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Abstract: With the emergence of drug resistance and the consequential high morbidity and mortality
rates, there is an urgent need to screen and identify new agents for the effective treatment of cancer.
Terphenyls—a group of aromatic hydrocarbons consisting of a linear 1,4-diaryl-substituted benzene
core—has exhibited a wide range of biological activities. In this study, we discovered a terphenyllin
derivative—CHNQD-00824—derived from the marine compound library as a potential anticancer
agent. The cytotoxic activities of the CHNQD-00824 compound were evaluated against 13 different
cell lines with IC50 values from 0.16 to 7.64 µM. Further study showed that CHNQD-00824 inhibited
the proliferation and migration of cancer cells, possibly by inducing DNA damage. Acridine orange
staining demonstrated that CHNQD-00824 promoted apoptosis in zebrafish embryos. Notably,
the anti-cancer effectiveness was verified in a doxycin hydrochloride (DOX)-induced liver-specific
enlargement model in zebrafish. With Solafinib as a positive control, CHNQD-00824 markedly
suppressed tumor growth at concentrations of 2.5 and 5 µM, further highlighting its potential as an
effective anticancer agent.

Keywords: terphenyllin derivatives; marine compound library; cell cycle; apoptosis; anti-cancer

1. Introduction

Cancer is a prominent global public health issue and remains one of the primary
causes of death worldwide. It is predicted that the incidence of all cancers combined
will double by 2070 relative to 2020 [1]. In recent years, the COVID-19 pandemic has
placed a significant burden on medical resources, impacting the diagnosis and treatment
of cancer. This has led to an increase in advanced cancer cases and mortality rates [2,3].
Due to the emergence of drug resistance and high morbidity and mortality, there is an
urgent need to discover new anticancer drugs. Natural products are important resources
for drug development. Over the past 40 years, approximately 1400 small molecule drugs
have been approved, with over two-thirds of them being related to natural products [4].
Therefore, natural products and their derivatives play important roles in drug development.
The unique environment of the ocean has created complex, novel, and diverse marine
natural products, making them an important component of natural products [5,6]. Marine
secondary metabolites with novel structures and diverse biological activities have been
demonstrated to be rich sources of chemical entities for drug discovery [7–12]. At present,
among the more than 36,000 reported marine natural products, 17 have been approved
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for therapeutic use worldwide, especially in the field of anticancer drug research [13].
Figure 1 shows the marine natural products that have been approved as anticancer drugs.
Trabectedin, derived from Ecteinascidia turbinate, is a marine natural product that is clinically
used for the treatment of advanced soft tissue sarcoma [14]. Eribulin, on the other hand,
originated from the marine natural product halichondrin B [15]. Cytarabine is another
marine drug developed from a marine natural product [16]. In addition, the current widely
used strategies and emerging technologies, such as natural product-based antibody drug
conjugates (ADCs) like brentuximab vedotin and brentuximab mafodotin, also originated
from the marine natural product dolastatin 10 [17,18]. Therefore, marine natural products
have consistently proved to be valuable resources for developing anticancer leads.
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Investigating new bioactive natural products and their derivatives from marine fungi
is a significant and ongoing research focus in our laboratory [19–23]. As part of our
continuous efforts to search for biologically active secondary metabolites from marine-
derived fungi, terphenyllin was obtained from Aspergillus sp. [24]. Terphenyls—a group of
aromatic hydrocarbons consisting of a linear 1,4-diaryl-substituted benzene core—exhibited
a wide range of biological activities, including cytotoxicity, α-glucosidase inhibitory activity,
and AMPK activator activity [23–26]. Interestingly, some of them showed strong cytotoxic
activity against hepatocellular liver carcinoma cell lines (HepG2 and SMMC-7721), which
were equivalent or stronger than the positive controls, Adriamycin and fluorouracil [24,27].
To date, more than 230 p-terphenyls have been isolated from microorganisms such as lichen
endophytes, actinomycetes, and mosses [28]. The earliest chemical studies of p-terphenyls
as one class of the pigments of mushrooms were carried out in 1877 [28]. In particular, one
p-terphenyl derivative—MK-8722, designed by Merck—was developed as a hypoglycemic
drug lead [29]. This further confirmed the significance and utility of p-terphenyl derivatives.
Based on previous research, approximately 120 terphenyllin derivatives were designed
and synthesized, which created a marine terphenyl derivatives library. Among them, two
compounds—Terphenyllin and 3′-(isopentyloxy)-2′,5′-dimethoxy-[1′,1′:4′,1′-terphenyl]-
4,4′′-diol—not only showed strong α-glucosidase inhibitory activity, but also had relatively
higher therapeutic indices, with the potential to be promising leads [24]. Additionally, eight
compounds were also found to have cytotoxic potency [24,25]. Therefore, these compounds
have shown value for further in-depth research.

