formation of A549, AGS, and Caco-2 cells. Moreover, Figure 6f reveals
that treatment with 5 µM of 1 significantly decreased the tumorigenicity of A549, AGS,
and Caco-2 cells. Overall, these results demonstrate that treatment with 1, 2.5, and 5 µM
concentrations of 1 significantly suppressed the motility and tumorigenicity of A549, AGS,
and Caco-2 cells.
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To determine whether the suppression of A549, AGS, and Caco-2 cell motility and
tumorigenicity in the presence of 1 involves the epithelial–mesenchymal transition (EMT),
the expression of EMT effectors and transcription factors were examined. As shown
in Figure 7a, 1 decreased mRNA expression of the mesenchymal marker N-cadherin
but increased that of the epithelial marker E-cadherin in all three cell types. Further,
1 significantly decreased the mRNA expression of the EMT transcription factors, Snail, Slug,
and Twist, in all three cell types, as shown in Figure 7b. In summary, these results indicate
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that 1 modulates the expression of the EMT effector N-cadherin by downregulating the
transcription factors Snail, Slug, and Twist.
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Figure 7. The effects of 1 on the expression of EMT effectors and transcription factors in A549, AGS,
and Caco-2 cells: (a) relative mRNA expression of the EMT effectors N-cadherin and E-cadherin;
(b) relative mRNA expression of the EMT transcription factors Snail, Slug, and Twist. The mRNA
levels were normalized against that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data
represent the mean ± standard deviation, n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001.

To examine whether the suppression of A549, AGS, and Caco-2 cell motility and
tumorigenicity in the presence of 1 involves KITENIN and AP-1, the protein and mRNA
expression levels of KITENIN and AP-1, including their activities, were examined. Epi-
dermal growth factor increases KITENIN-mediated AP-1 activity, and there is an inverse
relationship between KAI and KITENIN [26]. As shown in Figure 8a, at a concentration
of 5 µM, 1 suppressed AP-1 activity. Figure 8b,c show that 1 suppressed the activity
of the KITENIN 3′-UTR, while the KITENIN promoter did not show significant change.
Figure 8d,e indicates that the protein level of KITENIN decreased in A549, AGS, and Caco-2
during treatment. The mRNA expression level of KITENIN was also suppressed in A549,
AGS, and Caco-2, whereas the mRNA level of KAI1 was increased by 1 (Figure 8f). As a
result, 1 decreased cell motility by downregulating the expression level of KITENIN while
upregulating that of KAI1.
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compared to DMSO. To further test the effect of 1 on the levels of downstream target genes 
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Figure 8. The effects of 1 on the AP-1 activity, KITENIN, and KAI1 in A549, AGS, and Caco-2
cells: (a) relative AP-1 activity in HEK293T cells; (b) 3-UTR luciferase activity in HEK293T cells;
(c) KITENIN promoter luciferase activity in HEK293T; (d) Western blot analysis of KITENIN in
A549, AGS, and Caco-2 cells; (e) relative protein levels in A549, AGS, and Caco-2 cells; (f) relative
mRNA expression of the KITENIN and KAI1 in A549, AGS, and Caco-2 cells. Data represent the
mean ± standard deviation, n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001.

We performed TOPFLASH reporter assays to assess whether treatment with 1 modu-
lates β-catenin-mediated and/or KITENIN-mediated signaling activity. Treatment with
5 µM of 1 significantly decreased β-catenin-mediated TOPFLASH activity on HEK293T by
30% (Figure 9a). In addition, Figure 9b–d indicates that treatment with 1 decreased mRNA
expression and the protein level of β-catenin on AGS and Caco-2 cells; however, treatment
with 1 did not significantly affect the mRNA expression and protein level of β-catenin in
A549 cells.
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Figure 9. The effects of 1 on the β-catenin-mediated TOPFLASH activity: (a) the β-catenin-mediated
TOPFLASH activity in HEK293T cells; (b) relative β-catenin in A549, AGS, and Caco-2 cells; (c) West-
ern blot analysis of β-catenin in A549, AGS, and Caco-2 cells; (d) relative protein levels of β-catenin.
Data represent the mean ± standard deviation, n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001.

