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Abstract: In recent years, allergic diseases have occurred frequently, affecting more than 20% of the
global population. The current first-line treatment of anti-allergic drugs mainly includes topical
corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side
effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-
allergic agents from natural products. High pressure, low temperature, and low/lack of light lead
to highly functionalized and diverse functional natural products in the marine environment. This
review summarizes the information on anti-allergic secondary metabolites with a variety of chemical
structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from
fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by
MOE to further reveal the potential mechanism for some representative marine anti-allergic natural
products to target the H1 receptor. This review may not only provide insight into information about
the structures and anti-allergic activities of natural products from marine organisms but also provides
a valuable reference for marine natural products with immunomodulatory activities.

Keywords: anti-allergic; secondary metabolites; marine organisms; molecular docking

1. Introduction

Allergic diseases are considered to be major chronic diseases globally [1]. There
are several types of allergic diseases, some of which are more common, such as allergic
asthma, allergic rhinitis, anaphylactic shock, hay fever, and dermatitis [2]. Pollen allergy
was first described in 1870, before that the understanding of allergic diseases was limited.
Asthma in children began to increase in 1960 [3]. By 1990, asthma rose to an epidemic
level due to increased sensitivity to indoor allergens, reduced diet and physical activity,
and long-term shallow breathing [4]. Since 1990, food allergy has risen significantly and
has now reached epidemic numbers [5]. British studies revealed that the prevalence of
eczema, hay fever, and health care may be stabilizing or even declining, but the incidence of
systemic allergic diseases continues to rise [6]. Allergic diseases have an increased burden
on people [7]. Environmental changes such as urbanization, industrialization [8], and
continuous changes in lifestyles are considered to be reasons for the raised prevalence of
different forms of allergic diseases [9]. However, the current role of anti-allergic drugs
mainly includes the adjuvant treatment of corticosteroids and antihistamines [10]. These
treatments will bring many side effects, like drowsiness, dryness of mouth, decreased
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vision, and inattentiveness [11]. Developing natural products for the treatment of allergies
has become increasingly important because of the increasing demand.

About 71 percent of the surface of the earth is covered by sea, which is a complex
ecosystem. It has been more than four billion years since the most primitive life appeared
in oceans [12]. Over billions of years of life’s evolution, a marine world of rich biodiver-
sity has emerged, comprising primarily of marine plants, marine animals, and marine
microorganisms [13]. The low similarity of living environments between marine and ter-
restrial organisms has resulted in the production of a variety of metabolites. The special
environment of high salt and pressure, low temperature, oligotrophicity, hypoxia, and
limited light determines that the secondary metabolites of marine organisms have very
unique traits compared with secondary metabolites of terrestrial organisms [14]. Secondary
metabolites of marine natural products possess many biological effects like anti-tumor,
anti-inflammatory, anti-allergic, antiviral, antibacterial, etc. [15].

Since the 20th century, people have paid much attention to marine-derived bioactive
secondary metabolites [16]. A large number of works of literature have reported anti-food
allergy activity and isolated many compounds from marine organisms [17,18]. According
to different chemical structures, isolated marine natural products can be divided into ter-
penoids, steroids, aromatic compounds, non-isoprene compounds, alkaloids, etc. Modern
techniques will encourage people to extract more compounds with unique structures and bi-
ological properties from nature through the innovation of natural exploration methods [19].
Therefore, a series of studies on marine anti-allergic active molecules has been carried
out worldwide. This review focuses on the structure, source, and anti-allergic activity of
bioactive compounds derived from marine organisms in recent years, which provides a
valuable reference for marine natural products with immunomodulatory activity.

2. Material and Methodology for Literature Survey

The review contains original research articles published in the English language
from 1992 to 2022. During the year 2022, different database searches were performed on
PubMed, Web of Science, MDPI, Elsevier, and Springer Link using keywords such as “ anti-
allergy” + “marine organisms“, ”anti-allergy” + “mangrove plants“, ”anti-allergy” + “ma-
rine algae “, “anti-allergy + sea corals“, “anti-allergy” + “marine microorganisms“, and
combined keyword searches. We only included studies that were completely consistent
with the subject of this review. The purpose of this review article is to summarize the
recent research on antiallergic compounds obtained from marine plants, animals, and
microorganisms, and to provide enough information relevant to the topic of this review
article. In order to assist readers, we have divided marine organisms into three parts:
marine plants, marine animals, and marine microorganisms, to describe the anti-allergic
activity of various compounds produced by them.

3. Chemical Structures and Biological Properties of the Anti-Allergy Compounds
Linked with Marine Plants, Marine Microorganisms, and Marine Animals
3.1. Marine Plants
3.1.1. Natural Products Derived from Marine Plants with Anti-Allergic Activity