In the present study, we scanned and identified a terphenyllin derivative—CHNQD-
00824—derived from the marine-derived compound library as a potential anticancer agent.
Furthermore, thirteen different cancer cells were selected for activity screening. Further
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study showed that this compound can inhibit the proliferation and migration of cancer
cells by inducing DNA damage. CHNQD-00824 could inhibit DOX-induced liver-specific
enlargement. The present results provided evidence that CHNQD-00824 exhibited great
potential to be developed as an anticancer agent (Figure 2).
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2. Results and Discussion
2.1. Chemistry

Four terphenylated natural products, 1–4, and seven terphenyllin derivatives, 5–11,
were scanned for their activity against BT549 cell lines from the marine-derived compound
library. The four terphenylated natural products were identified from the marine fungus
Aspergillus candidus (CHNSCLM-0393). Compound 1, which contained three phenolic
hydroxyl groups, was identified as terphenyllin [30]. Compounds 2–4 were identified
as 3-hydroxyterphenyllin, prenylterphenyllin, and deoxyterhenyllin, respectively [31–34].
Seven terphenyllin derivatives, 5–11, were obtained through the etherification reaction
(Scheme 1). The etherification reaction was carried out at 45 ◦C for 2~3 h with dry K2CO3
as a catalyst and acetone as a solvent. Compound 5 was the terphenyllin trisubstituted
derivative with all three phenolic hydroxyl groups alkylated, whereas compound 6 was
the di-substituted derivative with allyl substituents at the R2 and R3 positions. Their
structures were determined through nuclear magnetic resonance (NMR) analysis and
ESIMS (Figures S1–S33). Their structures are shown in Figure 3.

In view of the potential biological activity of terphenyllin derivatives, we investigated
the fermentation conditions of this fungus, including the effects of solid and liquid media,
as well as the salinity, to increase the production of compound 1. The liquid medium was
PDB medium, which consisted of 200 g potato, 50 g glucose plus water to 1 L, adding sea
salt according to the salinity, and the solid medium was rice with 4% artificial seawater. We
set the salinity of the fermentation conditions as 1%, 2%, 4%, and 8%. The results showed
that the yield of compound 1 was much better under solid fermentation conditions than
under liquid fermentation conditions and that solid fermentation conditions are much
better than liquid fermentation conditions. Among the currently set culture media, the
solid culture medium with a salinity of 4% was the condition that obtained the highest
yield of compound 1 (Figure S34). Accordingly, the fermentation conditions were solid
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rice media in 1 L Erlenmeyer flasks. Each flask contained 65 g of rice and 70 mL of PDB
medium at 4% salinity for 35 days at room temperature.
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2.2. Biological Evaluation
2.2.1. Cytotoxic Activity