The protein level of total, cytoplasmic, and nuclear β-catenin was examined to test
whether 1 affected the nuclear/cytoplasmic distribution of β-catenin in A549 cells. As
shown in Figure 10a,b, treatment with 5 µM of 1 did not affect the level of total β-catenin,
whereas it decreased the β-catenin nuclear to cytoplasmic ratio remarkably in A549 cells
compared to DMSO. To further test the effect of 1 on the levels of downstream target genes
of β-catenin, qRT-PCR analysis was performed. As shown in Figure 10c, treatment with
5 µM of 1 suppressed the mRNA expression of cyclin-D1 in A549 and CD44 in Caco-2, while
treatment with 5 µM of 1 suppressed the mRNA expression of c-Myc and CD44 in AGS
cells for 24 h. Moreover, the β-catenin downstream target genes, including c-Myc, CD44,
and cyclin-D1, were suppressed in AGS cells during treatment with 5 µM of 1 for 48 h
(Figure 10d). Treatment with 5 µM of 1 suppressed the mRNA expression of cyclin-D1 and
CD44 in A549, while 5 µM of 1 suppressed the mRNA expression of CD44 in Caco-2 cells
for 48 h (Figure 10d). These results show that 1 decreased β-catenin-mediated TOPFLASH
activity and its downstream targets in three cancer cells.
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cells and found that treatment with 5 μM of 1 significantly decreased the relative CSL 
activity in HEK293T cells by approximately 20% (Figure 11a). In addition, the relative Hes-
1 activity in HEK293T and mRNA expression of Hes-1 in AGS, A549, and Caco-2 cells 
decreased during treatment with 5 μM, as shown in Figure 11b,c. The level of expression 
of HES correlated with NICD and CSL. Treatment with 1 decreased the level of Cleaved 
Notch1 in A549, AGS, and Caco-2 cells (Figure 11d,e). This result indicates that 1 slightly 
suppressed the Notch signal pathway in A549, AGS, and Caco-2 cells. 

Figure 10. The effects of 1 β-catenin-mediated TOPFLASH activity by suppressing nuclear import:
(a) relative protein level of total cytoplasmic and nuclear β-catenin in A549 cells. α-Histone 3 served
as loading control; (b) Western blot analysis of total cytoplasmic and nuclear β-catenin in A549 cells;
(c) relative of the mRNA level of c-Myc, CD44, and cyclin-D1 in A549, AGS, and Caco-2 cells for 24 h
and (d) relative of the mRNA level of c-Myc, CD44, and cyclin-D1 in A549, AGS, and Caco-2 cells for
48 h. Data represent the mean ± standard deviation, n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001.

We examined the effect of 1 on the Notch signal pathway in A549, AGS, and Caco-2
cells and found that treatment with 5 µM of 1 significantly decreased the relative CSL
activity in HEK293T cells by approximately 20% (Figure 11a). In addition, the relative
Hes-1 activity in HEK293T and mRNA expression of Hes-1 in AGS, A549, and Caco-2 cells
decreased during treatment with 5 µM, as shown in Figure 11b,c. The level of expression
of HES correlated with NICD and CSL. Treatment with 1 decreased the level of Cleaved
Notch1 in A549, AGS, and Caco-2 cells (Figure 11d,e). This result indicates that 1 slightly
suppressed the Notch signal pathway in A549, AGS, and Caco-2 cells.
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apy. On day 28 after inoculation of AGS-iRFP, treatment of 10 mg/kg of 1 significantly 
reduced the three different categories of the number of tumor nodules in the mesentery 
compared to the control (Figure 12). As shown in Figure 12b, treatment with 10 mg/kg of 
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group, 8.4 ± 1.67 and 5 mg/kg of 1 group, 8.2 ± 1.92 versus 10 mg/kg of 1, 5 ± 2.35, p < 0.05). 
The number of nodules with diameters ranging from 1 to < 5 mm in the group with 10 
mg/kg of 1 was also lower than those in the other groups (control group, 8.4 ± 1.67 and 5 
mg/kg of 1 group, 8.2 ± 1.92 versus 10 mg/kg of 1, 5 ± 2.35, p < 0.05). As a result, the quan-
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in the mice treated with 10 mg/kg of 1 compared to those in the control group (Figure 12c). 