In the study of anti-allergy, the most studied marine plants are algae, along with some
mangrove plants. Major kinds of algae are red algae, green algae, and brown algae, which
are mostly found in intertidal and subtidal zones [20]. Asian countries are rich in algal
resources, especially China, Japan, and Korea. Since ancient times, humans have known of
marine algae and are using it for different purposes. The secondary metabolites found in
it are abundant, because they are rich in proteins, fatty acids, minerals and vitamins, and
are often used as food. Some algal species also have great potential as cosmetics, drugs,
and drug adjuvants [21], which play an important role to treat fever, cough, dermatitis,
allergies, and other diseases [22]. Humans and other biological organisms consume a
large amount of polyphenols, which is the largest compound group present in plants [23].
Polyphenols have a wide range of functions like antioxidant capacity, scavenging free
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radicals, and metal-chelating activity, and it is beneficial to human health, and can be
used to treat and prevent cancer, cardiovascular disease, and other pathology [24]. In
marine algae, the structure of most anti-allergic natural products is polyphenols. Three
compounds were isolated from Ecklonia cava by Li et al. [25] which stimulated human
basophilic KU812F cells with IgE and anti-IgE antibodies. At 100 µM, the relative levels of
histamine released by three compounds 1, 2, and 3 (Figure 1) were 23.97, 44.26 and 34.54%,
respectively. Then calcium ionophore A23187 was used to mediate the degranulation of
KU812F cells and RBL-2H3 cells. Three compounds at 100 µM inhibited histamine release
from both cells. After flow cytometry analysis, it was proved that three compounds play
an anti-allergic role by inhibiting FcεRI and IgE binding activity, and the inhibition rates
were 30.58, 47.60 and 34.23%, respectively. Compounds 1 and 3 had the strongest inhibitory
effect on histamine release, with IC50 values of 31.65 µM (RBL-2H3), 44.20 µM (KU812F),
38.87 µM (RBL-2H3), and 65.81 µM (KU812F). These compounds inhibited allergic reactions
in a dose-dependent manner. Han et al. [26] also studied the anti-allergic effect of eckol
(compound 2) separated from Ecklonia cava (brown algae) through BMCMC (mouse bone
marrow-derived mast cells) stimulated by bovine serum albumin (BSA)/immunoglobulin E
(IgE) and allergic reaction models. The results showed for the first time that the compound
2 inhibited mast cell activation by inducing degranulation and cytokine production after
IgE/BSA exposure. 100 µg/mL of compound 2 remarkably decreased the release of β-
hexosaminidase by inhibiting the production of Th2 cytokines, i.e., IL-5, IL-4, IL-13. It
reduced FcεRI expression on the cell surface, and compound 2 binds to the active site of
IgE for blocking the IgE binding to FcεRI. Two bioactive phloroglucinol derivatives DHE
(compound 4) and PFF-α (compound 5) were isolated from Ecklonia stolonifera (brown algae)
by Shim et al. [27], as shown in Figure 1. They studied the effects of these two compounds
on human basophilic KU812F cells and found that compounds 4 and 5 inhibited FcεRI
expression on the surface of the cell by 16.9 and 15.4% at 50 µM, respectively. At the
same time, these two compounds lessened the expression of total FcεRI α chain protein
and mRNA in a dose-dependent manner, and inhibited the increase of intracellular Ca2+

stimulated by CRA-1, thereby exerting anti-allergic effects. Vo et al. [28] studied the
Fucofuroeckol-A (F-A/compound 6, see Figure 1) protective effect obtained from Ecklonia
stolonifera on UVB-induced RBL-2H3 mast cell allergic reaction. They found that 50 µM
F-A inhibited the fusion of granules and plasma membrane by inhibiting the increase of
calcium ion concentration in mast cells, thereby inhibiting degranulation of mast cells
and reducing histamine release from mast cells (release level 31%). Sugiura et al. [29]
isolated and purified six compounds 2, 3, 7–10 (Figure 1) from Eisenia arborea, and studied
the effect of oral administration of these compounds compared with EGCG, which is a
known natural product with anti-allergic activity [30]. Their studies have shown that
these compounds exhibited anti-allergic activity by inhibiting the release of chemical
mediators like leukotriene B4, prostaglandin E2, and histamine, as well as inhibiting the
cyclooxygenase-2 (COX-2) mRNA expression. The inhibitory activity of 3, 8, and 9 was the
strongest, and the anti-allergic effect was equal to or higher than EGCG. Matsui et al. [31]
isolated three compounds from Sargassum carpophyllum, and found that compounds 11, 12,
and 13 (Figure 1) inhibited the release of prostaglandin D2, tumor necrosis factor-α and
β-hexosaminidase in RBL-2H3 cells stimulated by DNP-HSA, with a value of 50.7, 35.9 and
43.5 µM IC50 values. β-hexosaminidase release was employed as an indicator of mast cell
degranulation. At 40 µM, all three compounds significantly inhibited ROS production, and
compound 13 slightly reduced the level of Ca2+.
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Other compounds of brown algae also have good anti-allergic effects. Onodera
et al. [32] compared Peridinin 14 and fucoxanthin 15 (Figure 1) isolated from Symbiodinium
sp and Petalonia fascia, respectively. They found that topical application was better, and that
compound 14 better inhibited delayed-type hypersensitivity compared to compound 15.
Compound 14 may be a potential drug for inhibiting allergic inflammation by inhibiting
the migration of ear eosinophils to eotaxin and the production of eotaxin.

Chen et al. [33] studied fucoidan derived from Cladosiphon okamuranus. They discov-
ered that local application of fucoidan to mice might increase Treg cell development and
secrete transforming growth factor-1, which would inhibit Th2 cell-mediated immunity.
Additionally, fucoidan decreased serum IgE levels and memory B cell numbers, alleviating
the signs of allergic dermatitis in mice models caused by DNCB. They also investigated
the effects of fucoidan derived from Cladosiphon okamuranus [34] on atopic dermatitis
in vitro and in vivo, and discovered that this fucoidan effectively inhibited degranulation
of P815 mast cells treated with C48/80 by impeding histamine and IL-4, IL-13 produc-
tion. In addition, they also found that fucoidan showed comparable therapeutic effects to
corticosteroids, and no side effects of corticosteroids were found in in vivo experiments.
Anti-allergic activity of alginate, which was extracted from brown algae, Laminaria japon-
ica, was studied by Yu et al. [35], and they found that after alginate treatment, the serum
IgE and histamine decreased significantly in OVA-induced mice and inhibition of mast cell
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degranulation. Th1 and Th2 cells released IFN-γand IL-4, respectively. Alginate blocked
Th0 cells’ development into Th2 cells produced by OVA and achieved an anti-allergic effect
by regulating T cell population balance as a result of a significant drop in IL-4 level and
a significant increase in IFN-γlevel. Alginate additionally raised the Treg cell quantity
in the OVA-induced mouse spleen tissue. Liu et al. [36] detected the anti-allergic effects
of R-phycocyanin (RPC) in antigen-sensitized mice and mast cells after isolating it from
Porphyra haitanensis. Using RPC, the researchers found that the mast cell allergic reactions
could be reduced through significant reductions in tropomyosin (TM)-specific IgE, along
with a reduction in histamine release and mast cell degranulation. It suppresses the se-
cretion and production of cytokines IL-4 and IL-13 and thus inhibiting the conversion of
natural T cells to Th2 cells, which alleviates allergic symptoms. Vo et al. [37] extracted
two peptides LDAVNR (P1) and MMLDF (P2) from microalgae (Spirulina maxima), which
were investigated for their anti-allergic effects. The P1 and P2 treatments did not induce
cytotoxicity and inhibited degranulation of mast cells by inhibiting the release of histamine,
and the increase of intracellular calcium and cytokine production by inhibiting calcium
and microtubule-dependent signaling pathways, which is the mechanism responsible for
P1’s inhibitory effects. Meanwhile, P2 inhibition leads to the production of reactive oxygen
species and to phospholipase Cγ activation thereby inhibiting degranulation.

