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Abstract: Natural products are a very rich source for obtaining new compounds with therapeutic
potential. In the search for new antiparasitic and antimicrobial agents, molecular hybrids were
designed based on the structures of antimicrobial marine quinazolinones and eugenol, a natural
phenolic compound. Following reports of the therapeutic potential of quinazolinones and eugenol
derivatives, it was expected that the union of these pharmacophores could generate biologically
relevant substances. The designed compounds were obtained by classical synthetic procedures
and were characterized by routine spectrometric techniques. Nine intermediates and final products
were then evaluated in vitro against Trypanosoma brucei and Leishmania infantum. Antifungal and
antibacterial activity were also evaluated. Six compounds (9b, 9c, 9d, 10b, 10c, and 14) showed mild
activity against T. brucei with IC50 in the range of 11.17–31.68 µM. Additionally, intermediate 9c
showed anti-Leishmania activity (IC50 7.54 µM) and was six times less cytotoxic against THP-1 cells.
In conclusion, novel derivatives with a simple quinazolinone scaffold showing selectivity against
parasites without antibacterial and antifungal activities were disclosed, paving the way for new
antitrypanosomal agents.

Keywords: quinazolinone; eugenol; natural products; hybrid compounds; 1,2,3-triazoles; Try-
panosoma brucei; Leishmania infantum

1. Introduction

Parasites are responsible for a high rate of mortality each year and represent a global
health burden worldwide, with 11 parasitic infections identified as neglected tropical
diseases by the World Health Organization (WHO) [1,2]. Parasitic infections are rapidly
spreading and becoming a major cause of chronic diseases due to climate change and
environmental pollution, as well as increased resistance to the used drug arsenal [3].

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasite-
caused neglected disease that greatly affects sub-Saharan Africa, putting about 55 million
people at risk (according to 2020 data) [4]. This potentially fatal disease is caused by two
Trypanosoma brucei species, namely Trypanosoma brucei gambiense and Trypanosoma brucei
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rhodesiense, and the parasites are transmitted to the human host by the bite of the tsetse
fly [5,6]. WHO, in collaboration with governmental and nongovernmental organizations,
has been able to significantly reduce the incidence of HAT to fewer 1000 cases per year,
attributable to access to novel drugs [4,6].

Leishmaniasis is a parasitic neglected disease caused by Leishmania spp., which are
transmitted to mammal hosts by the bite of infected female sandflies. Visceral leishmaniasis
is the most severe and life-threatening form and is caused by Leishmania donovani on the
Asian and African continents and by Leishmania infantum in the Mediterranean Basin
(Portugal, Spain, Greece, and Italy), the Middle East, Central Asia, and Central/North
America [2,7]. Annually, there are reports of up to 1 million new cases although infection
by parasites does not always correlate with the development of disease [8].

The research on novel antiparasitic agents has been limited and represents a low
interest investment for large pharmaceutical companies due to their incidence occurring
mainly in secluded, poor, and disadvantaged populations with limited resources [9]. A
large proportion of the approved and new-drug applicants is occupied by natural products
or derivatives, furthers suggesting their impact in medicine over the years [10,11].

Marine natural products have shown a variety of biological activities, such as antimi-
crobial, antioxidant, anticancer, and antiparasitic. In terms of antiparasitic activity, various
compounds from marine sources have been reported, and reviews of their antiprotozoal po-
tential have shown several examples of novel compounds for this biological activity [9,12].
In particular, quinazolinones have rendered derivatives with several pharmacological and
biological activities, such as antibacterial, antifungal, and antiparasitic [13]. Examples of
naturally occurring quinazolinones from Bacillus cereus present in sea mud with antifungal
activity were reported (Figure 1) [14]. Recently, our research group disclosed for the first
time new marine-derived indolylmethylpyrazinoquinazolines active against Plasmodium
and Trypanosomatids [2].
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Figure 1. Bioactive quinazolinone (a), dihydroquinazolinone (b), and indolylmethylpyrazinoquina-
zoline (c) obtained from or inspired by marine sources.

On the other hand, eugenol, a phenolic natural compound (Figure 2), has presented
various biological activities, including antiparasitic and antimicrobial, among others [15–17].
Chemical modifications of the eugenol structure or integration of this unit into a given privileged
structure is an approach often taken by medicinal chemists to obtain derivatives with improved
biological profiles.
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Therefore, keeping in mind the diversity and potential of marine compounds, par-
ticularly of the marine quinazolinones, a series of derivatives of novel quinazolinones
associated with the eugenol moiety was designed via a well-known click chemistry
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reaction [18]. We hypothesized that this new structure scaffold could be promising against
parasitic diseases since it brings together essential moieties from bioactive compounds. The
synthesis of these quinazolinone–eugenol and related compounds will be herein discussed,
as well as their antiparasitic activity and further screenings for antimicrobial activities.

2. Results and Discussion
2.1. Chemistry

The synthetic route used to obtain the hybrids consisted initially of the functionaliza-
tion of eugenol (1) to obtain the propargyl ether 2 and the azide 4 (see Scheme 1). To obtain
2, eugenol (1) was subjected to O-alkylation with propargyl bromide in basic medium,
according to a procedure described before [19]. The azide (4) was synthesized in three
steps, namely by a hydroxymethylation reaction of eugenol (1) with formaldehyde in basic
medium [20], followed by chlorination of the alcoholic intermediate (3) with thionyl chlo-
ride and one-pot nucleophilic substitution with sodium azide. Intermediate 4 formation
was confirmed by NMR, in which a singlet relative to methylene protons alpha to the azido
group could be observed at 4.37 ppm. In the 13C NMR spectrum, the signal relative to this
group was found in the region expected for this type of carbon at 49.2 ppm.
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Scheme 1. Synthesis of intermediates 2 and 4: (a) K2CO3, propargyl bromide, anhydrous DMF, 0 ◦C
to 25 ◦C, 24 h; (b) NaOH, formaldehyde, H2O, 25 ◦C; (c) SOCl2, K2CO3, anhydrous DMF, 0 ◦C, 2 h
then NaN3, anhydrous DMSO, 25 ◦C, 24 h.