In this study, we first screened cytotoxic active compounds from the marine compound
library using 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfobenzene)-2H-
tetrazolium monosodium salt CCK8 assays. Four terphenylated natural products, 1–4,
and seven terphenyllin derivatives, 5–11, were further scanned for their activity against
BT549 cell lines from the marine-derived compound library (Figure 4A). Terphenyllin
derivative 8 (CHNQD-00824) was discovered as a potential anticancer agent. Furthermore,
this compound was evaluated against a panel of thirteen different cancer cells, including
human pancreatic cancer (Panc-1), colon cancer (HCT116), non-small cell lung cancer
(A549), renal cancer (RCC4), cervical cancer (HeLa), liver cancer (HepG2), osteosarcoma
(U2OS), glioma (U251), prostate cancer (DU145), esophageal cancer (TE-1), breast cancer
(BT549, MCF7), and caecal adenocarcinoma (HCT8) cell lines using the CCK8 assay. As
shown in Figure 4, CHNQD-00824 exhibited broad-spectrum cytotoxic activities against
various cell lines, with IC50 values ranging between 0.16 and 7.64 µM (Table 1). Notably, it
showed potent inhibitory activity against BT549, U2OS, HCT8, HCT116, and DU145 cells,
with IC50 values in the sub-micromolar range. These findings suggest that CHNQD-00824
has significant potential for development as an anticancer agent. The above studies showed
that, compared with the natural product terphenyllin 1, only two derivatives—CHNQD-
00824 and 9—exhibited stronger cytotoxic activity. The introduction of allyl groups through
alkylation reactions could affect the cytotoxic activity. In particular, when both the R1 and
R2 positions were replaced by allyl groups, or when the allyl group was introduced only at
the R3 position, the cytotoxic activity was significantly enhanced.
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Table 1. Cytotoxic activity of CHNQD-00824 against cancer cell lines.

Cell Lines RCC4 HeLa Hep G2 U2OS U251 DU145 TE-1 BT549 HCT8 MCF7

IC50 (µM) 2.65 ± 0.04 0.45 ± 0.03 7.64 ± 0.21 0.44 ± 0.07 5.43 ± 0.05 0.91 ± 0.04 4.35 ± 0.12 0.16 ±0.02 0.61 ± 0.06 3.66 ± 0.37
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2.2.2. CHNQD-00824 Inhibited the Proliferation and Migration of Breast Cancer Cells

This CHNQD-00824 compound was found to have strong inhibitory activity on BT549
cells, with an IC50 value of 0.16 µM. To further investigate its effect on the cell viability
and proliferative capacity, single-cell clone formation and cell counting assays were per-
formed [35]. Treatment of BT549 cells with CHNQD-00824 for 13 days dose-dependently
reduced the formation of colonies, indicating its anticancer activity. Meanwhile, the cell
counting assay showed that CHNQD-00824 at a concentration of 5 µM almost completely
inhibited cell proliferation. Increased invasion and cell motility play a critical role in
cancer progression [36,37]. Taking this fact into consideration, the anti-migratory activity
of CHNQD-00824 against BT549 cells was evaluated using the scratch wound healing
assay [38]. The results indicate that after 12 h treatment, there was no significant effect
on the cell viability. However, a significant inhibition of cell migration was observed at
concentrations of 5 µM and 10 µM. Additionally, CHNQD-00824 exhibited a notable in-
hibitory effect on cell migration after 24 h of treatment at concentrations of 1, 5, and 10 µM
(Figure 5). Collectively, these results indicate that CHNQD-00824 inhibited the proliferation
and migration of breast cancer cells in vitro.

2.2.3. CHNQD-00824 Induced G2 Phase Cell Cycle Arrest in BT549 Cells

Dysregulation of the cell cycle can lead to uncontrolled cell proliferation and cancer
development. In order to further explore the mechanism of CHNQD-00824 inhibiting
BT549 proliferation and migration, the cell content was analyzed to identify its impact on
the BT549 cell cycle distribution. As shown in Figure 6A,C, the percentage of cells in the G2
phase decreased significantly, from 31.78% to 10.44%, in a dose-dependent manner after
treatment with CHNQD-00824. The G2 phase is an important checkpoint in the cell cycle,
where DNA damage is repaired before cells proceed to mitosis. Inhibiting the transition of
cells from the G2 phase to mitosis can effectively halt cell division and proliferation. The
observed G2 phase cell cycle arrest induced by CHNQD-00824 suggests that the compound
may interfere with the normal cell cycle progression in BT549 cells. Further studies are
needed to elucidate the exact molecular mechanism by which CHNQD-00824 induces G2
phase cell cycle arrest.
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2.2.4. CHNQD-00824 Induced Caspase-Dependent Apoptosis in BT549 Cells