Figure 11. The effects of 1 on the Notch signal pathway in A549, AGS, and Caco-2 cells: (a) relative
CSL activity in HEK293T cells; (b) relative Hes-1 activity in HEK293T cells; (c) relative mRNA
expression of the Hes-1 in A549, AGS, and Caco-2 cells; (d) Western blot analysis of cleaved Notch1
in A549, AGS, and Caco-2 cells and (e) relative protein level in Hes-1 in A549, AGS, and Caco-2 cells.
Data represent the mean ± standard deviation, n = 3. * p < 0.05; ** p < 0.01.

Peritoneal carcinomatosis occurs when gastric cancer metastasizes to the peritoneal
cavity [27]. Peritoneal carcinomatosis is a hallmark of advanced peritoneal tumor progres-
sion, and peritoneal recurrence from gastric cancer occurs due to resistance to chemother-
apy. On day 28 after inoculation of AGS-iRFP, treatment of 10 mg/kg of 1 significantly
reduced the three different categories of the number of tumor nodules in the mesentery
compared to the control (Figure 12). As shown in Figure 12b, treatment with 10 mg/kg
of 1 reduced the number of nodules with diameters >1 compared to other groups (control
group, 8.4 ± 1.67 and 5 mg/kg of 1 group, 8.2 ± 1.92 versus 10 mg/kg of 1, 5 ± 2.35,
p < 0.05). The number of nodules with diameters ranging from 1 to < 5 mm in the
group with 10 mg/kg of 1 was also lower than those in the other groups (control group,
8.4 ± 1.67 and 5 mg/kg of 1 group, 8.2 ± 1.92 versus 10 mg/kg of 1, 5 ± 2.35, p < 0.05).
As a result, the quantitative data showed that the total number of metastatic nodules was
significantly reduced in the mice treated with 10 mg/kg of 1 compared to those in the
control group (Figure 12c).
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Figure 12. The effects of 1 on peritoneal metastasis of gastric cancer. AGS cells (1 × 107 per mouse)
were injected into the abdominal cavities of mice: (a) fluorescence representative images obtained
from an organ bioimaging instrument (FOBI) system and appearance of peritoneal tumors established
by intraperitoneal inoculation of AGS human gastric-cancer cells; (b) the number of peritoneal
nodules in each group; (c) fluorescence area of images obtained from a fluorescence-labeled organ
bioimaging instrument (FOBI) system; (d) body weight of control and 1 treated mice. Data represent
the mean ± standard deviation, n = 5. * p < 0.05.
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3. Materials and Methods
3.1. General Experimental Procedures

Optical rotation was acquired using a Kruss Optronic P-8000 polarimeter with a 5-cm
cell. The UV spectrum was recorded in methanol (MeOH) on a Scinco UVS2100, and the
VCD spectra were measured using a BioTools dualPEM ChiralIR spectrophotometer. The
IR spectrum was collected on a Varian Scimitar Series. The 1H and 2D NMR spectra were
recorded at 400 and 500 MHz in CD3OD, containing Me4Si as the internal standard on
Varian Inova spectrometers. The 13C NMR spectra were acquired at 75 MHz on a Varian
Inova spectrometer. The high-resolution mass spectrum was obtained on a JMS-700 (JEOL)
mass spectrometer, and the low-resolution LC-MS data were measured using the Agilent
Technologies 1260 quadrupole and Waters Micromass ZQ LC/MS system with a reversed-
phase column (Phenomenex Luna C18 (2), 100 Å, 50 mm × 4.6 mm, 5 µm), at a flow rate of
1.0 mL/min, at the National Research Facilities and Equipment Center (NanoBioEnergy
Materials Center) at Ewha Womans University. Medium-pressure liquid chromatography
(MPLC) was performed on a Biotage Isolera One system (SE-751 03 Uppsala, Sweden),
using Biotage SNAP KP-Sil, with a step gradient solvent of dichloromethane (DCM) and
methanol (MeOH). The fractions were purified by reversed-phase high-performance liquid
chromatography (HPLC) (Phenomenex Luna C18 (2), 100 Å, 250 nm × 10 mm, 5 µm).