The synthetic route used to obtain the quinazolinone counterpart is shown in Scheme 2.
First, anthranilic acids 5a–5d were subjected to an N-acylation reaction with propynoyl
chloride, prepared from propiolic acid and thionyl chloride, as indicated elsewhere [21].
Anthranilic acid (5a) was further N-acylated with chloroacetyl chloride, and the interme-
diate 11 was converted into the azide 12, following the procedures described before [22].
Amide intermediates 6a–6d were treated with acetic anhydride under reflux to form ben-
zoxazinone intermediates 7a–7d, according to the general procedure reported [23]. Our
attempts to convert these benzoxazinones directly into the respective quinazolinones by
reaction with ammonia did not result in success, contrary to what was reported in another
work [24]. In this case, instead of quinazolinones, 2-acylamino-benzamides 8a–8d were
obtained as described by Kelleher and coworkers [18], who used this ammonia-based
method for the synthesis of this type of benzamide. Intermediates 6a and 7a were easy
to handle and could be purified and properly characterized. The main findings in the
characterization of 6a by 1H NMR were the characteristic signal of the acetylenic proton at
4.51 ppm and the signals for both acetylenic carbons at 79.48 and 78.84 ppm in 13C NMR
spectra. Still, in the 13C NMR spectrum, the signals at 170.71 and 150.84 ppm, relative
to the amide and acid carbonyls, established this characterization. For the intermediate
benzoxazolone 7a, the main evidence was the presence of a single carbonyl signal at 159.47
ppm, in addition to the azomethine carbon at 146.79 ppm.

The amides 6b–6d, benzoxazinones 7b–7d, and 2-acylamino-benzamides 8a–8d were
found to be quite unstable, decomposing rapidly during purification and characterization
attempts. Thus, intermediates 8a–8d were used in crude form for the synthesis of triazole
intermediates 9a–9d, while intermediates 12 and 7a could generate the additional triazoles
13 and 14, respectively. These and the other triazoles (9a–9d) were prepared by the copper
catalyzed azide–alkyne cycloaddition reaction, following the classical click procedure
described elsewhere [25]. The signal relative to the triazole hydrogen of products 9a–9d,
10a–10c, 13, and 14 was clearly observed in the range of 8.25–8.62 ppm.
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Scheme 2. Synthesis of hybrid compounds. (a) Propynoyl chloride, TEA, anhydrous DCM, 0 ◦C;
1 h; (b) acetic anhydride, 130 ◦C, 2 h; (c) 28% NH4OH, EtOH, 25 ◦C, 2 h; (d) azide intermediate
4, CuSO4.5H2O, sodium ascorbate, THF, H2O, 25 ◦C, 4–24 h; (e) NaOH, H2O, EtOH, reflux, 1 h;
(f) chloroacetyl chloride, K2CO3, DCM, 0 ◦C, 2 h; (g) NaN3, DMF, 25 ◦C, 24 h; (h) propargyl interme-
diate 2, CuSO4.5H2O, sodium ascorbate, THF, H2O, 25 ◦C, 4 h.

Quinazolinone compounds 10a–10c were obtained from 9a–9c, following the method
of cyclocondensation of 2-acylamino anthranilamides in hot aqueous NaOH, as described
before [26]. Despite our efforts, attempts at cyclization with the chlorinated intermedi-
ate (9d) were unsuccessful, so it was not possible to evaluate the activity of the respec-
tive quinazolinone. The structure characterization was performed by NMR and HRMS
techniques (experimental).

2.2. Biological Tests
2.2.1. Antiparasitic Activity

The compounds were screened for their antiparasitic activity against Leishmania infan-
tum promastigotes and Trypanosoma brucei parasites, and the cytotoxicity was also evaluated
using THP-1 cells. The results obtained allowed us to calculate the half maximal inhibitory
concentration (IC50), which is the concentration of compounds that inhibits parasite growth
by 50%, and the cytotoxic concentration 50 (CC50), which corresponds to the concentration
of compounds required to reduce cell viability by 50%. Both measures, IC50 and CC50, were
calculated in µM with a 95% confidence interval and were used to calculate the selectivity
index (SI). The antiparasitic activity, cytotoxicity, and SI are depicted in Table 1.
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Table 1. Antiparasitic potential of 9a, 9b, 9c, 9d, 10a, 10b, 10c, 13, 14, eugenol (1), pentamidine, and
miltefosine. The antiparasitic activity was evaluated by the IC50 against L. infantum promastigotes
and T. brucei bloodstream parasites, and the cytotoxicity was evaluated by the CC50 in the THP-1
cell line. The selectivity index (SI) for each parasite is also presented. The SI for the compounds was
calculated by the ratio of the antiparasitic activity to the CC50 in THP-1.

Compounds
Anti-Parasitic Activity

IC50 (µM) 95% CI
Cytotoxicity

CC50 (µM) 95% CI SI

L. infantum Promastigotes T. brucei THP-1 L. infantum T. brucei

9a
>40 >40 >100 - --

- - -

9b
>40 16.39 >100 - >6- (14.04–19.06) -

9c
7.54

(5.85–9.58)
21.03 45.82

6 2(15.93–28.62) (38.04–55.30)

9d
>40 15.92 > 100 - >6- (13.42–18.89) -

10a
>40 >40 >100 - --

- - -

10b
>40 19.9 >100 - >5- (17.73–22.29) -

10c
>40 11.17 >100 - >9- (7.97–15.28) -

13
>40 >40 >100 - --

- - -

14
>40 31.68 >100 - >3- (27.98–36.34) -

Eugenol >40 >40 >100 - -
- - -

Pentamidine NT
0.0056 37.71

(31.75–43.57) 6734(0.0052–0.006)

Miltefosine 10.98
(10.17–12.15) NT 29.38

(23.97–36.02) 3

NT: not tested; -: not determined.

Except for 9c, the synthesized hybrids presented no detectable antiparasitic activity
against L. infantum promastigotes until 40 µM (the highest concentration tested). This
compound (9c) presented an IC50 of 7.54 µM (5% CI of 5.85–9.58). Regarding T. brucei, six
compounds (9b, 9c, 9d, 10b, 10c, and 14) presented a quantifiable IC50. The most potent IC50
values were between 20 and 10 µM. Concerning the cytotoxicity against PMA-differentiated
THP-1 cells, the tested series did not induce viability loss in the tested concentrations
except for 9c, which presented a CC50 value of 45.82 µM (95% CI of 38.04–55.30). All active
compounds presented SI values superior to 2.

It is important to note that, among the synthesized compounds, only 9c presented
activity in both parasites. However, it is worth noting that 9c was also the most toxic
molecule from the series, with a CC50 value of 45.82 µM. This finding might be suggestive
of a non-specific mechanism of action.

The structure–activity relationship revealed that the different substituents used in inter-
mediate 9 and final derivative 10 influenced the antitrypanosomal activity. Compounds 9b
and 9c (R=OMe and R=F, respectively) presented a quantifiable IC50, while 9a (R=H) did not
show any detectable IC50. Among derivatives 10, compounds 10b (R=OMe) and 10c (R=F)
had similar IC50 values to 9b and 9c, respectively. The unsubstituted compounds 10a and 9a
did not show detectable values of IC50. It is important to note that 10c had the most potent
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IC50 value against T. brucei, but its IC50 value against L. infantum promastigote was greater
than 40 µM. On the other hand, 9c was not the most potent anti-trypanosome compound
but presented activity against Leishmania. This outcome is suggestive of parasite-specific
activity. In conclusion, new hybrid compounds were disclosed as promising scaffolds for
the synthesis of new antiparasitic molecules.