Then, we investigated whether CHNQD-00824 could induce the apoptosis of BT549
cells. According to Figure 6B, the percentage of apoptosis cells in the control group was
8.37%. However, the treatment with increasing concentrations of CHNQD-00824 (0.25,
0.5, and 1 µM) resulted in a dose-dependent increase in the percentage of apoptotic cells,
reaching 10.66%, 14.67%, and 23.50%, respectively. The percentage of the cell apoptosis
distribution is shown in Figure 5D. The result revealed that CHNQD-00824 could sig-
nificantly induce apoptosis in a concentration-dependent manner. To gain insights into
the underlying molecular mechanisms of the apoptosis induction by CHNQD-00824, the
expression levels of apoptosis-related proteins were examined using western blotting anal-
ysis [39–42]. Compared to the control group, the treatment with CHNQD-00824 (0.5, 2,
8 µM) led to an increase in the levels of cleaved-PARP1 (C-PARP1) and Cytochrome C
(Cyto C). Additionally, CHNQD-00824 was found to increase the level of cleaved-caspase 3
(C-Cas3) at the concentrations of 2 and 8 µM,. Furthermore, the pre-apoptotic protein, BAD,
was observed to increase upon treatment with 8 µM of CHNQD-00824. Taken together, the
findings indicated that CHNQD-00824 facilitated apoptosis in the BT549 cells (Figure 6E,F).
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tion. The observed G2 phase cell cycle arrest induced by CHNQD-00824 suggests that the 
compound may interfere with the normal cell cycle progression in BT549 cells. Further 
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Figure 5. CHNQD-00824 inhibited the proliferation and migration of BT549 cells. (A,B) CHNQD-
00824 inhibited the colony formation of BT549 cells. The BT549 cells were treated with CHNQD-00824
for 13 d, then the clones were photographed and counted. (C) Growth curves of BT549 cells treated
with CHNQD-00824 (5 µM) and DMSO. (D,E) The scratch assay of BT549 cells after treatment with
CHNQD-00824 for 12 h and 24 h. Scale bar, 100 µm. The data shown are the mean ± SD (* p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001 and ns, nonsignificant). n = 3 biological replicate samples.
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Figure 6. CHNQD-00824-induced apoptosis and cell cycle arrest in BT549 cells. (A,C) Flow cytometry
analysis of cell cycle analysis on BT549 cells after treatment with CHNQD-00824 for 24 h. (B,D) Flow
cytometry analysis of BT549 cells stained with the Annexin V/FITC-PI double staining solution after
treatment with CHNQD-00824 for 24 h. (E) Effect of CHNQD-00824 on apoptosis-related proteins.
BT549 cells were treated with CHNQD-00824 (0–8 µM) for 24 h, then cells were harvested and
proteins were separated by electrophoresis on SDS-PAGE. Western blotting analysis were performed
to detect the expression of cleaved-PARP, cleaved-caspase-3, Cyto-c and BAD. (F) Histogram shows
the relative abundance of apoptosis-related proteins compared with the control group. The data
shown are the mean ± SD (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns, nonsignificant).
n = 3 biological replicate samples.