3.2. Collection and Phylogenetic Analysis of the Strain CNQ-049

The marine-derived Acremonium sp. CNQ-049 was isolated from marine sediment
collected off the coast of Southern California. The strain CNQ-049 was identified as
Acremonium sp. with 99.4% similarity to that of Acremonium fusidiodes, based on 18S rRNA
gene sequence analysis (GenBank accession number KP131520.1).

3.3. Fermentation, Extraction, and Isolation

Strain CNQ-049 was cultured in 80 × 2.5 L Ultra Yield flasks, each containing 1 L
of the medium (10 g/L soluble starch, 2 g/L yeast, 4 g/L peptone, and 34.75 g/L sea
salt dissolved in distilled water), and shaken at 120 rpm and 27 ◦C. After seven days of
cultivation, the broth was extracted with ethyl acetate (EtOAc) (80 L overall), and the soluble
fraction was dried in vacuo to afford 5 g of the crude extract. This was then separated
on a MPLC silica-gel column (Biotage® SNAP Cartridge, KP-SIL), with step gradients of
MeOH/DCM (0 to 100%), to obtain 10 fractions, which were labeled as Q049-1−Q049-10.
Fraction Q049-6 (762 mg) was separated into six subfractions, labeled Q049-6-A−Q049-6-F,
by C18 reversed-phase column chromatography with 37% aqueous acetonitrile. Subfraction
Q049-6-B (221 mg) was further purified by reversed-phase HPLC (Phenomenex Luna C18
(2), 250 × 100 mm, 2.0 mL/min, 5 µm, 100 Å, UV = 210 nm) with 38% CH3CN to obtain
10.7 mg of marinobazzanan (1).

Marinobazzanan (1): pale-yellow amorphous powder; [α]21
D −29 (c 0.0625, MeOH);

UV (MeOH) λmax (log ε) 205 (3.73) nm; IR (KBr) νmax 3338, 2964, 2935, 2360, 1669, 1373,
1082 cm−1; 1H NMR and 2D NMR (400 MHz and 500 MHz, CD3OD) see Table 1; HR-ESI-
MS m/z 284.1415 [M + H]+ (calcd for C15H22

35ClNO2, 284.1417).

3.4. MTPA Esterification of Marinobazzanan

To obtain the (S)- and (R)-MTPA esters, 2.0 mg of 1 was completely dried under high
vacuum for 12 h and dissolved in dried pyridine (0.6 mL). Catalytic amounts of crystalline
4-dimethylaminopyridine (DMAP) were added and, respectively, treated with (R)-and
(S)-α-methoxy trifluoromethyl-phenylacetic acid (MTPA) chloride (6 µL). The mixtures
were stirred for 12 h at 50 ◦C and purified by reversed-phase HPLC (Phenomenex Luna
C18 (2), 250 × 100 mm, 2.0 mL/min, 5 µm, 100 Å), with 90% aqueous acetonitrile, to afford
0.8 mg and 0.7 mg of (S)- and (R)-MTPA esters of 1, respectively.

(S)-MTPA ester of 1: 1H NMR (500 MHz, in CDCl3) δH 0.88 (3H, s, H-14), 1.23 (3H, s,
H-13), 1.41–1.61 (2H, overlapped, H-1), 1.86 (1H, dd, J = 13.0, 10.0 Hz, H-11a), 2.02 (1H, dd,
J = 13.0, 7.5 Hz, H-11b), 1.99 (1H, m, H-5a), 2.12 (1H, m, H-5b), 2.21 (1H, m, H-2a), 2.29 (1H,
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m, H-2b), 4.46 (1H, dt, J = 10.0, 2.7 Hz, H-9), 5.22 (1H, d, J = 2.7 Hz, H-15a), 5.24 (1H, dt,
J = 10.0, 7.5 Hz, H-10), 5.52 (1H, d, J = 2.7 Hz, H-15b), 6.55 (1H, br. s, H-4); LR-ESI-MS m/z
457.3 [M − CONH2 + H]+.