3.1.2. Crude Extracts from Marine Plants as Potential Sources with Anti-Allergic Activity

Kim et al. [38] treated ovalbumin (OVA)-sensitized mice with Ecklonia cava (EC)
extracts, and found that EC extracts significantly inhibited allergic responses before the
last airway OVA challenge. IL-4, IL-5, and Th2 cytokines play an imperative role in the
instigation of allergic response. Han et al. [39] studied the anti-allergic effects of ethanolic
extract of copper algae on passive cutaneous anaphylaxis and IgE/BSA-mediated mouse
bone marrow activation of mast cells. Studies showed that the extract of copper algae
(SHE) inhibited the β-hexosaminidase and histamine release, and substantially inhibited
the degranulation of bone marrow mesenchymal stem cells. In addition, flow cytometry
analysis showed that SHE markedly decreased the FcεRI binding to IgE and FcεRI expres-
sion on the surface of BMCMCs, and regulated the expression levels of mRNA of cytokines
and chemokines in IgE/BSA-stimulated BMCMCs, thereby improving activation of mast
cells stimulated by immunoglobulin E/bovine serum albumin. Herath et al. [40] studied
whether Sargassum horneri ethanol extract (SHE) attenuated the effects of atmospheric
particulate matter (PM) exposure on asthma. By lowering mRNA levels of the transcription
factors STAT5 and GATA3, they discovered that copper algae blocked Th2 polarization and
decreased the expression of IL-4, IL-5, IL-13, and Th2 cytokines in lung tissue homogenates
of mice with asthma caused by PM. Additionally, oral administration of SHE dramatically
decreased mast cell activation, serum IgE levels, and PM-aggravated Th2 and Th17 re-
sponses in asthmatic mice. Compounds with potential anti-allergic activity are present in
red algae in addition to the structure and chemical characteristics of the anti-allergic natural
products in brown algae, which have also been thoroughly investigated. Jung et al. [41]
used a 95% ethanol extraction method to extract Laurencia undulata (LU) and showed that
it contains an enormous quantity of polyphenols, and observed its anti-asthmatic effect
on ovalbumin (OVA)-induced allergic respiratory reactions in mice. The results showed
that LU administered prior to the last airway OVA challenge significantly inhibited allergic
reactions. Shi et al. [42] investigated the anti-allergic effects of sulfated polysaccharide from
Porphyra haitanensis (PHPS) administered orally on mice that were allergic to tropomyosin
(TM). The findings of that experiment revealed that PHPS can stimulate the Treg/Th1
cytokines production like IL-10 and interferon-γ in the presence or absence of allergens.
Han et al. [43] applied RASP (red algae sulfated polysaccharide) to effervescent tablets
for anti-allergy research, and it was acquired by extraction of Gracilaria lemaneiformis and
Porphyra haitanensis. As a result of RASP treatment, serum IgE levels, mast cell protease-1,
and histamine were reduced. RASP treatment can reduce IL-4, significantly increases
IFN-γ, and IFN-γ as Th1 cytokines, and promotes Th1 cell differentiation, thereby reg-
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ulating allergic reactions caused by Th1/Th2 immune response imbalance. The natural
products found in microalgae also have anti-allergic properties. Additionally, anti-allergic
compounds have also been found in green algae. Raman et al. [44] observed that the crude
extract of Enteromorpha compressa reduced the level of IgE induced by food allergens such
as ovalbumin and that it enhanced immune function by decreasing plasma cell generation
of IgE antibodies against food allergens. Cryptomonas, another algal species, has also
been shown to have anti-allergic properties. The effect of Polyopes affinis ethanol extract on
Th2-mediated allergen-induced airway inflammation in an asthmatic mouse model was
evaluated by Lee et al. [45]. Researchers found that continual intraperitoneal injection of P.
affinis ethanol extract before the last respiratory OVA challenge significantly inhibited the
response and reduced ovalbumin-specific IgE by 72%.

Mangrove is a wetland woody plant community composed of evergreen trees or
shrubs mainly composed of mangrove plants growing in the intertidal zone of tropical
and subtropical coasts. Acharyya et al. [46] studied the anti-allergic activity of the Ethanol
extract of Lumnitzera racemosa and the polyphenols related to this activity (16–24, see
Figure 1). Oral administration of the ethanol extract of L. racemosa significantly reduced
the number of sneezes, scratches, and nasal pain, as well as the number of lymphocytes,
neutrophils, and eosinophils, and significantly inhibited TDI-induced allergic symptoms.
(See Table 1 for details on compounds).