2.2.5. CHNQD-00824 Caused DNA Damage in Both BT549 Cells and Zebrafish

Considering that the stability of DNA is closely related to cell apoptosis and the cell
cycle, the change in the protein level of phospho-histone H2AX-S139, a marker of DNA
damage, was detected [43]. After treatment with CHNQD-00824, the protein level of
phospho-histone H2AX-S139 was significantly upregulated (Figure 7A,B). The accumu-
lation of DNA damage might lead to cell death via apoptosis; therefore, we assessed the
level of apoptosis using acridine orange (AO) staining in zebrafish in vivo. Fluorescent AO
dye staining is an effective method for investigating cell death in zebrafish embryos [44].
The zebrafish embryos at 24 h post-fertilization (hpf) were exposed to CHNQD-00824.
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Although no significant mortality was observed, developmental toxicity did occur, pri-
marily characterized by a bent spine. The analysis of the AO-stained embryos clearly
demonstrated upregulated apoptosis after the CHNQD-00824 treatment (Figure 7C,D).
These results implied that CHNQD-00824 induced cell death via DNA damage.
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Figure 7. CHNQD-00824-induced DNA damage. (A) Effect of CHNQD-00824 on DNA damage
marker proteins. BT549 cells were treated with CHNQD-00824 (0–8 µM) for 24 h, then cells were
harvested and proteins were separated by electrophoresis on SDS-PAGE. Western blotting analysis
were performed to detect the expression of γH2AX. (B) Histogram shows the relative abundance
of γH2AX compared with the control group. (C,D) AO staining of zebrafish embryos at 48 hpf.
When development reached 24 hpf, zebrafish embryos were treated with CHNQD-00824 (0–15 µM)
to 48 hpf. AO staining was then performed. Scale bar, 1 mm. The data shown are the mean ± SD
(** p < 0.01, *** p < 0.001, **** p < 0.0001). n = 3 biological replicate samples.

2.2.6. CHNQD-00824 Inhibited DOX-Induced Liver-Specific Enlargement

Traditionally, the murine model has been used in research as an in vivo model organ-
ism. Zebrafish, owing to their small size and rapid maturation time, have emerged as an
important new cancer model that complements what can traditionally be achieved in mice
and cell culture systems. Furthermore, the genetic pathways driving cancer are highly
conserved between zebrafish and humans, and the ability to easily manipulate the zebrafish
genome to rapidly generate transgenic animals makes zebrafish an excellent model organ-
ism [45–47]. In recent years, several inducible liver tumor models have been generated
through the transgenic expression of oncogene in hepatocytes in zebrafish. In this report,
the transgenic line—Tg (fabp10:rtTA2s-M2; TRE2:EGFP krasG12V), named To(krasG12V)—was
employed to investigate the effect of CHNQD-00824 on hepatocellular carcinoma (HCC).
Under the induction of doxycin hydrochloride (DOX), To(krasG12V) exhibited the hepatocyte-
specific expression of oncogenic krasV12, and eventually led to abnormal liver enlargement
and even liver cancer in zebrafish [2,3,48]. In addition, a two-color transgenic zebrafish
line—Tg (fabp10:DsRed; elaA:GFP)—with DsRed-labeled liver and GFP-labeled pancreas,
was used as a normal control for the liver morphology, and was referred to as LiPan.

Therefore, the To(krasG12V) transgenic zebrafish model was used to test the effect of
CHNQD-00824 on the growth of HCC in vivo. When developed to 3 dpf, the zebrafish were
treated with different doses of CHNQD-00824, and DOX was added to induce abnormal
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liver enlargement. Following the exposure to CHNQD-00824 at this stage, no significant
abnormalities or deformities were observed in the treated zebrafish. At 7 dpf, the fluo-
rescence area of the zebrafish liver was observed and analyzed. LiPan zebrafish treated
with the same concentration of DMSO were used as a control. The results showed that
CHNQD-00824 could dose-dependently inhibit DOX-induced liver-specific enlargement at
the concentrations of 1.25 µM, 2.5 µM, and 5 µM (Figure 8), suggesting that CHNQD-00824
has potential as a therapeutic agent for liver cancer.
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Figure 8. CHNQD-00824 inhibited tumor growth in zebrafish. (A) Zebrafish model of liver cancer.
When development reached 3 dpf, zebrafish were treated with DOX (60 mg/L) and CHNQD-00824
(1.25–5 µM) to 7 dpf. Sorafenib as positive control. (B) Tumor size in zebrafish was measured by
photography at 7 dpf. The data shown are the mean ± SD (**** p < 0.0001, ## p < 0.01, #### p < 0.0001,
and ns, nonsignificant). n = 3 biological replicate samples.