2.2.2. Antimicrobial Activity

The compounds were additionally evaluated for antimicrobial activity using the broth
microdilution method against three different fungal strains and against two different
bacteria, and the results were demonstrated as the minimum inhibitory concentration
(MIC), which is the minimal concentration to cause inhibition of fungal or bacteria growth
according to the Clinical and Laboratory Standards Institute (CLSI) protocols. Voriconazole
and gentamicin were used as quality control drugs for the antifungal and antibacterial
assays, respectively, and the obtained results were according to the followed norms. The
obtained results for the synthesized compounds revealed poor to no antimicrobial activity
for the marine eugenol hybrids (Supplementary Material, Table S1).

The tested series presented MIC values of >512 µg/mL against C. albicans and
A. fumigatus, meaning that the synthesized substances are not promising antifungal agents
against these strains. The results against T. rubrum were slightly improved for compounds
9a, 9d, 10a, 10c, and 14, with values ranging from 256 to 512 µg/mL. Nevertheless, the MIC
values are still viewed as high; therefore, the compounds were considered not promising,
and no further fungal strains were tested.

The MLCs were tested for compounds 9a, 9d, 10a, 10c, and 14 for T. rubrum, and all
compounds presented values of >512 µg/mL. For eugenol, the MLC results were between
256 and 512 µg/mL for T. rubrum and were >512 µg/mL for C. albicans and A. fumigatus.

In terms of the antibacterial activity, 9c demonstrated a minor improvement in MIC
values in comparison to the remaining compounds (MIC between 256 and 512 µg/mL,
versus >512 µg/mL) when tested against E. coli and S. aureus. For E. coli and S. aureus, the
only MIC evaluated was for 9c, which presented a value of >512 µg/mL and ≤512 µg/mL,
respectively. Once again, the hybrids were not considered promising compounds for this
biological activity.

3. Materials and Methods
3.1. Chemical Procedures
3.1.1. General Methods

Reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA),
Acros Organics (Thermo Fisher Scientific, Geel, Belgium), or Fisher Scientific (Thermo
Fisher Scientific, Loughborough, UK) and were used without further purification. Thin
layer chromatography (TLC) using Merck silica gel 60 (GF254)-precoated plates (0.2 mm
of thickness) with appropriate mobile phases were used to follow reaction progressions.
Ultraviolet light (254 and 365 nm) and 3% aqueous FeCl3 (for phenolic derivatives) were
used to visually detect compounds on chromatograms. When necessary, purifications
of the synthesized compounds were performed by flash column chromatography using
silica gel 60 (0.040–0.063 mm, Merck, Darmstadt, Germany) or preparative thin layer
chromatography (PTLC) using Merck silica gel 60 (GF254) plates. The 1H and 13C NMR
spectra were taken at the Centro de Materiais (CEMUP)–University of Porto on a Bruker
Avance III 400 spectrometer (400 MHz for 1H and 100 MHz for 13C) or at the University of
Aveiro on a Bruker Avance 300 spectrometer (300.13 MHz for 1H and 75.47 MHz for 13C) in
DMSO-d6 or CDCl3 (Deutero GmbH, Ely, UK) at room temperature. Chemical shifts are
expressed in δ (ppm) values relative to tetramethylsilane (TMS) as an internal reference.
Coupling constants are reported in hertz (Hz). 13C NMR assignments were made by
comparison with the assignments of similar molecules. High-resolution mass spectrometry
(HRMS) was performed on an LTQ OrbitrapTM XL hybrid mass spectrometer (Thermo
Fischer Scientific, Bremen, Germany) controlled by LTQ Tune Plus 2.5.5 and Xcalibur 2.1.0
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in positive mode at CEMUP–University of Porto. The capillary voltage of the electrospray
ionization source (ESI) was set to 3.1 kV. The capillary temperature was 275 ◦C. The sheath
gas was at 6 (arbitrary unit, as provided by the software settings). The capillary voltage
was 46 V, and the tube lens voltage was 120 V. The synthesis and purification of compounds
were undertaken as described in the following sections.

3.1.2. Synthesis and Structure Elucidation
Synthesis of 4-allyl-2-methoxy-1-(prop-2-ynyloxy)benzene (2), 5-allyl-2-hydroxy-3-
methoxybenzyl alcohol (3), and 2-[(azidoacetyl)amino]benzoic acid (12)

Compounds 2, 3, and 12 were synthesized and characterized following the works of
Irfan et al. (2015) [19], Singh et al. (1998) [20], and Aarjane et al. (2019) [22], respectively.
The 1H and 13C NMR spectra of 2, 3, and 12 were in accordance with the reported data.

Synthesis of 4-allyl-2-azido-6-methoxyphenol (4)

Compound 3 (0.5 g, 2.6 mmol) was dissolved in anhydrous N,N-dimethylformamide
(5.0 mL) and stirring solution cooled by an ice water bath. Then, thionyl chloride (0.62 g,
0.38 mL, 5.2 mmol) was added dropwise to this solution, followed by anhydrous potassium
carbonate (1.1 7.8 mmol). The mixture was left under stirring at room temperature for
2 h. Subsequently, sodium azide (0.17 g, 2.6 mmol) was added as a solution in anhydrous
dimethylsulfoxide (1.0 mL). The mixture was kept under the same conditions for 24 h when
TLC (hexane/ethyl acetate, 7:3) showed the end of the reaction. Water (10 mL) was added to
the mixture, and the crude product was extracted with ethyl acetate (5 × 10 mL), the organic
phase was dried over anhydrous sodium sulfate, filtered, and evaporated until dry. The pure
product was obtained after flash column chromatography (hexane/ethyl acetate, 7:3).

4-allyl-2-azido-6-methoxyphenol (4): light yellow oil, 35% yield. 1H NMR (300 MHz,
CDCl3) δH 6.68 (s, 2H, H-3 and H-5), 6.04–5.86 (m, 1H, H-8), 5.70 (s, 1H, H-12), 5.14–5.01
(m, 2H, H-9), 4.37 (s, 2H, H-10), 3.89 (s, 3H, H-11), 3.32 (dt, J = 5.9, 1.1 Hz, 2H, H-7); 13C
NMR (75 MHz, CDCl3) δC 146.15 (C-6), 141.96 (C-1), 137.18 (C-8), 131.30 (C-4), 121.56 (C-2),
120.68 (C-3), 115.56 (C-9), 110.87 (C-5), 55.78 (C-11), 49.20 (C-10), 39.54 (C-7).