3.2. Marine Animals
3.2.1. Natural Products Derived from Marine Animals with Anti-Allergic Activity

In the study of anti-allergy, marine animals mainly include sponges, mollusks, sea
cucumbers, corals, etc. A variety of marine animals, including sponges, mollusks, and fish
also have anti-allergic properties. The sponge was the first multicellular animal, living in
the ocean 600 million years ago, with a high capacity for filtration [47]. In mollusks, sea
cucumbers and abalone are the main sources of anti-allergy compounds. Ko et al. [48]
investigated the passive cutaneous anaphylaxis of gastrointestinal digestive components
of the intestinal digestive digest of abalone Haliotis discus hannai and a bioactive peptide
(compound 25, see Figure 2) was isolated from the gastrointestinal digestion. Histamine
release could be reduced by 300µg/mL of compound 25. Mice treated with compound
25 showed significant inhibition of the immunoglobulin E-mediated PCA response. By
regulating PMA + A23187, compound 25 stimulates HMC-1 cells to produce tumor necrosis
factor-α, IL-1, and IL-6 reduces the release of histamine and has anti-allergic activity.

Jiao et al. [49] identified anti-allergic terpenoids isolated from the marine sponge
Dysidea villosa and they found that four compounds, 26–29 (Figure 2), suppressed the
release of degranulation marker β-hexosaminidase with IC50 values of 8.2, 10.2, 19.9 and
16.2 µM, respectively, in a dose-dependent manner. As a result of antigen stimulation,
the production of LTB 4 and IL-4 in RBL-2H3 mast cells was dose-dependently inhibited.
Compound 26 demonstrated the greatest anti-allergic activity out of the four compounds.
In some studies it has been shown that mast cell activation is inhibited by compound 26 by
inhibiting the signaling pathway of Syk/PLCγ-1, thereby inhibiting mast cell degranulation
and down-regulating LTB 4 and IL-4 production. Hong et al. [50] isolated three compounds
(including 30–32, see Figure 2) from the South China Sea sponge Hippospongia lachne to find
that they inhibited IgE-stimulated RBL-2H3 cells from releasing β-hexosaminidase. It was
found that compounds 30 and 31 had higher β-aminocaproic glycosidase inhibitory activity.
LTB4 production by activated RBL-2H3 cells was significantly inhibited by compounds
30 and 31 with IC50 values of 49.37 and 23.91 µM, respectively. Andrew et al. [51] found
that the marine sponge Petrosia sp. contained a sterol-like compound called IZP-94005
(Compound 33 as shown in Figure 2). Both in vivo and in vitro allergic reactions were
studied using ovalbumin-induced bronchoconstriction and smooth muscle contractions.
Based on a concentration-dependent inhibition of OVA-stimulated sensitized tracheal ring
response, IZP-94005 had an IC50 of 10 µM. A substantial lowering in histamine release was
observed after the application of IZP-94005. Shoji et al. [52] isolated two new triterpenoids
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with 14 carboxyl groups from the Okinawan marine sponge Penares incrustans. Anti-IgE-
induced histamine release from rat peritoneal mast cells was inhibited by compounds 34
and 35 (Figure 2) with IC50 values of 1.5 µM and 10 µM, respectively. It was found that
compound 34 was 17 times more potent in nature than disodium cromoglycerate (DSCG).
Takei et al. [53] characterized the Okinawan marine sponge Xestospongia bergquistia and
isolated different terpenoids from it. Dose-dependent inhibition of the release of histamine
from mast cells in male Wistar rats was observed with compounds 36 and 37 (Figure 2).
Release of histamine from IgE-activated mast cells was blocked by compounds 36 and 37 at
100 µM each. PI-PLC activity and inhibition of IP3 production were initiated by compound
36 in a dose-dependent manner. Aside from inhibiting calcium mobilization in intracellular
calcium stores, compound 36 also inhibited calcium influx. Isolation of two terpenoids from
the Okinawan marine sponge Penares incrustans was also performed by Takei et al. [54].
It was shown that compounds 38 and 39 (Figure 2) inhibited anti-IgE-induced histamine
release in Wistar rats. At 100 µM, the anti-IgE-induced histamine release was inhibited at
90.7 ± 2.3%, 0.5 and 1.5 µM IC50, respectively. There was a dose-dependent inhibition of
PLA2 (phospholipase A2) activity with both compounds. This system was able to measure
the IC50 values for PLA2 activity at 2 and 0.1 µM, respectively. (See Table 1 for details
on compounds).Mar. Drugs 2022, 20, x FOR PEER REVIEW 9 of 22 
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Pozharitskaya et al. [55] isolated and studied the anti-allergic effect of compounds
(40–43, see Figure 2) of green sea urchin shell pigment. Green sea urchin shell pigment
compounds had a dose-dependent inhibitory effect on histamine-induced ileum contraction
in guinea pigs, ID50 = 1.2µg/mL. The inhibitory effect on the ocular allergic inflammation
model was better than that of the reference drug olopatadine.

Most of the compounds isolated from soft corals belong to terpenoids, which mainly
have cytotoxicity and anti-tumor activity, especially lactone diterpenoids, while com-
pounds with anti-allergic activity account for a minority [56]. Shoji et al. [57] isolated
four compounds (44a–44d, see Figure 2) from the soft coral Sinularia abrupta. Compounds
44a–44d inhibited anti-IgE-induced histamine release from rat peritoneal mast cells in
a dose-dependent manner. The IC50 values of 44a–44d were 0.04, 0.6, 1.5, and 0.2 µM,
respectively. It is 6500 times more potent than the well-known anti-allergic drug sodium
cromoglycate (IC50 = 262 µM).