3. Materials and Methods
3.1. General Experimental Procedures

NMR spectra were recorded on a Bruker Advance NEO 400; chemical shifts δ are
reported in ppm, using TMS as internal standard, and coupling constants (J) are in Hz. The
HRESIMS and ESIMS spectra were obtained using a Micromass Q-TOF mass spectrometer.
UPLC-MS was performed on a Waters UPLC® system (Waters Ltd., Milford, MA, USA)
using a C18 column [(Waters Ltd.) ACQUITY UPLC® BEH C18, 2.1 × 50 mm, 1.7 µm;
0.5 mL/min] and ACQUITY QDa ESIMS scan from 150 to 1000 Da. Column chromatogra-
phy (CC) was performed on silica gel (Qingdao Haiyang Chemical Group Co., Qingdao,
China; 200 to 300 mesh) and Sephadex LH-20 (Amersham Biosciences, Amersham, UK).
TLC silica gel plates (Yan Tai Zi Fu Chemical Group Co., Yantai, China; G60, F-254) were
used for thin layer chromatography. Semi-preparative HPLC was performed on a Waters
1525 system using a semi-preparative C18 column (Amsterdam, Netherlandish; Kromasil,
5 µm, 10 × 250 mm) equipped with a Waters 2996 photodiode array detector, and the flow
rate was 2.0 mL/min.

3.2. Fungal Material

The fungal strain A. candidus (CHNSCLM-0393) was isolated from a piece of fresh
internal tissue of the gorgonian coral Juncella fragilis collected from the Spratly Islands.
The strain was identified through DNA amplification and sequencing of the ITS region
according to the molecular biology methods described in the literature [49]. The fungus
was identified as A. candidus with the GeneBank (NCBI) accession number MF681708.
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3.3. Fermentation, Extraction, and Isolation

The fungal strain A. candida (CHNSCLM-0393) was grown in 60 1 L Erlenmeyer flasks
in solid rice medium. Each flask contained 65 g of rice and 70 mL of 4% artificial seawater.
The fungal was fermented for 35 days at room temperature. Each flask was extracted three
times with 400 mL EtOAc from the fermented solid medium and then concentrated to
dryness under vacuum to give an EtOAc extract (50 g). This was separated through column
chromatography (CC) on silica gel, Sephadex LH-20 CC, and then recrystallized to give the
two main compounds: 1 (5.6 g) and 2 (1.5 g). Further separation through semi-preparative
HPLC gave compound 3 (5.0 mg) and compound 4 (8.5 mg). The structures of 1–4 were
determined by analyzing the NMR data and comparing it with the literature data. The
NMR data for natural products 1–4 are presented in the supplementary data.

3.4. General Synthetic Methods for Compounds 5–11

The etherification of natural product 1 was performed by alkylating the three hydroxyl
groups by introducing allyl bromide to give seven derivatives, 5–11. To an acetone solution
(10 mL) of 1 (150 mg, 0.44 mM), 2.5 equivalents of allyl bromide (134.1 mg, 1.11 mM) and
3 dry equivalents of K2CO3 (183.8 mg, 1.33 mM) were added. The reaction was stirred at
45 ◦C for 3 h and monitored through TLC. The reaction solution was extracted with EtOAc
and the solvent was removed from the organic layer under reduced pressure. The extracts
were then separated on silica gel CC (200–300 mesh) using a gradient of petroleum ether-
EtOAc from 9:1 to 4:1 (v/v). Compound 5 (16.2 mg) was obtained through the elution of
500 mL petroleum ether-EtOAc eluent at a 9:1 (v/v) eluent ratio, and compound 7 (12.8 mg)
was obtained through subsequent elution. When the ratio of the petroleum ether-EtOAc
eluent was 85:15 (v/v), compounds 8 and 6 could be obtained, of which compound 6 had
a low content, and compounds 8 (18.9 mg) and 6 (4.5 mg) were then obtained using the
semipreparative HPLC (80% MeOH-H2O). Subsequently, semipreparative HPLC (70%
MeOH-H2O) was used to obtain compounds 10 (23.5 mg), 9 (5.2 mg), and 11 (7.9 mg),
wherein compound 10 was the main reaction product. The unreacted starting compound 1
was finally eluted with a petroleum ether-EtOAc eluent ratio of 4:1 (v/v).

