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Abstract: Fucans from marine algae have been the object of many studies that demonstrated a broad
spectrum of biological activities, including anti-inflammatory effects. The aim of this study was
to verify the protective effects of a fucan extracted from the brown algae Spatoglossum schröederi
in animals submitted to a generalized inflammation model induced by zymosan (ZIGI). BALB/c
mice were first submitted to zymosan-induced peritonitis to evaluate the treatment dose capable
of inhibiting the induced cellular migration in a simple model of inflammation. Mice were treated
by the intravenous route with three doses (20, 10, and 5 mg/kg) of our fucan and, 1 h later, were
inoculated with an intraperitoneal dose of zymosan (40 mg/kg). Peritoneal exudate was collected
24 h later for the evaluation of leukocyte migration. Doses of the fucan of Spatoglossum schröederi at 20
and 10 mg/kg reduced peritoneal cellular migration and were selected to perform ZIGI experiments.
In the ZIGI model, treatment was administered 1 h before and 6 h after the zymosan inoculation
(500 mg/kg). Treatments and challenges were administered via intravenous and intraperitoneal
routes, respectively. Systemic toxicity was assessed 6 h after inoculation, based on three clinical
signs (bristly hair, prostration, and diarrhea). The peritoneal exudate was collected to assess cellular
migration and IL-6 levels, while blood samples were collected to determine IL-6, ALT, and AST
levels. Liver tissue was collected for histopathological analysis. In another experimental series,
weight loss was evaluated for 15 days after zymosan inoculation and fucan treatment. The fucan
treatment did not present any effect on ZIGI systemic toxicity; however, a fucan dose of 20 mg/kg
was capable of reducing the weight loss in treated mice. The treatment with both doses also reduced
the cellular migration and reduced IL-6 levels in peritoneal exudate and serum in doses of 20 and
10 mg/kg, respectively. They also presented a protective effect in the liver, with a reduction in hepatic
transaminase levels in both doses of treatment and attenuated histological damage in the liver at a
dose of 10 mg/kg. Fucan from S. schröederi presented a promising pharmacological activity upon the
murine model of ZIGI, with potential anti-inflammatory and hepatic protective effects, and should
be the target of profound and elucidative studies.
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1. Introduction

Fucans are sulfated polysaccharides found in brown algae (Phaeophyceae) and echin-
oderms (sea urchins and sea cucumbers). The family of algae fucans can be divided
into three big groups of polysaccharides: fucoidans (mostly consisting of fucose), xylo-
fucoglucuronans, and glucuronogalactofucans (or glucurofucogalactanans) [1]. The
structure of these sulfated polysaccharides changes according to the algae species from
which they are extracted, and this structure is intrinsically related to their biological
activity [2].

Since their first description, fucans from marine organisms have been the target of
many studies, showing a broad spectrum of biological properties: antitumoral, antiprolif-
erative [3,4], anticoagulant, antithrombotic [5,6], hypoglycemic [7], antiviral [8], antipar-
asitary [9], antioxidant [10], immunoregulatory [11], and anti-inflammatory [12]. Marine
algae are a source of many compounds with biological activity, including polysaccharides
with anti-inflammatory activity [12]. Fucans with anti-inflammatory activity were found in
brown seaweeds [13,14], turning these organisms into an interesting source of biological
compounds for study. Brown algae Spatoglossum spp. are well described as a source of
compounds with many biological activities [15–17]; among them, Spatoglossum schröederi, a
commonly brown seaweed found on the Brazilian coast, show antigenotoxic [18], antitu-
moral [19], anti-adhesive [20], antithrombotic [21], antigenotoxic [18], antinociceptive [22],
anti-angiogenic [23], antiparasitic [24], and nutraceutical [25] effects. Despite the variety
of studies that characterize this seaweed as a source of many compounds with potential
pharmacological activities, there is a lack of knowledge and prospective studies about its
anti-inflammatory potential.

Systemic inflammatory response, like sepsis, can lead to conditions that could seri-
ously impact the body function and, in some cases, the survival of affected individuals.
Sepsis is defined as a “life-threatening organ dysfunction caused by a dysregulated host
response to infection,” according to the more recent guidelines [26]. Sepsis pathophysiology
involves many immunological mechanisms, with intense production of pro-inflammatory
factors, mainly TNF-α, IL-1β, IL-6, IL-12, and IL-18, in a marked event called “cytokine
storm” [27], leading to intense systemic inflammatory activation, causing tissue damage
and organ dysfunction [28]. Sepsis and septic shock diagnosis is based on the assessment of
clinical scores, laboratory biomarkers of inflammatory response, circulatory and metabolic
dysregulation, and progressive organ dysfunction [29,30], which is associated with a higher
risk of mortality in septic patients [26].