Synthesis of Acetylenic Intermediates 6a and 7a

Anthranilic acid 5a (1 eq) and triethylamine (2 eq) were dissolved in dry dichloromethane
(10 mL), and the mixture was stirred and cooled to 0 ◦C in an ice bath. Then, propynoyl
chloride (1.2 eq) was added dropwise. The reaction mixture was kept under the same
conditions until the consumption of the starting material, which was visualized by TLC
(hexane/ethyl acetate, 1:1). Then, the reaction mixture was poured into crushed ice and stirred
vigorously to precipitate the product 6a, which was filtered off under reduced pressure. The
product was used in the next step without further purification. Intermediate 6a (1 eq) was
then dissolved in acetic anhydride (20 mL), and the mixture was heated at 130 ◦C for 2 h.
After this time, the reaction mixture was cooled to room temperature and then poured into
crushed ice. After vigorous stirring, the solid that precipitated was filtered off under reduced
pressure and washed copiously with water. The obtained product (7a) was pure enough to be
used in the next step.

2-propiolamidobenzoic acid (6a): yellow solid, 75% yield. 1H NMR (400 MHz, CDCl3)
δH 11.63 (s, 1H, H-8), 8.31 (d, J = 8.4 Hz, 1H, H-6), 8.00 (dd, J = 7.9, 1.7 Hz, 1H, H-3), 7.63
(ddd, J = 8.4, 7.4, 1.7 Hz, 1H, H-4), 7.24 (td, J = 7.6, 1.2 Hz, 1H, H-5), 4.51 (s, 1H, H-12); 13C
NMR (100 MHz, DMSO-d6) δC 170.71 (C-7), 150.84 (C-10), 140.68 (C-2), 135.52 (C-4), 132.54
(C-6), 125.37 (C-5), 122.14 (C-3), 118.81 (C-1), 79.48 (C-11), 78.84 (C-12).

2-ethynyl-4H-benzo[d][1,3]oxazin-4-one (7a): white solid, 90% yield. 1H NMR (400
MHz, CDCl3) δH 8.14 (ddd, J = 7.9, 1.6, 0.7 Hz, 1H, H-6), 8.02–7.88 (m, 1H, H-3), 7.72–7.56
(m, 2H, H-4 and H-5), 4.89 (s, 1H, H-10); 13C NMR (100 MHz, DMSO-d6) δC 159.47 (7),
146.79 (C-8), 143.20 (C-2), 138.27 (C-4), 131.17 (C-6), 129.48 (C-3), 128.29 (C-5), 119.73 (C-1),
83.98 (C-10), 76.80 (C-9).
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Synthesis of 2-(propioloylamino)benzamides 8a–8d

Compounds 8a–8d were prepared in three steps from the respective anthranilic acids,
following the classical methods reported before [18,23]. As the intermediates 6b–6d, 7b–7d
and 8a–8d were quite unstable, they were readily used in the subsequent reactions without
purification. However, their identities were confirmed indirectly by the success in obtaining
the triazole products.

Synthesis of Triazoles 9a–9d, 13, and 14

The corresponding alkyne (2 or 8a–8d, 1 eq) and azide (4 or 12, 1 eq) intermediates
were dissolved in a mixture of tetrahydrofuran-water (9:1), and to this solution was added
sodium ascorbate (0.1 eq) and copper II sulfate (0.01 eq). The mixture was left under
vigorous magnetic stirring at room temperature for 4–24 h. The progress of the reaction was
monitored by TLC (100% ethyl acetate), and once the reaction was complete, the solvent was
evaporated using a rotary evaporator, and the resulting solid was pre-purified by liquid-
liquid extraction using water and ethyl acetate. The product isolated from the organic
phase was purified by crystallization with diethyl ether or flash column chromatography
(ethyl acetate/hexane, 9:1), which led to the desired triazoles.

1-(5-allyl-2-hydroxy-3-methoxybenzyl)-N-(2-carbamoylphenyl)-1H-1,2,3-triazole-4-
carboxamide (9a): white solid, 65% yield. 1H NMR (400 MHz, DMSO-d6) δH 12.76 (s,
1H, H-9), 9.03 (s, 1H, H-23), 8.63 (d, 1H, J = 7.1 Hz, H-3), 8.54 (s, 1H, H-12), 8.27 (s, 1H, H-8),
7.83 (dd, J = 7.4, 1.5 Hz, 1H, H-6), 7.71 (s, 1H, H-8´), 7.54 (ddd, J = 7.4, 1.5 Hz, 1H, H-4),
7.17 (td, J = 7.4, 1.5 Hz, 1H, H-5), 6.81 (s, 1H, H-17), 6.62 (s, 1H, H-19), 5.92 (td, J = 16.8,
6.7 Hz, 1H, H-21), 5.58 (s, 2H, H-13), 5.12–4.98 (m, 2H, H-22), 3.77 (s, 3H, H-24), 3.27 (d,
J = 6.7 Hz, 2H, H-20); 13C NMR (100 MHz, DMSO-d6) δC 170.94 (C-7), 158.68 (C-10), 148.04
(C-16), 143.17 (C-11), 143.07 (C-15), 139.40 (C-2), 138.33 (C-21), 132.61 (C-4), 131.04 (C-18),
129.11 (C-19), 127.76 (C-6), 123.24 (C-12), 122.06 (C-14), 121.68 (C-5), 120.86 (C-1), 120.78
(C-3), 116.07 (C-22), 112.90 (C-17), 56.34 (C-24), 49.45 (C-13), 39.50 (C-20). ESI-HRMS (+)
m/z: Anal. Cal. for (C21H21N5O4) (M + H)+: 408.1672: found: 408.1686.