(R)-MTPA ester of 1: 1H NMR (500 MHz, in CDCl3) δH 0.84 (3H, s, H-14), 1.22 (3H, s,
H-13), 1.38−1.60 (2H, overlapped, H-1), 1.67 (1H, dd, J = 13.0, 10.0 Hz, H-11a), 2.00 (1H,
dd, J = 13.0, 7.5 Hz, H-11b), 1.95 (1H, m, H-5a), 2.07 (1H, m, H-5b), 2.18 (1H, m, H-2a),
2.26 (1H, m, H-2b), 4.50 (1H, dt, J = 10.0, 2.7 Hz, H-9), 5.20 (1H, dt, J = 10.0, 7.5 Hz, H-
10), 5.22 (1H, d, J = 2.7 Hz, H-15a), 5.54 (1H, d, J = 2.7 Hz, H-15b), 6.52 (1H, br. s, H-4);
LR-ESI-MS m/z 457.3 [M − CONH2 + H]+.

3.5. VCD Analysis and Calculations

The conformational assignments for the C-6 and C-7 positions of 1 were performed us-
ing the Macromodel software (Version 9.9, Schrodinger LLC.) with “Mixed torsional/Low-
mode sampling” in the GAFF force field. The experiments were conducted in the gas phase
with the 50 kJ/mol energy window limit and a maximum of 10,000 steps to thoroughly
examine all low-energy conformers. The Polak–Ribière conjugate gradient method was
utilized for the minimization processes with 10,000 maximum iterations and a 0.001 kJ
(mol Å)−1 convergence threshold on the root mean square gradient. Conformers within
10 kJ/mol of each global minimum for the 6R,7R, and 6S,7S forms of 1 were used for
calculating the gauge-independent atomic orbital shielding constant, without geometric
optimization, by employing the TmoleX Version 4.2.1 software (COSMOlogic GmbH & Co.
KG) at the B3LYP/6-31 + G(d) level in the gas phase. A sample of 1 (5.0 mg) was dissolved
in CDCl3 (150 µL) and placed in a BaF2 cell with a path length of 100 µm, and data were
acquired on a BioTools dualPEM ChiralIR spectrophotometer. The spectra were collected
in 12 blocks, and each block was acquired for 3120 scans.

3.6. Cell Culture

The human cancer-cell lines A549 (lung cancer), AGS (gastric cancer), and Caco-2
(colorectal cancer) were cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium
or Dulbecco’s Modified Eagle Medium (DMEM) (Gen Depot, Barker, TX, USA), supple-
mented with 10% FBS and 1% penicillin–streptomycin solution in a humidified atmosphere
containing 5% CO2 at 37 ◦C [28].

3.7. Methyl Thiazolyl Tetrazolium (MTT) Assay

Marinobazzanan (1) was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich,
St.Louis, MO, USA) and diluted to four concentrations (10, 25, 50, and 10 µM). The cells
were seeded on 96-well plates (3 × 103 cells/well) for 12–16 h and then treated with 10, 25,
50, and 10 µM of compound 1 for 48 h [29]. After 4 h of incubation with MTT in 5% CO2 at
37 ◦C, the cells were lysed with 150 µL of DMSO (Sigma-Aldrich), and the absorbance was
measured at 570 nm using a spectrophotometer (Bio Tek Instruments, Winooski, VT, USA).

3.8. Invasion Assay

The invasion of cancer cells was measured using Transwell chambers (Corning, New
York, NY, USA) [30] containing polycarbonate membranes with 8 µm pores coated with
1% gelatin. The AGS (3 × 105), A549 (3 × 105), and Caco-2 (2.5 × 105) cells were seeded
in a culture medium containing 0.2% bovine serum albumin (BSA) and incubated with 1,
2.5, and 5 µM of compound 1 or DMSO control for 24 h. The lower chamber was filled
with 600 µL DMEM/RPMI containing 0.2% BSA and 10 µg/mL fibronectin (EMD Millipore
Corp., Billerica, MA, USA) as a chemoattractant. After 24 h of incubation, the invading cells
were fixed using a Diff-Quik kit (Sysmex, Kobe, Japan). The number of cells was quantified
using a Nikon Eclipse 400 fluorescence microscope (Nikon Instech, Co., Ltd., Kawasaki,
Japan) and i-Solution FL Auto Software (IMT i-Solution Inc., Vancouver, QC, Canada; five
fields/chamber).
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3.9. Migration Assay