3.2.2. Crude Extracts from Marine Animals as Potential Sources with Anti-Allergic Activity

A research study by Kim et al. [58] examined the ability of oral administration of LMW-
AV (low molecular weight peptides) acquired from gastrointestinal digestion of Abalone
viscera (AV) to treat (AD) atopic dermatitis in a dermatitis-induced model stimulated
with Dermatophagoides farinae. In AD-like lesions, LMW-AV inhibited the expression of
chemokines and cytokines related to Th2, and it inhibited serum IgE levels. Eosinophils
were decreased as a result of oral LMW-AV treatment, skin thickness was reduced, mast
cell infiltration into the epidermis was inhibited, and skin edema was reduced.

Lee et al. [59] investigated the anti-allergic activity of sea cucumber and demonstrated
that the liquid salting-out extract of sea cucumber activated and recruited regulatory T and
Treg cells that improved allergic airway inflammation. Moreover, sea cucumber extract
rich in palmitoleic acid inhibited IgE better than extracts poor in palmitoleic acid, whereas
palmitoleic acid lowers serum total immunoglobulin E (IgE) concentrations.

Fish have a rich diversity due to their complex living environment. There is a variety
of biological activities associated with different parts of fish. Willemsen [60] found that fish
oil has an effect on decreasing allergic symptoms when high n-3LCPUFA intake is coupled
with low n-6PUFA intake, whereas TH2 and TH1 reactions are reduced by N-3LCPUFA
(fish oil), Treg frequency increases, and IgE level is reduced, which indicates that this oil has
the potential for anti-allergic activity. Aryani et al. [61] examined the anti-allergic properties
of charcoal from the inedible part of Channa pleurophthalmus Blkr, (Kerandang fish), and
anti-hyaluronidase activity was determined by anti-hyaluronidase test. Based on the results,
caudal fin charcoal extract exhibited the highest inhibitory effect and pectoral fin charcoal
extract exhibited the lowest inhibitory effect. With four mg/mL, ethyl acetate extract
concentration of caudal fin charcoal showed the greatest inhibitory effect on hyaluronidase.
A potential anti-allergic drug can be developed from its non-edible parts.
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3.3. Marine Microorganisms
Natural Products Derived from Marine Microorganisms with Anti-Allergic Activity

Harunari et al. [62] studied the activity of Hyaluromycin 45 (Figure 3), a new member
of the rubromycin family isolated from marine-derived Streptomyces sp., which is composed
of γ-rubromycin core structure with 2-amino-3-hydroxycyclopent-2-enone (C5N) unit as
amide substituent of the carboxyl group. The enzyme hyaluromycin imparts a major role
in allergic responses and in mast cell degranulation. We found that hyaluromycin had a
25-fold higher inhibitory effect against hyaluronidase than the plant terpenoid glycyrrhizic
acid with 14 µM IC50 value, therefore providing new insights in the development of
anti-allergic drugs. Niu et al. [63] isolated a polyketone compound 46 (Figure 3) from a
deep-sea-derived fungus Graphostroma sp. and tested its biological activity in IgE-mediated
rat basophilic leukemia-2H3 cells. Compound 46 can also be isolated from the fermentation
broth of Streptomyces sp. The findings showed that compound 46 significantly inhibited
histamine release and degranulation in RBL-2H3 cells, with a 13.7 µM IC50 value. It was
found that the methyl group present at C-3, the C-6 hydroxyl group, and the methoxy
group at C-7 were essential for anti-food allergy activity. They also isolated eight tetracyclic
diterpenoids from the deep-sea fungus Botryotinia fuckeliana in the western Pacific [64].
Compound 47 (Figure 3) was found with a novel 6/6/5/5 tetracyclic carbon skeleton.
Compared with loratadine (positive control and IC50 = 0.1 mM), compound 47 showed
anti-allergic effects in RBL-2H3 cells (IC50 = 0.2 mM).
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Shu et al. [65] isolated an alkaloid 48 (Figure 3) from Penicillium, i.e., deep-sea fungus.
Their study revealed that compound 48 significantly reduced β-hexose release and his-
tamine in RBL-2H3 cells induced by ovalbumin (OVA) in a dose-dependent manner (IC50
= 6.67 µg/ml), and it had no cytotoxic effect on RBL-2H3. There was a dose-dependent
decrease in mast cell protease-1, histamine, immunoglobulin E, and tumor necrosis factor-α
levels, and an increase in IL-10 production. The increase of calcium ions is the key process
of MC secretory granule translocation. Compound 48 significantly inhibited the accumula-
tion of calcium ions in RBL-2H3 cells in a dose-dependent manner, thereby blocking the
activation of macrophages and inhibiting mast cell degranulation.

Uras et al. [66] purified butyrolactone I (compound 49, see Figure 3) from Aspergillus
terreus. Inhibition of calcium ion carrier A23187 and antigen-induced degranulation is
manifested by its significant anti-allergic activity, with 39.7 and 41.6 µM, IC50 values.
Elsbaey et al. [67] isolated two compounds (50, 51, see Figure 3) from the white bean culture
of the endophytic fungus Aspergillus amstelodami. Anti-allergic activity of quercetin was
determined in 100 µM RBL-2H3. Both compounds significantly reduced the release of
β-hexosaminidase and had no significant cytotoxicity to cells. These compounds may
have some anti-allergic effects, although they have a lower efficacy than quercetin. Xie
et al. [68] isolated a new cyclic ether compound nesterenkoniane (52) and 12 known
compounds from Nesterenkonia flava, an actinomycete originating from the deep sea (see
Figure 3). By employing IgE-mediated rat mast cell RBL-2H3 as a model, cyclo-(D)-proline-
(D)-leucine (compound 53, see Figure 3) and indole-3-carbaldehyde (compound 54, see
Figure 3) showed significant anti-allergic activity with 69.95 and 57.12 µg/mL IC50 values,
respectively. (See Table 1 for details on compounds).