Due to the complex immunopathogenesis and clinical manifestation, sepsis is a
condition of difficult management and treatment, requiring hemodynamic stabilization
and vasopressor therapy to avoid shock and antibiotic therapy to eliminate infectious
focuses as major strategies of disease control [31]. Immunosuppressor therapy with
corticosteroids has been established as a management strategy, but studies are very con-
troversial about the efficacy of these drugs in sepsis control [32]. In the same way, many
clinical trials have failed to establish a successful anti-inflammatory pharmacological
therapy as a fully effective strategy in sepsis control [33,34]. Therefore, sepsis remains
one of the major healthcare challenges worldwide, with a high mortality rate mainly in
undeveloped regions [35].

In addition to clinical trials to establish effective anti-inflammatory therapeutic strate-
gies, preliminary studies are always necessary for a better understanding of the im-
munopathogenesis of sepsis to evaluate and propose new potential intervention protocols
and treatment strategies. Non-septic shock induced by zymosan was proposed decades
ago as a study model of generalized inflammation (denominated as zymosan-induced gen-
eralized inflammation—ZIGI), which can trigger multiple-organ dysfunction in mice [36]
in a similar way observed in humans stricken with sepsis. Zymosan is a non-degradable
polysaccharidic compound from the Saccharomyces cerevisiae cell wall capable of inducing
macrophagic activation and synthesis of many pro-inflammatory mediators, such as cy-
tokines, bioactive lipids, and oxygen radicals, leading to long-term inflammation status [37].
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The ZIGI model is marked by an intense inflammatory status with clinical, biochemical,
and histological changes, inducing systemic toxicity and weight loss [38]; intense leuko-
cyte migration, with augmented polymorphonuclear infiltrate [39]; increased levels of
TNF-α, IL-1β, and IL-6 and mediators of oxidative stress, associated with the NF-κB role
of immune modulation [40,41]; and important histopathological changes in affected tis-
sues and biochemical-associated manifestations, like liver damage and augmented hepatic
transaminases levels [42,43].

Considering the lack of anti-inflammatory therapeutical strategies for sepsis and
the gravity of this condition, the importance of conducting studies with the purpose of
elucidating new pharmacological intervention possibilities has emerged. The present
work demonstrates the biological activity of a fucan extracted from the brown seaweed
Spatoglossum schröederi as a treatment for systemic inflammation in a ZIGI murine model.
This is a pioneer study to evaluate the potential anti-inflammatory effect of a fucan ex-
tracted from this brown seaweed, applying an experimental model that reproduces similar
immunopathogenesis observed in organ dysfunction triggered by a systemic inflamma-
tory response.

2. Results
2.1. Fucan from S. schröederi Can Inhibit Leukocyte Migration to Peritoneal Cavity in
Zymosan-Induced Peritonits Murine Model

First, the biological activity of the compound was evaluated in zymosan-induced
peritonitis, a simple model of acute inflammation, to determine if a fucan extracted from S.
schröederi has any anti-inflammatory potential. In this model, zymosan can induce intense
leukocyte migration to the peritoneal cavity 24 h after its inoculation. Treatment showed
dose-dependent inhibition of leukocyte migration, with a marked effect at doses of 20
and 10 mg/kg, while the fucan dose of 5 mg/kg did not show any effect (Figure 1A). The
main cell type present in the inflammatory infiltrate at the time studied after zymosan
inoculation was polymorphonuclear cells (PMNs), followed by mononuclear cells (MNs).
Treatment with a dose of 20 mg/kg of fucan from S. schröederi significantly reduced the
presence of these cells in the inflammatory infiltrate, reducing the proportion of MNs to a
status similar to that observed in healthy animals (Figure 1B).

2.2. Fucan from S. schröederi Can Attenuate Systemic Toxicity Signs in ZIGI Murine Model

Since the fucan from S. schröederi showed a potent inhibitory effect on leukocyte
migration in the peritonitis model, its activity was also evaluated in the ZIGI model. After
observing the inefficacy of a fucan dose of 5 mg/kg to impair leukocyte migration in the
initial experiment, it was decided to test only the other two doses in subsequent steps. The
impact of the treatment on attenuating the clinical signs, such as bristly hair, prostration,
and diarrhea, as well as body weight loss, was evaluated, which is a criterion for evaluating
systemic toxicity in animals subjected to generalized inflammation. Zymosan was able to
induce important systemic toxicity in the generalized inflammation model, with a high
clinical score (Figure 2A) and accented body weight loss (Figure 2B) in affected animals.
Treatment with fucan was not able to reduce clinical signs of systemic toxicity in this model.
Animals treated with fucan were also followed up for 15 days after zymosan inoculation.
We tested the treatment with 20 mg/kg of fucan, as this dose showed better results in the
peritonitis model. In the first 18 h, no difference in the body weight loss was observed
between experimental groups. However, 24 h after zymosan administration, a discreet
but significant reduction in body weight loss was registered in the treatment group, which
remained throughout the analyzed period.
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**** p < 0.0001, when compared with the positive control group. #### p < 0.0001 and ## p = 0.0086 