1-(5-allyl-2-hydroxy-3-methoxybenzyl)-N-(2-carbamoyl-4-methoxyphenyl)-1H-1,2,3-
triazole-4-carboxamide (9b): light yellow solid, 58% yield. 1H NMR (400 MHz, DMSO-d6)
δH 12.44 (s, 1H, H-9), 9.03 (s, 1H, H-23), 8.53 (d, J = 9.2 Hz, 2H, H-3), 8.49 (s, 1H, H-12), 8.28
(s, 1H, H-8), 7.71 (s, 1H, H-8´), 7.37 (s, 2H, H-6), 7.14 (dd, J = 9.2, 3.0 Hz, 1H, H-4), 6.81
(s, 1H, H-17), 6.62 (s, 1H, H-19), 5.97–5.87 (m, 1H, H-21), 5.57 (s, 2H, H-13), 5.09–5.00 (m,
2H, H-22), 3.81 (s, 3H, H-24), 3.79 (s, 3H, H-25), 3.26 (d, J = 5.1 Hz, 2H, H-20); 13C NMR
(100 MHz, DMSO-d6) δC 170.60 (C-7), 168.89 (C-10), 158.23 (C-5), 154.87 (C-11), 148.04
(C-16), 143.29 (C-15), 138.34 (C-21), 132.57 (C-18), 131.03 (C-2), 127.51 (C-19), 122.38 (C-12),
122.28 (C-3), 122.09 (C-14), 121.67 (C-1), 118.13 (C-4), 116.07 (C-22), 113.99 (C-6), 112.89
(C-17), 56.34 (C-24), 55.97 (C-25), 49.42 (C-13), 39.50 (C-20). ESI-HRMS (+) m/z: Anal. Cal.
for (C22H23N5O5) (M)+: 437.1969: found: 437.1929.

1-(5-allyl-2-hydroxy-3-methoxybenzyl)-N-(2-carbamoyl-4-fluorophenyl)-1H-1,2,3-
triazole-4-carboxamide (9c): white solid, 67% yield. 1H NMR (400 MHz, DMSO-d6) δH
12.65 (s, 1H, H-9), 9.03 (s, 1H, H-23), 8.53 (s, 1H, H-12), 7.85 (s, 1H, H-8), 7.73–7.67 (m, 4H,
H-3, H-4, H-6 and H-8´), 6.80 (s, 1H, H-17), 6.62 (s, 1H, H-19), 5.97–5.87 (m, 1H, H-21), 5.57
(s, 2H, H-13), 5.08–5.00 (m, 2H, H-22), 3.79 (s, 3H, H-24), 3.26 (d, J = 6.7 Hz, 2H, H-20); 13C
NMR (100 MHz, DMSO-d6) δC 169.63 (C-7), 158.59 (C-10), 156.70 (d, J = 241 Hz, C-5), 149.26
(C-16), 148.04 (C-11), 141.58 (C-15), 138.31 (C-21), 131.04 (C-18), 130.13 (C-2), 129.26 (C-1),
127.77 (C-19), 123.46 (d, J = 8 Hz, C-3), 121.70 (C-12), 119.60 (d, J = 22 Hz, C-4), 116.06 (C-22),
115.79 (d, J = 22 Hz, C-6), 112.89 (C-17), 55.33 (C-24), 49.47 (C-13), 39.49 (C-20). ESI-HRMS
(+) m/z: Anal. Cal. for (C21H20FN5O4) (M + H)+: 426.1578: found: 426.1572.

1-(5-allyl-2-hydroxy-3-methoxybenzyl)-N-(2-carbamoyl-4-chlorophenyl)-1H-1,2,3-
triazole-4-carboxamide (9d): white solid, 46% yield. 1H NMR (400 MHz, DMSO-d6) δH
12.72 (s, 1H, H-9), 9.03 (s, 1H, H-23), 8.67 (d, J = 9.0 Hz, 1H, H-3), 8.56 (s, 1H, H-12), 8.38
(s, 1H, H-8), 7.91 (d, J = 2.5 Hz, 1H, H-6), 7.86 (s, 1H, H-8´), 7.62 (dd, J = 9.0, 2.5 Hz, 1H,
H-4), 6.80 (d, J = 2.0 Hz, 1H, H-17), 6.62 (d, J = 2.1 Hz, 1H, H-19), 6.52 (s, 2H, H-13), 5.92
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(ddt, J = 16.8, 10.0, 6.8 Hz, 1H, H-21), 5.58 (s, 2H, H-13), 5.10–5.00 (m, 2H, H-22), 3.79 (s,
4H, H-24), 3.29–3.16 (m, 2H, H-20); 13C NMR (100 MHz, DMSO-d6) δC 169.61 (C-7), 158.72
(C-10), 148.04 (C-16), 143.08 (C-11), 142.89 (C-15), 138.33 (C-21), 138.31 (C-2), 132.34 (C-4),
131.04 (C-5), 128.76 (C-3), 127.91 (C-19), 127.04 (C-14), 122.45 (C-6), 122.38 (C-1), 121.69
(C-12), 116.07 (C-22), 112.91 (C-17), 56.34 (C-24), 49.48 (C-13), 39.50 (C-20). ESI-HRMS (+)
m/z: Anal. Cal. for (C21H20ClN5O4) (M + H)+: 442.1282: found: 442.1285.

2-(2-(4-((4-allyl-2-methoxyphenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetamido) benzoic acid
(13): light gray solid, 74% yield. 1H NMR (400 MHz, DMSO-d6) δH 12.80 (s, 1H, H-8), 11.27 (s,
1H, H-9), 8.39 (d, J = 8.4 Hz, 1H, H-6), 8.26 (s, 1H, H-12), 8.08 (d, J = 7.0 Hz, 1H, H-3), 7.60 (t,
J = 7.0 Hz, 1H, H-4), 7.21 (t, J = 7.0 Hz, 1H, H-5), 7.05 (d, J = 8.2 Hz, 1H, H-20), 6.80 (d,
J = 2.1 Hz, 1H, H-17), 6.69 (dd, J = 8.1, 2.1 Hz, 1H, H-19), 5.94 (td, J = 16.8, 6.7 Hz, 1H, H-22),
5.49 (s, 2H, H-11), 5.12 (s, 2H, H-14), 5.10–4.95 (m, 2H, H-23), 3.73 (s, 3H, H-24), 3.30 (d,
J = 5.12 Hz, 2H, H-21); 13C NMR (100 MHz, DMSO-d6) δC 172.68 (C-7), 164.76 (C-10), 157.93
(C-16), 148.96 (C-15), 145.70 (C-13), 139.60 (C-2), 139.04 (C-18), 137.81 (C-22), 134.21 (C-6),
133.91 (C-4), 126.07 (C-3), 124.04 (C-5), 123.42 (C-12), 120.05 (C-19), 119.65 (C-1), 115.45 (C-23),
113.87 (C-17), 112.46 (C-20), 74.71 (C-14), 61.78 (C-11), 55.30 (C-24), 38.98 (C-21). ESI-HRMS (+)
m/z: Anal. Cal. for (C22H22N4O5) (M − H)+: 421.1512: found: 421.1548.