Migration assays were performed in non-coated Transwell chambers [30]. The cells
were seeded at a density of 2.5–3 × 105 cells/well in RPMI 1640/DMEM containing 0.2%
BSA in the upper compartment of the chamber. The lower chamber was filled with 600 µL
RPMI 1640/DMEM containing 0.2% BSA and fibronectin as a chemoattractant. The cells
were cultured either in the absence or presence of compound 1 (1, 2.5, and 5 µM) for 24 h
and were fixed using a Diff-Quick kit. The cells in the upper chamber were counted using
a Nikon Eclipse 400 fluorescence microscope (Nikon Instech, Co., Ltd.) and i-Solution FL
Auto Software (IMT i-Solution Inc.; five fields/chamber)

3.10. Soft Agar Colony Formation Assay

The cancer cells were suspended at a density of 2.5–3 × 103 cells/well in 1.0 mL of
soft agar (0.35% soft-agar solution diluted 2-fold with 2 × DMEM/RPMI) and planted
onto 1 mL of soft agar (0.5% agarose solution diluted 2-fold with 2 × DMEM/RPMI) in
a 12-well plate and cultured for three weeks [31]. The cells were fed twice per week with
cell-culture media, compound 1 (1, 2.5, and 5 µM), or DMSO. The surface areas of the
colonies in the five fields per well were estimated using a Nikon Eclipse 400 fluorescence
microscope (Nikon Instech, Co., Ltd.) and i-Solution FL Auto Software (IMT i-Solution Inc.;
five fields/chamber). Three replications were performed.

3.11. Quantitative Real-Time PCR

The total RNA was isolated from A549, AGS, and Caco-2 cells using RNAiso Plus
(Takara, Otsu, Japan) according to the manufacturer’s instructions. Moloney murine
leukemia virus reverse transcriptase (Invitrogen, Carlsbad, CA, USA) was used to convert
1 µg of RNA into cDNA. The dye SYBR Green (Enzynomics, Seoul, Republic of Korea) was
used to analyze relative gene expression. Further, the qRT-PCR reaction and analysis were
performed using CFX (Bio-Rad, Hercules, CA, USA).

3.12. Western Blotting

The A549, AGS, and Caco-2 cells were treated with 1 for 24 h, and washed twice with
ice-cold phosphate-buffered saline (PBS). Lysis buffer was used for extraction. In some
experiments, cytoplasmic and nuclear extracts were separated with the NE-PER nuclear
and cytoplasmic extraction kit (Pierce Biotechnology, USA), and the extracted protein was
separated using SDS-PAGE. The density of the bands was measured using the Multi Gauge
3.0 (Fujifilm, Tokyo, Japan) software, and the bands’ relative density was calculated based
on the density of the control bands during loading in each sample.

3.13. Reporter Assay

HEK293T was seeded in 24-well plates. Following attachment, the cells were trans-
fected with TOPFLASH, AP1, KITENIN, CSL, HES, NF-κb, KITENIN 3′-untranslated region
(3′-UTR) reporters with renilla luciferase reporter plasmid (pRL-TK). After 12 h transfection
of these reporters, the cells were treated with 1 µM, 2.5 µM, and 5 µM of compound 1. The
Luciferase activity was calculated using the Dual-Luciferase Reporter Assay (Promega,
Wisconsin, USA) and normalized to Renilla luciferase.