Figure 1. Effect of treatment with fucan from S. schröederi in total (A) and differential (B) leukocyte
migration to the peritoneal cavity in zymosan-induced peritonitis murine model. BALB/c mice were
treated intravenously (i.v.) with three different doses of fucan, and, 1 h later, they were inoculated
intraperitoneally (i.p.) with zymosan (40 mg/kg). The negative control group (vehicle) received
NaCl 0.9% as a challenge and treatment. The positive control group (ZYM) received zymosan as a
challenge and NaCl 0.9% as treatment. After 24 h, peritoneal exudate was collected, and total and
differential cellularity were determined. The data are representative of three independent experiments
(N = 5 animals per group) and are presented as mean with standard deviation. In (A), **** p < 0.0001,
when compared with the positive control group. #### p < 0.0001 and ## p = 0.0086 when compared
with the negative control group. In (B), **** p < 0.0001 and * p = 0.0194, when compared with PMN
and MN from the positive control group, respectively; #### p < 0.0001 and ### p = 0.0007, when
compared with PMN from the negative control group; ## p = 0.0069, when compared with MN from
the negative control group; ◦◦◦◦ p < 0.0001. Fuc20: fucan 20 mg/kg. Fuc10: fucan 10 mg/kg. Fuc5:
fucan 5 mg/kg. ZYM: zymosan; MN: mononuclear cells; PMN: polymorphonuclear cells. ns, no
significant difference between selected group.
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murine model. BALB/c mice were treated with fucan (i.v.) 1 h before and 6 h after zymosan challenge
(500 mg/kg, i.p.). The negative control group (vehicle) received NaCl 0.9% as a challenge and
treatment. The positive control group (ZYM) received zymosan as a challenge and NaCl 0.9% as
treatment. (A) Clinical signs of generalized inflammation (bristly hair, prostration, and diarrhea) were
evaluated 6 h after zymosan administration. Each clinical sign was attributed a score of 1 (presence) or
0 (absence). (B) Body weight was recorded daily for 15 days after zymosan administration. The data
are representative of three independent experiments (N = 5 animals per group in A; N = 10 animals
per group in B) and are presented as mean with standard deviation. In (A,B): #### p < 0.0001, when
compared with the negative control group. In (B): ** p = 0.0084, when compared with the positive
control group. Fuc20: fucan 20 mg/kg. Fuc10: fucan 10 mg/kg. ZYM: zymosan.

2.3. Fucan from S. schröederi Can Inhibit Peritoneal Leukocyte Migration in ZIGI Murine Model

Our next step was to evaluate the effect of doses of 20 and 10 mk/kg of fucan on
cell migration to the peritoneum of animals submitted to the generalized inflammation
model induced by zymosan. As expected, the animals submitted to the ZIGI model showed
intense leukocyte infiltration in the peritoneum. On the other hand, treatment with fucan,
at the two doses tested, showed a potent anti-inflammatory effect, reducing cell count to
similar levels observed in healthy animals (Figure 3).
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Figure 3. Effect of treatment with fucan extracted from S. schröederi in leukocyte migration to the
peritoneal cavity in the ZIGI model. BALB/c mice were treated with fucan (i.v.) 1 h before and 6 h
after zymosan challenge (500 mg/kg, i.p.). The negative control group (vehicle) received NaCl 0.9%
as a challenge and treatment. The positive control group (ZYM) received zymosan as a challenge and
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NaCl 0.9% as treatment. Eighteen hours after zymosan administration, peritoneal exudate was
collected, and total cellularity was determined in the Neubauer chamber. The data are representative
of three independent experiments (N = 5 animals per group) and are presented as mean with
standard deviation. **** p < 0.0001 and *** p = 0.0001 when compared with the positive control group.
#### p < 0.0001, when compared with the negative control group. Fuc20: fucan 20 mg/kg. Fuc10:
fucan 10 mg/kg. ZYM: zymosan.