2-(1-(5-allyl-2-hydroxy-3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)-4H-benzo[d][1,3]oxazin-
4-one (14): off-white solid, 81% yield. 1H NMR (400 MHz, DMSO-d6) δH 9.09 (s, 1H, H-23),
8.72 (s, 1H, H-12), 8.15 (dd, J = 7.9, 1.5 Hz, 1H, H-6), 7.99–7.90 (m, 1H, H-5), 7.69 (dd, J = 7.3,
1.1 Hz, 1H, H-4), 7.62 (td, J = 7.6, 1.1 Hz, 1H, H-3), 6.82 (d, J = 2.0 Hz, 1H, H-17), 6.68 (d,
J = 1.9 Hz, 1H, H-19), 5.98–5.88 (m, 1H, H-21), 5.61 (s, 2H, H-13), 5.09–5.00 (m, 2H, H-22), 3.80
(s, 3H, H-24), 3.27 (s, 2H, H-20); 13C NMR (100 MHz, DMSO-d6) δC 158.99 (C-7), 151.56 (C-10),
148.06 (C-16), 146.68 (C-15), 143.17 (C-2), 139.61 (C-18), 138.31 (C-4), 137.38 (C-21), 131.08
(C-11), 129.06 (C-6), 128.61 (C-3), 128.27 (C-5), 127.15 (C-19), 121.91 (C-12), 121.88 (C-14), 117.69
(C-1), 116.11 (C-22), 112.98 (C-17), 56.33 (C-24), 49.52 (C-13), 39.50 (C-20). ESI-HRMS (+) m/z:
Anal. Cal. for (C21H18N4O4) (M + H)+: 391.1406: found: 391.1418.

Synthesis of Quinazolinones 10a–10c

A solution of 10 M aqueous NaOH (2.0 mL) was added to compounds 9a–9c
(0.2 mmol) solubilized in ethanol (18.0 mL). The mixture was then heated under reflux for
1 h. After that time, the resulting solution was cooled, and the pH was adjusted to 5 with
HCl 1 M. The product was obtained by extraction with ethyl acetate, followed by solvent
evaporation, needing no further purification.

2-(1-(5-allyl-2-hydroxy-3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)quinazolin-4(3H)-one
(10a): Light yellow solid. Quantitative yield. 1H NMR (400 MHz, DMSO-d6) δH 12.38 (s,
1H, H-8), 9.09 (s, 1H, H-23), 8.69 (s, 1H, H-12), 8.15 (s, 1H, H-6), 7.82 (s, 1H, H-4), 7.67 (s, 1H,
H-3), 7.48 (s, 1H, H-5), 6.81 (s, 1H, H-17), 6.70 (s, 1H, H-19), 5.93 (d, J = 6.9 Hz, 1H, H-21),
5.65 (s, 2H, H-13), 5.16–4.97 (m, 2H, H-22), 3.72 (s, 3H, H-24), 3.23 (m, 2H, H-20); 13C NMR
(100 MHz, DMSO-d6) δC 162.62 (C-7), 150.01 (C-16), 148.95 (C-10), 147.15 (C-15), 144.15
(C-2), 141.79 (C-18), 139.19 (C-21), 135.96 (C-4), 131.94 (C-14), 128.48 (C-3), 127.96 (C-6),
127.37 (C-19), 122.92 (C-5), 122.69 (C-1), 117.02 (C-22), 113.87 (C-17), 57.21 (C-24), 50.44
(C-13), 40.40 (C-20). ESI-HRMS (+) m/z: Anal. Cal. for (C21H19N5O3) (M + H)+: 390.1566:
found: 390.1564.

2-(1-(5-allyl-2-hydroxy-3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)-6-methoxyquinazolin-
4(3H)-one (10b): White solid. Quantitative yield. 1H NMR (400 MHz, DMSO-d6) δH 12.38
(s, 1H, H-8), 9.03 (s, 1H, H-23), 8.49 (s, 1H, H-12), 8.26 (d, 1H, J = 6.9, H-6), 7.37 (d, 1H,
J = 2.9 Hz, H-3), 7.14 (dd, 1H, J = 7.0, 3.0, H-4), 6.80 (d, 1H, J = 2.0 Hz, H-17), 6.62 (d, 1H, J =
2.0 Hz, H-19), 5.97–5.87 (m, 1H, H-21), 5.57 (s, 2H, H-13), 5.09–5.00 (m, 2H, H-22), 3.81 (s,
3H, H-24), 3.79 (s, 3H, H-25), 3.26 (d, 2H, J = 6.7 Hz, H-20); 13C NMR (100 MHz, DMSO-d6)
δC 161.62 (C-7), 158.22 (C-5), 154.86 (C-16), 148.03 (C-10), 143.28 (C-15), 143.06 (C-2), 138.33
(C-21), 132.56 (C-11), 131.02 (C-14), 127.50 (C-3), 122.36 (C-12), 122.27 (C-18), 122.08 (C-19),
121.66 (C-4), 118.12 (C-1), 116.06 (C-22), 113.98 (C-4), 112.88 (C-17), 105.92 (C-6), 56.34 (C-24),
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55.96 (C-25), 49.41 (C-13), 39.49 (C-20). ESI-HRMS (+) m/z: Anal. Cal. for (C22H21N504) (M
+ H)+: 420.1672: found: 420.1669.

2-(1-(5-allyl-2-hydroxy-3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)-6-fluoroquinazolin-4(3H)-
one (10c): Light gray solid. Quantitative yield. 1H NMR (400 MHz, DMSO-d6) δH 1H 12.53
(s, 1H, H-8), 9.07 (s, 1H, H-23), 8.68 (s, 1H, H-12), 7.90–7.60 (m, 3H, H-3, H-4 and H-6), 6.83
(d, 1H, J = 2.1 Hz, H-17), 6.70 (d, J = 2.1 Hz, 1H, H-19), 5.94 (dd, J = 23.8, 10.0 Hz, 1H, H-21),
5.56 (s, 2H, H-13), 5.08–5.00 (m, 2H, H-21), 3.80 (s, 3H, H-24), 3.28 (s, 2H, H-20); 13C NMR
(100 MHz, DMSO-d6) δC 160.45 (d, J = 244 Hz, C-5), 160.85 (C-7), 148.07 (C-16), 143.26 (C-10),
141.44 (C-15), 138.30 (C-21), 131.06 (C-14), 126.59 (C-19), 123.47 (d, J = 24 Hz, C-4), 122.02
(C-12), 121.80 (C-1), 116.12 (C-4), 113.00 (C-3), 111.29 (C-17), 111.18 (d, J = 23 Hz, C-6), 56.33
(C-24), 49.52 (C-13), 39.03 (C-20). ESI-HRMS (+) m/z: Anal. Cal. for (C21H18FN5O3) (M + H)+:
408.1472: found: 408.1469.