Their structures were all identified using the NMR data and HRESIMS spectroscopy.
Compounds 5 and 6 were new terphenyllin derivatives, and named 3′,4,4′′-tris(allyloxy)-
2′,5′-dimethoxy-1,1′:4′,1′′-terphenyl (5) and 3′,4′′-bis(allyloxy)-2′,5′-dimethoxy-[1,1′:4′,1′′-
terphenyl]-4-ol (6), respectively. Compounds 7–11 were identified using the NMR and
ESIMS data, the details of which are added in the supplementary data.

3′,4,4′′-tris(allyloxy)-2′,5′-dimethoxy-1,1′:4′,1′′-terphenyl (5), White, amorphous pow-
der; 1H NMR (400 MHz, acetone-d6) δ 7.57 (2H, d, J = 8.8 Hz), 7.30 (2H, d, J = 8.6 Hz), 7.03
(2H, d, J = 8.8 Hz), 6.98 (2H, d, J = 8.6 Hz), 6.77 (1H, s), 6.12 (2H, m), 5.78 (1H, m), 5.46
(1H, dd, J = 17.2 Hz, 1.8 Hz), 5.27 (1H, dd, J = 10.6, 1.8 Hz), 5.13 (1H, dd, J = 17.2, 1.8 Hz),
5.01 (1H, dd, J = 10.6, 1.8 Hz), 4.64 (2H, d, J = 5.2 Hz), 4.62 (2H, d, J = 5.2 Hz), 4.28 (2H, d,
J = 5.2 Hz), 3.74 (3H, s), 3.56 (3H, s); 13C NMR (100 MHz, acetone-d6) δ 159.0 (C), 158.6 (C),
154.2 (C), 151.7 (C), 145.8 (C), 135.5 (C), 135.1 (CH), 134.9 (CH), 134.8 (CH), 132.8 (CH × 2),
131.7(C), 131.1 (CH × 2), 127.3(C), 125.2(C), 117.4 (CH2), 117.3 (CH2), 116.8 (CH2), 115.2
(CH × 2), 114.6 (CH × 2), 108.8 (CH), 74.5 (CH2), 69.3 (CH2), 69.2 (CH2), 60.9 (CH3), 56.3
(CH3). (+)-HR-ESI-MS m/z 459.2149 [M + H]+, (calcd for C29H31O5, 459.2166).