2.4. Fucan from S. schröederi Can Reduce IL-6 Levels in ZIGI Murine Model

Next, the efficacy of treatment with fucan to modulate IL-6 levels in serum and
peritoneum exudate in animals submitted to ZIGI was determined. Animals subjected
to the ZIGI model showed high levels of IL-6 both in blood serum (Figure 4A) and in
peritoneal exudate (Figure 4B) as a sign of important pro-inflammatory response. In sera,
treatment with fucan with the two tested doses reduced cytokine levels, with a dose of
10 mg/kg showing a better effect than the higher dose of treatment (20 mg/kg). In the same
way, IL-6 levels in peritoneal exudate were also reduced with doses of 10 and 20 mg/kg.
However, in this case, the higher dose presented better results in modulating cytokine
levels. In both experiments, however, treatment was able to attenuate but did not reduce
IL-6 to normal levels when compared with the negative control group.
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exudate were collected, and IL-6 levels were determined by ELISA. The data are representative of
three independent experiments (N = 5 animals per group) and are presented as mean with standard
deviation. **** p < 0.0001, ** p = 0.002, and * p = 0.0293, when compared with the positive control
group. #### p < 0.0001, when compared with the negative control group. Fuc20: fucan 20 mg/kg.
Fuc10: fucan 10 mg/kg. ZYM: zymosan.

2.5. Fucan of S. schröederi Show Protective Hepatic Effect, Attenuating Liver Damage in ZIGI
Murine Model

Finally, the effect of treatment with fucan on hepatic damage observed in the ZIGI
model was evaluated. Initially, aspartate (AST) and alanine (ALT) aminotransferase levels
in sera were assessed. The ZIGI model was proven to induce high levels of AST (Figure 5A)
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and ALT (Figure 5B) in animals as important biochemical signs of liver dysfunction in
zymosan-induced generalized inflammation. Treatment with fucan in two tested doses
was able to reduce hepatic transferase levels to normal status without a difference between
treated and healthy groups. Interestingly, no difference in the protective effect was observed
between both doses in this experiment.
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Figure 5. Effect of treatment with fucan extracted from S. schröederi in AST (A) and ALT (B) in the
ZIGI model. BALB/c mice were treated with fucan (i.v.) 1 h before and 6 h after zymosan challenge
(500 mg/kg, i.p.). The negative control group (vehicle) received NaCl 0.9% as a challenge and
treatment. The positive control group (ZYM) received zymosan as a challenge and NaCl 0.9% as
treatment. Eighteen hours after zymosan administration, sera were collected, and transaminase levels
were determined by biochemical photometric assay. The data are representative of three indepen-
dent experiments (N = 5 animals per group) and are presented as mean with standard deviation.
*** p = 0.0002, ** p = 0.0077 (Fuc10 + ZYM), and ** p = 0.0038 (Fuc20 + ZYM) when compared with
the positive control group, ## p = 0.0024 and #### p < 0.0001, when compared with negative control
group. Fuc20: fucan 20 mg/kg. Fuc10: fucan 10 mg/kg. ZYM: zymosan.

Also, histopathological analysis of the liver showed that ZIGI can induce severe tis-
sue damage, parenchyma disorganization, extensive necrose areas, hemorrhagic leakage,
presence of hepatocyte degeneration, nuclear pyknosis, and chromatin fragmentation
(Figure 6C,D). Treatment with fucan from S. schröederi reduced liver damage, presenting
discrete hepatocyte alterations without parenchyma disorganization. The protective effect
is more expressive in the group treated with 10 mg/kg of fucan (Figure 6G,H), presenting
the absence of hemorrhagic focuses, hepatocyte cord integrity preserved, and discrete alter-
ations compatible with tissue regeneration. In the group treated with 20 mg/kg of fucan, it
was possible to observe the presence of congested vessels and sinusoids, parenchyma disor-
ganization, presence of nuclear pyknosis, and cytoplasmatic vacuolization in hepatocytes
(Figure 6E,F).
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Figure 6. Effect of treatment with fucan extracted from S. schröederi in histopathological hepatic
changes in the ZIGI model. BALB/c mice were treated with fucan (i.v.) 1 h before and 6 h after
zymosan challenge (500 mg/kg, i.p.). The negative control group received NaCl 0.9% as a challenge
and treatment. The positive control group received zymosan as a challenge and NaCl 0.9% as a
treatment. Eighteen hours after zymosan administration, animals were euthanized, and the liver
was collected for histopathological analysis. Samples were fixed and colored by H/E. (A) Negative
control group (100×). (B) Detail from hepatic parenchyma of the negative control group (200×).
(C) Positive control group (100×). (D) Detail from the liver peripheric area of the positive control
group showing hepatocytes with irreversible alterations: apoptosis, ballooning degeneration, and
hemorrhagic leakage areas (200×). (E) Treatment with fucan from S. schröederi, a dose of 20 mg/kg
(100×). (F) Detail of hepatocytes in E, showing the presence of nuclear pyknosis (arrowhead) and
cytoplasmatic vacuolization (arrow) (200×). (G) Treatment with fucan from S. schröederi, a dose
of 10 mg/kg (100×). (H) Detail of hepatocytes in G, showing discrete alterations compatible with
regeneration areas. VCB: central lobular vein. EP: portal space. S: sinusoid.
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3. Discussion