3.2. Biological Tests
3.2.1. Antifungal and Antibacterial Assays
Compound Preparation

All tested compounds (9a–9d, 10a–10c, 13, 14, and eugenol (1)) were prepared in
DMSO (Sigma-Aldrich, St. Louis, MO, USA) at a concentration of 10 mg/mL. The reference
drugs used (voriconazole (Sigma-Aldrich, St. Louis, MO, USA) for fungi and quality control;
gentamicin (Sigma-Aldrich, St. Louis, MO, USA) for bacterial and quality control) were
prepared at 6.4 mg/mL. The stock solutions of the compounds were stored at –20 ◦C until
immediately before the assays and then were diluted in fresh culture medium, RPMI-1640
medium (Biochrom AG, Berlin, Germany) buffered with 3-(N-morpholino)propanesulfonic
acid (MOPS—Sigma-Aldrich, St. Louis, MO, USA) for fungi and cation-adjusted Mueller–
Hinton broth (MHBII—Becton Dickinson, France) for bacteria, henceforth referred to as
RPMI and MHB, respectively.

Fungal and Bacterial Strains

Fungal strains, including reference strains and clinical isolates, were used for the study
of the antifungal activity: a yeast reference strain from American Type Culture Collection
(ATCC), Candida albicans ATCC 10231; filamentous fungi reference strain Aspergillus fumigatus
ATCC 240305; and a clinical isolate of dermatophytes Trichophyton rubrum FF5. Candida krusei
ATCC 6258 was used as a quality control. All fungal strains were stored in Sabouraud dextrose
broth (SDB—Bio-Mèrieux, Marcy L’Etoile, France) with glycerol (20%) at −80 ◦C and were
subcultured in Sabouraud dextrose agar (SDA—Bio-Mèrieux, Marcy L’Etoile, France) for
24–72 h (yeasts and A. fumigatus) or 5–7 days (T. rubrum) before each assay to obtain optimal
growth and purity conditions. Two bacteria strains were used, one Gram positive and one
Gram negative: Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922, respectively.
The bacterial strains were stored in trypticase soy broth (TSB—Biolife, Milan, Italy) with
glycerol (10%) at −80 ◦C and subcultured in Mueller–Hinton agar (MHA—Bio-Mèrieux,
Marcy L’Etoile, France) for 24 h before each assay.

Antifungal Activity

For the purpose of quantitatively measuring the antifungal activity in vitro, a broth
microdilution method was used to determine the MICs using the CLSI reference protocols
M27-A3 [27] for yeasts and M38-A2 [28] for filamentous fungi. In short, two-fold serial
dilutions of each stock solution were prepared using RPMI medium (pH 7) to obtain a range
of test concentrations from 16 to 512 µg/mL. The yeasts or spore suspensions were prepared
from 24 to 72-h cultures (yeasts and Aspergillus) or from 5–7 days of cultures (dermatophyte)
in saline solution (with a drop of Tween 20 for the filamentous fungi). The transmittance of
the cell density of yeasts was adjusted to 0.5 McFarland standard, and for filamentous fungi,
the spores were counted using a Neubauer camera. Dilutions were performed using RPMI to
obtain cell final concentrations in the plate of 0.5–2.5 × 103 colony forming units (CFU)/mL
for yeasts, 0.4–5 × 104 CFU/mL for Aspergillus, and 1–3 × 103 CFU/mL for dermatophytes.
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Plates with the prepared serial dilutions of the tested compounds were inoculated with
the same volume of the fungal suspension, and sterility (wells with only culture medium),
growth (wells with cell suspensions in culture medium), and DMSO controls (wells with
cell suspensions in culture medium containing 1% DMSO) were included in each assay.
Immediately thereafter, the plates were incubated in a humid atmosphere for 48 h at 36 ◦C for
yeasts and Aspergillus or for 5–7 days at 26 ◦C for dermatophytes, and the antifungal activity
was determined by MIC values, read visually (according to the CLSI norms). For the tested
compounds, MIC values were considered the minimum concentration that inhibited the yeast
growth by 100% compared to the growth control. The reference drug, voriconazole, was tested
against C. krusei ATCC 6258 as a quality control, and the results were within the limits of CLSI
reference documents.

Additionally, the minimum lethal concentration (MLC) was tested for some of the
compounds that showed inhibitory activity, with the objective of evaluating the fungicidal
potential of new compounds. After MIC readings, 10 µL of suspension were collected
from wells corresponding to the MIC and the highest concentration following the MIC
and were deposited in SDA plates. The plates were incubated following the conditions
previously mentioned for the MIC evaluation, and the MLC was determined as the lowest
concentration at which no fungal growth is observed.

Antibacterial Activity

For bacteria, MICs were determined by the broth microdilution method, following the
recommendations of the reference method M100-S25 [29].

Similarly, as previous described, two-fold serial dilutions of each stock solution were
prepared using MHB to obtain a range of test concentrations from 16 to 512 µg/mL. Bacterial
cell suspensions were prepared from 24-h cultures in saline solution, and the transmittance
of cell density was adjusted to 0.5 McFarland standard. Dilutions were performed using
MHB to obtain cell final concentrations in the plate of 0.5–2.5 × 104 CFU/mL.

Plates with the prepared serial dilutions of the tested compounds were inoculated
with the same volume of the bacterial suspension, and sterility, growth and DMSO controls
were included in each assay. Immediately thereafter, the plates were incubated in a humid
atmosphere (aerobic environment) for 18–24 h at 36 ◦C.

MIC values were considered the minimum concentrations that inhibited the bacterial
growth by 100% compared to the growth control. The reference drug, gentamicin, was
tested as a quality control, and the results were according to the norms.

MLC was evaluated for some of the tested compounds that showed inhibition. A
volume of 10 µL of suspension was collected from wells corresponding to the MIC and
the highest following concentration and was deposited in MHA plates. The plates were
incubated for 24 h at 36 ◦C, and the MLC was determined as the lowest concentration at
which no bacterial growth was observed.

3.2.2. Antiparasitic Assays
Parasite Cultures

Promastigotes from the L. infantum strain (MHOM/MA/67/ITMAP-263) were grown in
5-mL T25 flasks in Schneider’s insect medium supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 200 U/mL penicillin/streptomycin, 6 µg/mL Phenol Red, and 5 mM
HEPES. The cultures were maintained in an incubator at 27 ◦C and diluted to 2 × 105/mL
every 5 days. For the assays, the parasites used were equivalent to late/log with 2 or 3 days
of culture.