3.14. Lentiviral Transduction

The human gastric-cancer AGS cells were cultured in Roswell Park Memorial Institute
(RPMI) 1640 Medium (Gen Depot, Barker, TX, USA), supplemented with puromycin
solution. After 12 h, the lentiviral vector was transfected into the human gastric-cancer cell
line by polybrene, and the returned cells were incubated. After 72 h, the single cells were
then plated in individual wells of a 96-well plate and incubated for 7–10 days.
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3.15. Animal Studies

The AGS-iRFP cell suspension (1 × 107cells in 0.1 mL PBS per mouse) was implanted
into the abdominal cavity of male BALB/c nude mice (five weeks old), obtained from
Central Lab. Animal Inc. (Seoul, Korea). All in-vivo experiments were performed according
to the Guiding Principles for the Care and Use of Animals (DHEW publication, NIH 80-23)
and were approved by the Sunchon National University Research Institutional Animal
Care and Use Committee. The mice were randomly assigned to one of three groups:
control, 5 mg/kg of 1, and 10 mg/kg of 1 by IP treatment. All animals were examined
by measuring weight change. The treatment was initiated a week after the AGS-iRFP
cells were injected. On day 28 after tumor inoculation, all the mice were sacrificed. The
fluorescence area of the images alongside the representative images was then obtained
through a fluorescence-labeled organism bioimaging instrument system.

4. Conclusions

In conclusion, this study described a new bazzanane-type sesquiterpenoid, marinobaz-
zanan (1), from the genus Acremonium. This is the first Acremonium-derived bazzanane-type
sesquiterpenoid isolated with chemical-structure modifications, such as chlorination and
amination. Marinobazzanan (1) was shown to inhibit cancer-cell migration and invasion at
non-toxic concentrations of 1, 2.5, and 5 µM and downregulate the transcription factors
Snail, Slug, and Twist. In addition, marinobazzanan (1) decreased cell motility by downreg-
ulating the expression level of KITENIN while upregulating that of KAI1. Furthermore, the
new compound modulated the expression of β-catenin by downregulating downstream
target genes. Marinobazzanan (1) was also shown to have a reduced number of metastatic
nodules in an intraperitoneal xenograft mouse model. Together, these findings suggest that
1 exhibits potent anticancer activity against cancer cells in vitro and anti-cancer activity for
the peritoneal carcinomatosis model in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21030153/s1, Figure S1: 1H NMR spectrum (400 MHz) of
marinobazzanan (1) in CD3OD; Figure S2: 13C NMR spectrum (75 MHz) of marinobazzanan (1) in
CD3OD; Figure S3: COSY NMR spectrum (500 MHz) of marinobazzanan (1) in CD3OD; Figure
S4: HSQC NMR spectrum (500 MHz) of marinobazzanan (1) in CD3OD; Figure S5: HMBC NMR
spectrum (500 MHz) of marinobazzanan (1) in CD3OD; Figure S6: NOESY NMR spectrum (500 MHz)
of marinobazzanan (1) in CD3OD; Figure S7: 1H NMR spectrum (500 MHz) of S-MTPA ester (1a) for
marinobazzanan (1) in CDCl3; Figure S8: 1H NMR spectrum (500 MHz) of R-MTPA ester (1b) for
marinobazzanan (1) in CDCl3; Figure S9: The effect of various fractions of marinobazzanan (1) upon
the cell viability of Caco2; Figure S10: LRMS spectrum of marinobazzanan (1).
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Metabolites in Flavocetraria cucullata Exhibit Anti-Cancer Effects on Human Cancer Cells through the Induction of Apoptosis and
Suppression of Tumorigenic Potentials. PLoS ONE 2014, 9, e111575. [CrossRef]

29. Yang, Y.; Nguyen, T.T.; Pereira, I.; Hur, J.-S.; Kim, H. Lichen Secondary Metabolite Physciosporin Decreases the Stemness Potential
of Colorectal Cancer Cells. Biomolecules 2019, 9, 797. [CrossRef]

30. Zhou, R.; Yang, Y.; Park, S.Y.; Seo, Y.W.; Jung, S.C.; Kim, K.K.; Kim, K.; Kim, H. p300/CBP-associated factor promotes autophagic
degradation of δ-catenin through acetylation and decreases prostate cancer tumorigenicity. Sci. Rep. 2019, 9, 3351. [CrossRef]
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