Fucans are sulfated polysaccharides commonly found in brown seaweed, with a range
of biological effects and potential use in medicine [44,45]. The anti-inflammatory activity of
fucans has been studied, with many immunomodulatory mechanisms described [46], but,
as previously mentioned, there is a lack of knowledge about the anti-inflammatory effect
of fucan extracted from Spatoglossum spp. The evidence presented showed a broad anti-
inflammatory effect of fucan extracted from the brown seaweed Spatoglossum schröederi in
zymosan-induced generalized inflammation, a model of severe inflammatory injury capable
of triggering organ dysfunction and highlighted some characteristics of the biological
activity of this compound.

Marine polysaccharides, including fucans, have been recognized for their diverse
bioactivities, which encompass anti-inflammatory effects. For example, sulfated fucans
from brown algae have demonstrated anti-inflammatory potential by modulating various
cellular and molecular components of the immune system [47]. These polysaccharides can
interact with immune cells, such as macrophages and neutrophils, inhibiting chemotaxis
and adhesion to endothelial cells [48]. In fact, a fucan obtained from brown seaweed
reduced swelling and paw volume in the paw edema murine model [49,50]. Fucan from
brown seaweed was proven to impair cellular migration through binding cell adhesion
molecules [51]. In fact, fucan from S. schröederi was proven to inhibit the migration of CHO-
K1 cells [23]. Also, fucan extracted from Saccharina japonica was proved to be capable of
reducing mRNA CD11b levels and CD11b expression [52], impacting leukocyte migration
under pro-inflammatory conditions. According to this, a similar effect was observed in this
study when fucan from S. schröederi was able to inhibit cellular migration not only in acute
inflammation conditions, during peritonitis experiments, but also in severe inflammatory
response, as in the ZIGI model. The data suggest, for the first time, an important effect of
these compounds in inhibiting cellular migration during generalized inflammation.

Additionally, the capacity of fucans to reduce polymorphonuclear (PMN) migration
is noteworthy. PMNs are key players in the early stages of inflammation, but excessive
PMN recruitment can exacerbate tissue damage [53]. Indeed, sulfated fucan extracted
from Padina gymnospora was proved to be capable of reducing the peritoneal PMN
migration in the acute peritonitis model [54]. Fucoidan from Sargassum hemyphillum was
also able to drastically reduce PMN migration to the lungs in pneumonitis and the fibrosis
model in mice, an effect associated with diminished pro-inflammatory cytokine production,
attenuating tissue damage [55]. The ability of fucan to markedly reduce PMN migration, as
shown in our study, aligns with its potential as an anti-inflammatory agent that may help
prevent excessive inflammation-induced tissue damage.

Interestingly, inhibition of leukocyte migration to the injury site (and attenuating of
other parameters, as discussed below) by fucan from S. schröederi was observed in this
study in a dose-dependent manner. Dose-dependent effects of fucans have been reported
in different experimental settings upon various parameters, such as reduction in exudate
leakage, diminished pro-inflammatory cytokine, ROS and NO production, modulation
of enzyme activity associated with inflammation, and inhibition of signaling pathway
responsible for pro-inflammatory gene expression [49,56,57]. These findings allow us to
modulate experiments by choosing lower but effective doses and avoiding the possibility
of toxicity. It is also important to consider that the efficacy of fucans can be influenced by
their molecular weight, sulfation pattern, and degree of branching [48,58]. This complexity
in their structure may contribute to the observed dose-dependent response and must be
considered in prospecting future studies for a better evaluation of the anti-inflammatory
activity of this compound.

Besides leukocyte migration, treatment with fucan from S. schröederi was also capable
of attenuating systemic toxicity in the ZIGI model. A similar effect was observed in the
DSS-induced colitis murine model when the treatment with fucan from the brown seaweed
Macrocystis pyrifera ameliorated global clinical signs and disease activity index, including
body weight loss in an anti-inflammatory effect associated with the diminished production
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of pro-inflammatory cytokines [59]. Our data show that treatment with fucan from S.
schröederi in the ZIGI model was also capable of reducing body weight loss, an impor-
tant parameter of systemic toxicity evaluation, and this effect was also accompanied by
diminished IL-6 levels in peritoneal exudate and sera. Importantly, fucan from S. schröederi
was proved here to positively modulate the clinical status in ZIGI; the model chosen here
underscores the severity of the inflammatory response and serves as a challenging testbed
for potential anti-inflammatory interventions.