Table 1. Research Overview of Marine Natural Products with Anti-allergy Activities. (See Table S1 in
the Supplementary Materials file for further details.).

Source of
Compounds

The Sources
of Isolation

Number of
Compounds

Range of
Dosage

Structure
Type Test System Targets/Pathway/Process

Mechanism Reference

Marine Plants

Ecklonia cava Compound
1–3 100 µM Polyphenol

Human
basophilic

KU812F cells and
RBL-2H3 cells

FcεRI and IgE binding
activity,

histamine release,
degranulation of cell

[25]

Ecklonia
stolonifera

Compound
4–5 50 µM Polyphenol

Human
basophilic

KU812F cells

The expression of FcεRI,
intracellular Ca2+ [27]

Ecklonia
stolonifera
Okamura

Compound 6 50 µM Polyphenol RBL-2H3 mast
cell

Ca2+ concentration,
mast cell degranulation,

histamine release
[28]

Eisenia arborea Compound
2,3,7–10 10–200 µM Polyphenol

DNP-BSA-
induced

RBL-2H3 mast
cell

Release of histamine,
leukotriene B4 and
prostaglandin E2,

H1 receptor
[29]

Sargassum
carpophyllum

Compound
11–13 40 µM Polyphenol

DNP-HSA-
induced

RBL-2H3 cells

Release of
β-hexosaminidase,

mast cell degranulation

[31]

Symbiodinium
sp., Petalonia

fascia

Compound
14–15 50 µg Carotenoid BALB/cAJc1

mice Migration of eosinophils [32]

Lumnitzera
racemosa

Compound
16–24 / (Ethanol

extract)

Toluene
2,4-diisocyanate
(TDI)-induced
allergic model

mice

IgE [46]



Mar. Drugs 2023, 21, 152 12 of 21

Table 1. Cont.

Source of
Compounds

The Sources
of Isolation

Number of
Compounds

Range of
Dosage

Structure
Type Test System Targets/Pathway/Process

Mechanism Reference

Marine
Animals

Haliotis discus
hannai Compound 25 50 mg/kg Polypeptide

Passive
cutaneous

anaphylaxis in
mice

Histamine release, FcεRI
and IgE binding activity [48]

Sponge Compound
26–29 250 µg/mL Terpenoids RBL-2H3 mast

cells

β-hexosaminidase,
Syk/PLCγ-1, mast cell

degranulation
[49]

Hippospongia
lachne

Compound
30–32 200 µg/mL (Ethanol

extract)
IgE-stimulated
RBL-2H3 cells β-hexosaminidase [50]

Petrosia sp. Compound 33 3–30 µM Sterol OVA-induced
mice Histamine release levels [51]

Penares
incrustans

Compound
34–35 0–10 µM Triterpenoids

Anti-IgE-
induced mast

cells
Histamine release [52]

Xestospongia
bergquistia,

Penares
incrustans

Compound
36–39 100 µM Terpenoids

Anti-IgE-
induced male

Wistar rats’ mast
cells

IP3 production, Histamine
release, intracellular Ca2+,

PLA2
[53,54]

Green sea
urchin

Compound
40–43 1.2 µg/mL

Polyhydroxy-
1,4-

naphthoquinone

Histamine-
induced guinea

pigs
β-hexosaminidase [55]

Sinularia
abrupta Compound 44 0.04–1.5 µM Polyhydroxysteroid

Anti-IgE-
induced

mice
Mast cell, histamine release [57]

Marine
Microorganisms

Streptomyces
sp. Compound 45 / Macrolide / Mast cell degranulation,

hyaluronidase [62]

Graphostroma
sp.

Botryotinia
fuckeliana

Compound
46–47 0–200 µM Tetracyclic

diterpenoids RBL-2H3 cells Histamine release, mast cell
degranulation [63,64]

Penicillium Compound 48 20 mg/kg Quinoline
alkaloid

OVA-induced
RBL-2H3 cells

β-hexose and histamine,
mast cell degranulation, IgE [65]

Aspergillus
terreus Compound 49 100 µM Hemiterpenes RBL-2H3 cells β-hexosaminidase, IgE [66]

Aspergillus
amstelodami

Compound
50–51 100 µM β-lactams,

adenine RBL-2H3 cells β-hexosaminidase [67]

Nesterenkonia
flava

Compound
52–54

1.0–80.0
µg/mL

Cycloethers,
diketopiper-

azine,
alkaloid

RBL-2H3 cells IgE, β-hexosaminidase [68]

4. Potential Mechanism Study of Representative Natural Products

Allergens of various types can cause food allergies, like peanuts [69], cockroaches, and
dust mites in household dust [70], as well as certain drugs like sulfonamides, penicillins,
and certain vaccines. According to research reports, the main secondary metabolites
extracted from marine organisms have an effect on allergic reactions which include: the
inhibition of Th2 cells to secrete allergy-related cytokines and chemokines; inhibition of the
binding of IgE to FcεRI receptor; inhibition of the release of histamine to inhibit mast cell
degranulation (Figure 4).

Once the allergen enters the body, the antigen-representing cells receive it, leading
to the transformation of helper cells from Th0 cells to Th2 cells [71]. Different cytokines
are secreted by Th2 cells, including interleukin 4,5,13, which cause activation of B cells
to release IgE [72,73], and cross-link with the FcεRI receptor expressed on mast cells and
basophils surface, triggering biochemical reactions, such as FcεRI-dependent signal cascade
activation, increased intracellular calcium levels, microtubule polymerization and degran-
ulation [74]. Subsequent histamine, interleukin, protease, chemokines, prostaglandins,
and other inflammatory mediators are released in large quantities, leading to a variety of
allergic reactions [75]. For regulating type I allergies and treating allergic diseases, these
allergic cascades are considered molecular targets.
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Previous studies have shown that whether it is marine plants, animals or microorgan-
isms, or synthetic anti-allergic marine secondary metabolites, their inhibitory mechanisms
on allergic reactions are similar, mainly including inhibition of FcεRI and IgE binding
activity, histamine release, mast cell degranulation, and cytokine production. In addition,
it also controls allergic reactions by inhibiting the expression of FcεRI on the cell surface,
inhibiting the flow of Ca2+, and regulating the balance of Th1 cells and Th2 cells. The above
studies have shown that there is a link between the release of chemical mediators and mast
cell degranulation [26].