T. brucei Lister 427 bloodstream forms were grown in a humidified incubator at 37 ◦C
and 5% CO2 in complete HMI-9 medium [30] supplemented with 10% heat-inactivated fetal
bovine serum (FBS) and 100 UI/mL penicillin/streptomycin. Parasite maintenance was
performed in T25 ventilated flasks by subpassage at a concentration of 1 × 104/mL every
2 days in T25 ventilated flasks. Luciferase-expressing L. infantum (MHOM/MA/67/ITMAP-
263) axenic amastigotes expressing episomal luciferase were maintained in MAA20 [31] at
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37 ◦C in a 5% CO2 environment with subculture every 7 days at 1 × 106/mL in 5-mL T25
ventilated flasks.

Anti-T. brucei Activity

The compounds’ efficacy against bloodstream-stage trypomastigotes was evaluated
using a resazurin-based assay. Parasites were added to 100 µL of serial dilutions of com-
pounds in supplemented complete medium at a cell density of 5 × 103/mL. As a quality
control, a dose–response curve for the antitrypanosomal pentamidine was included in all
the assays. The final volume of the assay was 200 µL/well. Each condition was carried
out in duplicate. Following 72 h of incubation at the specific conditions for parasites,
20 samples of a 0.5 mM resazurin solution was added, and the plates were incubated for a
further 4 h under the same conditions. Fluorescence was measured at 544 nm and 590 nm
excitation and emission wavelength, respectively, using a Synergy 2 Multi-Mode Reader
(Biotek, Winooski, VT, USA). The results are shown as % of parasite growth inhibition
compared to control (untreated parasites) and represent the average of at least three in-
dependent experiments. The effect was evaluated by the determination of the IC50 value
(concentration required to inhibit growth in 50%) and calculated by non-linear regression
curves using GraphPad Prism software, version 8.1.1 for Windows (GraphPad Software,
San Diego, CA, USA).

Anti-Leishmania Activity

The compounds’ efficacy against L. infantum promastigotes was evaluated using a
resazurin-based assay. Parasites were added to 100 µL of serial dilutions of compounds in
supplemented complete medium at a cell density of 5 × 105/mL. As a quality control, a
dose–response curve to the antileishmanial drug miltefosine was included in all the assays.
The final volume of the assay was 200 µL/well. Each condition was carried out in duplicate.
Following 72 h of incubation at the specific conditions for parasites, 20 µL of a 0.5 mM
resazurin solution was added, and the plates were incubated for a further 4 h under the
same conditions. Fluorescence was measured at 544 nm and 590 nm excitation and emission
wavelengths, respectively, using a Synergy 2 Multi-Mode Reader (Biotek, Winooski, VT,
USA). Results are shown as % of parasite growth inhibition compared to control (untreated
parasites) and represent the average of at least three independent experiments. The effect
was evaluated by the determination of the IC50 value (concentration required to inhibit
growth in 50%) and was calculated by non-linear regression curves using GraphPad Prism
software, version 8.1.1 for Windows (GraphPad Software, San Diego, CA, USA).

3.2.3. Cytotoxicity Assay

A human leukemia cell line, THP-1 (ATCC® TIB-202™), was cultured in RPMI-
1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM
L-glutamine, 100 IU/mL penicillin/streptomycin, and 20 mM HEPES. The cell line was
maintained in a humidified incubator at 37 ◦C and 5% CO2 by subculture every 3 days in
20 mL of media at a concentration of 2 × 105/mL in a T75 flask. All cell culture reagents
were purchased from Lonza-Bioscience (Morrisville, NC, USA).

The cytotoxicity effect of compounds on THP-1-derived macrophages was assessed by
colorimetric MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide). Briefly,
THP-1 cells were suspended in RPMI complete medium at a density of 1 × 106 cells/mL
and 100 µL/well and were seeded in a 96-well plate and differentiated into macrophages by
addition of 40 ng/mL of phorbol-myristate 13-acetate (PMA, Sigma, Saint Louis, MI, USA) for
24 h, followed by replacement with fresh medium for 24 more h. Subsequently, the cells were
incubated with 100 µL of compounds ranging from 100 to 12.5 µM after dilution in the RPMI
complete medium. Each condition was carried out in quadruplicate. After 72 h of incubation at
37 ◦C and 5% CO2, the medium was removed, and 200 µL of 0.5 mg/mL MTT solution diluted
in RPMI was added. The plates were incubated for an additional 4 h. Then, 160 µL of media was
removed, and the same volume of 2-propanol was added. Absorbance was read at 570 nm using
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a Synergy 2 Multi-Mode Reader (Biotek, Winooski, VT, USA). Cytotoxicity was evaluated by
the determination of the CC50 value (drug concentration that reduced the percentage of viable
cells by 50%) and calculated by non-linear regression analysis using GraphPad Prism software,
version 8.1.1 for Windows (GraphPad Software, San Diego, CA, USA). The results represent the
average of at least three independent experiments. For each compound, the selectivity index
(SI) was calculated as the ratio between cytotoxicity in THP-1 (CC50, 72 h) and activity against
parasites (IC50, 72 h).

4. Conclusions

New compounds, designed by molecular hybridization from a marine quinazolinone
and eugenol, were synthesized and evaluated against protozoan species involved in ne-
glected parasitic diseases and as possible antifungal and antibacterial agents. Initially
we hypothesized that the marine quinazolinone described as having antifungal activity
(a, Figure 1) could benefit from hybridization with eugenol. Moreover, the conjugation
through a triazole moiety, critical for azole antifungal drugs, was hypothesized to increase
the potential antifungal activity. In contrast to our expectations, no antifungal activity
was detected for the series. Although no hybrid showed relevant antimicrobial action,
inspired in our previous studies with indolylmethylpyrazinoquinazolines (b, Figure 1),
six of the substances tested (intermediates 9b, 9c, and 9d and final products 10b, 10c, and
14) presented mild antitrypanosomal activity. One of them, the fluorinated intermediate
9c, additionally showed a relevant leishmanicidal effect. Natural products, including
marine specialized metabolites, are one potential source from which novel trypanocidal
compounds have been disclosed. Most of these compounds have activity against multiple
(micro)organisms, which could limit their application. The breakthrough of this work
was the discovery of derivatives with a simple quinazolinone scaffold selective against
parasites without antibacterial and antifungal activities, which are synthetically accessible
and without chiral centers, in contrast to previously reported antiparasitic alkaloids, such
as the indolylmethylpyrazinoquinazolines. The structural pattern explored constitutes
a relevant starting point for future optimization in an attempt to find marine-inspired
candidates for leishmanicidal and trypanosomicidal drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md21110551/s1, Figures S1–S42: 1H, 13C NMR and ESI-HRMS spectra of
compounds 4, 6a, 7a, 9a-9d, 10a-10c, 13 and 14 and antimicrobial activity of compounds 9a–9d, 10a–10c,
13, 14, and eugenol. Table S1: Antimicrobial activity of compounds 9a–9d, 10a–10c, 13, 14, and eugenol.
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