One noteworthy finding is that fucan treatment, administered at a dosage of 20 mg/kg,
did not effectively reduce the clinical signs of systemic toxicity within the first 18 h of ob-
servation. This result is consistent with the study by Kuznetsova et al. [60], which showed
that pretreatment with fucoidan extracted from brown algae, Fucus evanescens, used in a
murine model of endotoxemia caused by LPS, partially restored the hypercoagulopathy,
characteristic of this inflammatory condition. However, the delayed but significant reduc-
tion in body weight loss observed 24 h after zymosan administration in the fucan-treated
group suggests a potential time-dependent effect of fucan. Again, our data corroborate
the previously cited study, which shows that pretreatment with fucoidan prolonged the
survival of the animals by days.

Treatment with fucan from S. schröederi was also capable of reducing IL-6 levels in peri-
toneal leakage and serum in the ZIGI model, demonstrating the ability of the compound to
modulate the cytokine levels locally at the site of injury and systemically. IL-6 is an impor-
tant pro-inflammatory cytokine involved in many immune response mechanisms, such as
leukocyte proliferation and recruitment and acute phase protein and antibody production,
displaying a central role in the pathogenesis of severe diseases [61]. During systemic in-
flammation, IL-6 can enhance TNF-α production via NF-κB signaling activation [62], which
can create conditions for cytokine storm onset and associated organ damage. Notably, in-
creased IL-6 systemic levels were associated with severe inflammatory response in patients
with sepsis [63] and have an important predictive role as a multiple-organ dysfunction
biomarker [64]. Remarkably, the impact of treatment with fucan from S. schröederi on IL-6
levels is a considerable find of this study due to the relationship of high levels of this
pro-inflammatory factor with the pathogenesis of organ failure.

This inhibitory effect of fucans upon pro-inflammatory cytokines was also observed
in other studies. Fucans obtained from brown seaweed have been shown to reduce
pro-inflammatory cytokine levels, such as IL-1β, IL-6, IL-8, and TNF-α, with no sign of
toxicity or cellular viability loss [65,66]. A similar effect was registered in in vitro and
in vivo experiments with fucan extracted from Sargassum fusiforme, reducing not only
pro-inflammatory cytokine levels but also NO and PGE2 levels, and this was associated
with NF-κB signaling modulation [67]. A fucan obtained from brown seaweed has
been shown to have anti-inflammatory activity associated with the regulation of central
signaling pathways, like MAPK and NF-κB, reducing phosphorylation of p38, ERK,
JNK, p65, and IKKα/IKKβ [56,68], and NF-κB nuclear translocation [49] in in vitro and
in vivo experiments.

NF-κB and MAPK pathways are pivotal in pro-inflammatory and immunomodulatory
signaling and are responsible for gene expression of many mechanisms and factors of
immune response, such as chemokines, cytokines, signaling proteins and receptors, cellular
adhesion molecules, and oxidative stress mediators [69–71]. In vitro and in vivo studies
with fucans from brown seaweed showed the capacity of these compounds to inhibit
NF-κB and MAPK pathways, downregulating pro-inflammatory factors such as iNOS,
COX-2, and MyD88, and attenuating the production of mediators such as TNF-α, IL-6,
Il-1β, NO, and PGE2 [12,72–75]. Considering the extensive evidence and the characteristics
of the anti-inflammatory effect of fucan from S. schröederi elicited by our experiments, it
is hypothesized that this compound can show similar activity. Unfortunately, it was not
possible to evaluate the molecular mechanisms of the anti-inflammatory activity of fucan
from S. schröederi in the present work and confirm the existence of this immunomodulating
mechanism by the compound.
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As discussed before, systemic inflammatory response has a major role in the onset of
tissue damage due to the capacity of recruitment and activation of leukocytes (mainly PMN)
and the production of pro-inflammatory mediators responsible for immune-mediated ag-
gression and organ dysfunction. Treatment with these compounds was proven to prevent
damage in the lung and intestinal colon by inhibiting the inflammatory response during
severe diseases, reducing leukocyte infiltration, pro-inflammatory cytokine production,
tissue fibrosis, and relative clinical manifestation [59,76]. Fucans and sulfated polysaccha-
rides from marine algae have also demonstrated hepatoprotective effects through anti-
inflammatory mechanisms in various liver injury models. They reduce hepatic transam-
inase levels, lower pro-inflammatory mediator amounts, and preserve tissue structure
and function [77–79]. Importantly, liver function impairment represents a critical event
during multiple-organ dysfunction pathogenesis, with a bad outcome for the patient due
to the importance of hepatic functions to the entire organism [80,81] and, in this context,
the hepatoprotective effect presented by fucan from S. schröederi, elicited by biochemical
and histopathological analysis, rises as one of the most important findings of our work,
and this effect was attributed to the anti-inflammatory activity shown by the compound in
our experiments.