Mast cells are granulocytes [76] that are widely distributed around microvessels in the
skin and visceral mucosa. They contain heparin, histamine, and 5-hydroxytryptamine. Due
to contact between IgE antibodies and antigens bound to mast cells, the cells are mostly
collapsed, and particles and substances are released by the disintegration of the cells, which
can cause rapid allergic reactions in tissues. At the same time, they secrete a variety of
cytokines and participate in immune regulation. It is mainly the result of antigen-induced
aggregation of FceRI receptor molecules on the surface of mast cells, which accounts for
the triggering of the release of inflammatory mediators by mast cells. The inflammatory
mediators released by mast cell activation initiate a signal transduction cascade.

In mast cells, the initial factor of Ca2+ influx is the cross-linking of allergen and the IgE-
FcεRI complex to activate phospholipase C (PLC), which can produce phosphatidylinositol
4,5-diphosphate (PIP2). Secondary messengers are formed from PIP2, such as IP3 (inositol
1,4,5-triphosphate) and DAG (diacylglycerol). IP3 combines on the endoplasmic reticulum
membrane with the IP3 receptor (IP3R) to release Ca2+ from the endoplasmic reticulum
Ca2+ store [77]. Ca2+ influx is primarily caused by endoplasmic reticulum Ca2+ stores
depletion [78,79]. Its molecular mechanism is that there are proteins STIM1 and STIM2
containing EF-hand domains in the endoplasmic reticulum, which can sense Ca2+ depletion
in the calcium store of the endoplasmic reticulum [80]. Then it migrates to the plasma
membrane, interacts with the Orai protein on the plasma membrane, and opens the Ca2+

channel on the cell membrane to allow the influx of extracellular Ca2+ [81]. As shown in
Figure 5, Ca2 + participates in mast cell activation signaling pathway.
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Figure 5. Ca2+ participates in mast cell activation signaling pathway. Intracellular Ca2+ regulates
cell granule migration, granule membrane fusion, and cell degranulation [82]. This figure shows
only FcεRI (high-affinity IgE receptor) on inactivated mast cells followed by the activation of FcεRI
cross-linking, and the linker for activation of T cells. LAT is phosphorylated in a manner depending
on tyrosine-protein kinase Lyn and Syk [83]. Degranulation was accompanied by activation of signal
transduction phospholipases PLCγ, protein kinase C and increased calcium ions, and TRPC1 channels
further facilitated Ca2+ influx [84]. RAS-RAF-MAPK pathway activation leads to eicosanoid produc-
tion (including leukotrienes C4 and prostaglandin D2) and cytokines. InsP3R (Inositol Triphosphate
Receptor), a membrane glycoprotein complex activated by InsP3, acts as a calcium channel [85] and
STIM (Stromal interaction molecules) is a calcium receptor on the endoplasmic reticulum [86].

Mast cells are characterized by a higher content of electron-dense secretory granules
filled with numerous pre-activated immunomodulatory compounds which are significant
effector cells of the immune system [87]. When mast cells are activated, they first undergo
a process of degranulation. These preformed granular compounds are released quickly
into the surrounding environment [88]. Studies have shown that in the presence of IL-
4 and free IgE, the FcRI expression on the mast cell’s surface increases, which further
enhances the activation process [89]. This shows that IL-4 is not only imperative for the
Th2 cells’ differentiation during allergic sensitization, but also for the differentiation of Th2
cells during allergic stimulation [90]. Granular material secreted by mast cells is initially
synthesized in the Trans-Golgi apparatus. First, the small vesicle propagules bud on the
Trans-Golgi and then undergo massive fusion to form immature mast cell granules with
minimal dense centers. Next, the dense centers of immature mast cell granules need to grow
for maturation, a process that is accomplished by the filling of granules and compounds
like cytokines, proteases, and bioactive amines.

The research has pointed out that the increase of intracellular Ca2+ level triggers
cell degranulation, which makes the granules move from the interior of the cell to the
cytoplasmic membrane. Subsequently, coronin 1A and coronin 1B regulate cortical actin
depolymerization [91]. The premise of degranulation is a large number of particle fu-
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sion, which is regulated by a large number of soluble N-Ethylmaleimide-sensitive factor
attachment protein receptors, including target-SNARE and vesicle-SNARE proteins [92].
Subsequently, a degranulation reaction occurs and pre-formed particulates are released in a
soluble form, while other compounds remain in the matrix, known as particulate residues.
In this matrix, proteoglycans are the most important components, including tumor necrosis
factor, carboxypeptidase A3, and chymase [93]. Mast cell granule maturation is largely
dependent on the participation of proteoglycans. Mast cells also release granule inclusions
through exocytosis, a process accomplished by vesicle germination on the granule [94].
Current research on the molecular mechanism of mast cell degranulation mainly focuses
on tyrosine kinase Lyn and Fyn-dependent signal transduction pathway and increase of
intracellular Ca2+ level [95]. There are many other signaling pathways involved to regulate
mast cell degranulation, deserving further exploration, which can provide a scientific basis
for determining the network system between various signals in mast cells and provide a
further reference for elucidating the mechanism of allergy.