Our study has some limitations, such as the lack of evidence about the molecular
mechanisms responsible for the anti-inflammatory activity of fucan from S. schöederi. More
studies are necessary to elucidate these mechanisms, allowing us to discuss with more
propriety the range of its pharmacological potential and bioprospection perspectives. It
is important to highlight the importance of the data presented in this study due to the
lack of knowledge about the biological activity of metabolites from S. schröederi, mainly
the anti-inflammatory of fucans and sulfated polysaccharides from this species, to aim
for more effective therapeutics for immune-mediated severe diseases such as generalized
inflammation and multiple-organ dysfunction.

4. Materials and Methods
4.1. Animals

Six- to eight-week-old BALB/c male mice with 20–25 g of body weight were used
in this study. Mice were obtained from the Biosciences Center Bioterium of the Federal
University of Rio Grande do Norte. Mice were maintained in a 12 h/12 h light–dark cycle,
with free access to food and water. All procedures in this study were authorized by the
Experimental Animals Ethical Committee of the Bioscience Center of the Federal University
of Rio Grande do Norte (Protocol 008/2010).

4.2. Fucan Obtaining

Spatoglossum schöederi seaweed was collected at Pirambuzios Beach (5◦59′20.6′′ S
35◦06′50.1′′ W), Nísia Floresta-RN, Brazil. It was preserved in the Natural Polymers
Biotechnology Laboratory—BIOPOL, in the Department of Biochemistry of the Federal
University of Rio Grande do Norte, supervised by Prof. Dr. Hugo Alexandre de Oliveira
Rocha. The collection was authorized by the Brazilian National Management System for
Genetic Heritage and Associated Traditional Knowledge (SISGEN number A0D4240).

The seaweeds were dried at 50 ◦C with ventilation, blended, and treated with ethanol
to remove lipids and pigments. Several changes of ethanol were performed, and by the fifth
time, even after 24 h of maceration, the ethanol was no longer pigmented. Subsequently,
the material was centrifuged at 8000× g, 4 ◦C for 30 min, and the resulting seaweed powder
was dried at room temperature while being shielded from light. This material was then
stored in sealed containers and kept away from light until the fucan extraction process.

The fucan was extracted from marine brown algae S. schröederi following the methodol-
ogy outlined in the study by Rodrigues-Souza et al. [18]. Approximately 100 g of powdered
algae was suspended in five volumes (500 mL) of 0.25 M NaCl, and the pH was adjusted to
8.0 using NaOH. Subsequently, 1.5 g of Prolav 750 (Prozyn Biosolutions, São Paulo, Brazil),
which is a mixture of alkaline proteases, was added to facilitate proteolytic digestion. Af-



Mar. Drugs 2023, 21, 557 12 of 17

ter 18 h incubation at 60 ◦C, the mixture was filtered through cheesecloth. The resulting
solution was termed the crude extract and underwent acetone fractionation.

The crude extract was subjected to acetone precipitation as follows: ice-cold acetone
(0.5 mL) was gently added to the solution and maintained at 4 ◦C for 24 h. The resulting
precipitate was collected by centrifugation (10,000× g, 20 min), dried under vacuum,
reconstituted in distilled water, and subjected to analysis. This process was repeated by
adding 0.6, 0.7, 0.9, 1.1, 1.3, and 2.0 volumes of acetone to the supernatant. These fractions
were named based on the volume of acetone used: F0.5v, F0.6v, F0.7v, F0.9v, F1.1v, F1.3v,
and F2.0v.

The F0.6v fraction, which was confirmed to contain fucan based on the findings of
Rodrigues-Souza et al. [18], was dissolved in distilled water and subjected to ion exchange
chromatography. The elution process involved a gradient of increasing NaCl concentrations
(0.25/0.5/0.7/1.0/1.5/2.0 M). The fraction eluted with 1.0 M NaCl, known to contain
the fucan, was precipitated by adding methanol (100%) and kept at 4 ◦C. After 24 h,
the precipitate was separated by centrifugation, dialyzed, and stored in light-protected
conditions for future analyses. Fucan identification was performed through 1HNMR
analysis, and the corresponding spectra can be found in their previously published paper.

4.3. Zymosan-Induced Peritonitis

BALB/c mice were randomly distributed in study groups (N = 5 animals per group)
and inoculated by intravenous route with sterile saline solution (0.9%) or different doses of
fucan (Fuc5: fucan 5 mg/kg; Fuc10: fucan 10 mg/kg; Fuc20: fucan 20 mg/kg) diluted in
sterile saline solution (0.9%) as treatment. After 1 h, the negative control group (vehicle)
received by intraperitoneal route 500 µL of sterile saline solution (0.9%), while the positive
control (ZYM) and treated (Fuc5, Fuc10, and Fuc20) groups received 500 µL of zymosan
solution (40 mg/kg) by the intraperitoneal way as a stimulus. After 24 h of stimulus
inoculation, animals were euthanized, and peritoneal lavage was collected by injection
of 5 mL of cold sterile saline solution (0.9%). The recovered material was centrifuged
(250× g, 10 min, 4 ◦C), and the supernatant was collected by IL-6 determination assays.
The cellular button was resuspended in cold saline solution (0.9%), and the cellular count
was determined by optical microscopy with a Neubauer chamber.

4.4. Zymosan-Induced Generalized Inflammation Model (ZIGI)

ZIGI was performed using the methodology described by Paola et al. [38], with
modifications. BALB/c mice were randomly distributed in study groups (N = 5 animals
per group). Generalized inflammation was induced by intraperitoneal administration of
zymosan (500 mg/kg) diluted in sterile saline solution (0.9%) as a stimulus. The negative
control group (vehicle) received sterile saline solution only as a stimulus. One hour
before and six hours after the stimulus, animals were treated intravenously with different
doses of fucan (Fuc10: fucan 10 mg/kg; Fuc20: fucan 20 mg/kg) diluted in sterile saline
solution (0.9%). Negative (vehicle) and positive (ZYM) control groups received sterile
saline solution (0.9%) only as treatment. After 18 h of stimulus inoculation, mice were
anesthetized, blood was collected by retro-orbital punction and centrifuged (1400× g,
10 min, 4◦ C), and sera were preserved for IL-6 and hepatic transaminases determination.
Next, animals were euthanized, peritoneal lavage was collected as previously described,
and the liver was extracted and preserved in PBS-formalin solution (10%) for posterior
histopathological analysis.

4.5. IL-6 and Hepatic Transaminase (ALT/AST) Determination

IL-6 concentration in sera and peritoneal lavage supernatant was determined by
enzyme-linked immunosorbent assay (ELISA), according to the manufacturer’s recom-
mendations (eBioscience., Inc., San Diego, CA, USA). ALT and AST levels in sera were
determined according to the manufacturer’s recommendations (Labtest Diagnóstica S.A.,
Lagoa Santa, Brazil).
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4.6. ZIGI Systemic Toxicity Evaluation

The severity of systemic injury occasioned by ZIGI was also analyzed according to
Paola et al. (2006) methodology. Generalized inflammation clinical signs (bristly hair, pros-
tration, and diarrhea) were subjectively observed in animals 6 h after stimulus inoculation.
A number score was attributed to each clinical sign observed, with 0 for absence and 1
for presence of the parameter analyzed, and the total score ranges from 0 to 3 for each
animal observed. In another experimental series, animals submitted to the ZIGI model
were treated with fucan at a dose of 20 mg/kg and were monitored and weighed daily for
15 days to evaluate the loss of body weight induced by generalized inflammation.

4.7. Histopathological Analysis

The collected liver quantitative samples were fixed in PBS-formalin solution (10%)
and then arranged in paraffin blocks. Paraffin blocks were cut to obtain 5 µm thick slices of
tissue for hematoxylin–eosin coloration. Morphological analysis was evaluated in a blind
study of cases performed by one single evaluator (E. J. D. S.), who registered and described
qualitatively the histological status of tissue parenchyma and stroma.

4.8. Data Analysis

The data were tabled and expressed as mean with standard deviation in every graph-
ical representation. Statistical analysis was performed by application of ANOVA with
Dunnet and Sidak post hoc tests to determine the difference between experimental groups.
Statistical significance was considered when p < 0.05. All graphical representation and sta-
tistical analysis were performed using GraphPad Prism 8.0.1 software (GraphPad Software,
Inc., La Jolla, CA, USA).

5. Conclusions

This is the first study to show the anti-inflammatory effects of fucan extracted from
the brown seaweed Spatoglossum schröederi in murine models of acute peritonitis and gener-
alized inflammation induced by zymosan. The data show the capacity of fucan to inhibit
zymosan-induced leukocyte migration to the peritoneum, with a remarkable ability to
impair polymorphonuclear migration, specifically. Fucan from S. schröederi was also able
to ameliorate the clinical manifestation of the ZIGI model, reducing body weight loss, an
important parameter of systemic toxicity evaluation. Additionally, treatment with fucan
was capable of reducing IL-6 at local and systemic levels, in addition to having a hepatopro-
tective effect, reducing liver damage and hepatic transaminase levels. Considering these
findings, more studies are necessary to investigate the mechanisms responsible for the
biological activity of this compound and characterize this fucan as a potential resource in
the treatment of severe inflammatory diseases.
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