Mast cells are activated by an allergen that binds to serum IgE attached to their FcεRI
receptors, they release cytokines, eicosanoids, and their secretory granules. When the same
allergen appears again, the cross-links cell surface to IgE and FcεRI activates mast cells
through signal transduction and releases active mediators in the granules, triggering type
I hypersensitivity. Therefore, blocking the binding of FcεRI and IgE effectively inhibits
allergic reactions. Most natural products extracted from marine organisms have this activity.
Compounds can also reduce the binding of FcεRI and IgE by inhibiting the expression of
FcεRI on the surface of mast cells.

In short, the key anti-allergic target is to inhibit mast cell degranulation, so the produc-
tion of allergic mediators is inhibited. In an allergic reaction, marine natural products can
prevent allergic reactions in the following way. Firstly, they inhibit the upstream pathway
by inhibiting the production of IgE, reducing the binding of IgE to FcεRI, inhibiting the
Th2 cytokines release, and regulating the balance of Th1 and Th2 cells; then they inhibit the
binding of IgE to FcεRI and inhibit the expression of FcεRI on the mast cells surface; and
finally, the downstream part of the pathway inhibits mast cell degranulation and inhibits
the release of inflammatory factors such as histamine. At present, a variety of histamine
receptor antagonists have been developed, and only a few are in clinical trials. The dis-
advantage is that the half-life is too short [96]. Most receptor antagonists have binding
activity with receptors [97] and show good results in the treatment of a variety of allergic
diseases. In addition, with the use of anti-allergic drugs in the pathway of allergic reactions,
some receptors will experience side effects, such as antihistamine drugs leading to human
inattention, lethargy, arrhythmia, etc. The development of antagonists for different allergic
inflammatory diseases remains a major challenge.

5. Discussion and Future Prospects

At present, the first-line treatment of anti-allergic drugs mainly includes the adjuvant
treatment of topical glucocorticoids and anti-histamines [98]. Long-term use will produce
adverse side effects and drug resistance [99]. For example, hormonal drugs can cause
side effects like obesity and swelling in patients. Antihistamines can cross the blood-brain
barrier, so after administration people feel dizziness, inattentiveness, etc. In order to
explore how to reduce side effects and drug resistance, adopt new targets and mechanisms,
and develop drugs with good efficacy and few side effects, this manuscript reviews anti-
allergic natural products extracted from marine organisms to find the best way to treat
allergic diseases. Marine-derived anti-allergic natural products have great potential. Many
researchers have been employing various techniques to discover and synthesize novel
compounds to improve the diversity and availability of marine compounds. There are
thousands of organisms in the marine environment, ranging from single-cell organisms
to mammals. Each organism carries unique substances and has rich drug development
potential. At the same time, allergies affect generations of people, therefore advancement
in research of anti-allergic drugs is very important.
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The increasing demand for new drugs from natural sources has promoted the expan-
sion of modern biotechnology research to find alternative sources of bioactive components
with potential applications in various fields. A large number of active metabolites are
present in the marine environment with diverse chemical structures. In recent years, many
researchers have shown great interest in in vivo and in vitro experiments for exploring
the effects of marine-derived compounds as anti-allergic drugs. Anti-allergic secondary
metabolites are employed against many allergic reactions through different pathways. Most
of the compounds with anti-allergic activity are derivatives of the polyphenol structure
obtained from marine brown algae. Many biological activities, such as antioxidant [100],
antibacterial, anti-inflammatory [101], anti-cancer [102], anti-virus, etc. can be achieved
by these types of compounds. Studies have shown that polyphenols also have a certain
inhibitory effect on allergic reactions. In marine animals, anti-allergic compounds i.e.,
terpenoids are mostly derived from sponges. In addition to being a rich reservoir of micro-
bial diversity, the sponge is also one of the largest contributors to the overall diversity of
marine microorganisms on the planet [103]. The special structure of the sponge leads to
the establishment of complex microbial symbiosis [104]. In this article, molecular docking
MOE was used to explore the mechanism of some secondary metabolites extracted from
marine organisms affecting mast cell degranulation, that is, histamine release. ASP107 is
a conserved residue in amine receptors that forms an anchor salt bridge with the ligand
amine moiety. It has been documented that this interaction is necessary for H1R antagonists
and agonists binding in mutation studies. Molecular docking studies were performed on
18 reported marine anti-allergic natural products acting on H1R receptors. According to the
interaction between scoring and key amino acids, compounds 14 and 37 were selected for
display. The molecular docking results are shown in Figure 6. It is proved that the phenolic
hydroxyl group of compound 14 forms a hydrogen bond interaction with the key amino
acid Asp107. The docking energy is −8.2685 Kcal/mol. The phenolic hydroxyl group of
compound 37 formed a hydrogen bond interaction with the key amino acid Asp107, and
the docking energy was −5.6156 Kcal/Mol. The docking fraction of H1R with the standard
ligand cetirizine (−7.3Kcal/mol) showed a satisfactory docking fraction [45]. Compared
with the reported drugs, in addition to the key amino acids, the phenolic hydroxyl group
of compound 14 forms hydrogen bond interactions with Thr132 and Tyr431, and the amide
oxygen of compound 37 also has hydrogen bond interactions with Asn198, further indi-
cating that it has good affinity with H1R and is expected to be a candidate drug for H1R
antagonists with high selectivity. However, there is still a lack of experiments to verify the
targets of marine natural products. (The method of molecular docking is shown in SI)
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Finally, we hope that this review will not only provide information on the anti-allergic
activity and structure of marine natural products but also provide a valuable reference
for how marine natural products inhibit allergic reactions as well as immunomodulatory
effects. At present, there are relatively few studies compiled on these anti-allergic marine
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natural products, but many secondary metabolites with good biological activity have been
discovered in recent years. Further exploration is undoubtedly a useful strategy to discover
new anti-allergic drugs.
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