3′,4′′-bis(allyloxy)-2′,5′-dimethoxy-[1,1′:4′,1′′-terphenyl]-4-ol (6); White, amorphous
powder; 1H NMR (400 MHz, acetone-d6) δ 8.49 (1H, s), 7.48 (2H, d, J = 8.8 Hz), 7.30 (2H,
d, J = 8.8 Hz), 6.98 (2H, d, J = 8.8 Hz), 6.93 (2H, d, J = 8.8 Hz), 6.75 (1H, s), 6.12 (1H, ddt,
J = 17.2, 10.5, 5.2 Hz), 5.78 (1H, ddd, J = 22.7, 10.7, 5.5 Hz), 5.45 (1H, dd, J = 17.2, 1.8 Hz),
5.27 (1H, dd, J = 10.6, 1.5 Hz), 5.13 (1H, dd, J = 17.2, 1.8 Hz), 5.01 (1H, dd, J = 10.6, 1.5 Hz),
4.62 (2H, dt, J = 5.1, 1.4 Hz), 4.28 (2H, dt, J = 5.4, 1.3 Hz), 3.73 (3H, s), 3.56 (3H, s); 13C NMR
(100 MHz, acetone-d6) δ 158.5 (C), 157.8 (C), 154.1 (C), 151.7 (C), 145.8 (C), 135.6 (C), 135.4
(CH), 134.9 (CH), 132.9 (CH × 2), 131.2 (CH × 2), 130.5 (C), 127.4 (C), 125.0 (C), 117.3(CH2),
116.8(CH2), 115.9 (CH × 2), 114.6 (CH × 2), 108.8 (CH), 74.5 (CH2), 69.3 (CH2), 60.9 (CH3),
56.3 (CH3). (+)-HR-ESI-MS m/z 419.1841 [M + H]+, (calcd for C26H27O5, 419.1853).
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3.5. Biology
3.5.1. Animals

Zerafish (Danio rerio) were maintained on a 14/10 h light/dark cycle at 28 ◦C and
fed twice daily. To(krasG12V) and LiPan mutants were gifts from the laboratory of Zhi-yuan
Gong (National University of Singapore). Zebrafish embryos were obtained through natural
hybridization. To prevent melanin from affecting the liver cancer, the embryo medium
was supplemented with 0.003% (w/v) 2-phenylthiourea. All experimental protocols were
approved by and conducted in accordance with the Ethical Committee of Experimental
Animal Care, Ocean University of China.

3.5.2. Cell Lines

Panc-1, HCT116, A549, HeLa, Hep G2, U2OS, U251, DU145, TE-1, BT549, MCF7, and
HCT8 were from ATCC; RCC4 cell was gifted from Wuhan Xiao (Institute of Hydrobiology,
Chinese Academy of Sciences) and cultured in high-glucose DMEM (Hyclone, Logan,
UT, USA) with 10% FBS (PAN, Germany) and antibiotics (100 units/mL penicillin and
100 mg/mL streptomycin sulfate) at 37 ◦C in 5% CO2. The cell lines were analyzed with
short tandem repeat profiling by ShCellBank (Shanghai, China). The contamination by
mycoplasmas in culture cells was tested using the EZ-PCR Mycoplasmas Detection Kit (BI,
Kibbutz Beit-Haemek, Israel) every three months.

3.5.3. Antibody and Regent

The antibodies against Actin (abs137975) and Tubulin (abs137976) were obtained
from Absin Bioscience. The antibodies against cleaved-PARP1 (13371-1-AP), cleaved-
caspase-3 (40924), Cytochrome C (10993-1-AP), and BAD (10435-1-AP) were purchased from
Proteintech. CCK8 and DMSO were purchased from Sigma (St. Louis, MO, USA). Enhanced
chemiluminescence liquid (ECL) was from Sparkjade (Jinan, China). PVDF membranes
were obtained from Millipore (Boston, MA, USA). Secondary antibodies against primary
antibodies were provided from Millipore (Darmstadt, Germany). Chemical reagents were
from Sinopharm (Shanghai, China).

3.5.4. Cytotoxic Activity of Triphenol Derivatives

The cytotoxic activity of all the compounds, 1–11, was detected using the CCK8 assay.
Cells were seeded in 96-well plates at a density of approximately 4000 cells per well.
After allowing the cells to adhere, they were treated with different concentrations of the
derivatives for 72 h. Following the treatment period, a CCK8 solution (10%) was added
to each well and incubated for an additional 2 h. The absorbance of the samples was
then measured at 450 nm using a plate reader. Based on the absorbance readings, the cell
viability and IC50 (half-maximal inhibitory concentration) values were calculated to assess
the cytotoxicity of the derivatives.

3.5.5. Plate Clone Formation Assay

BT549 cells were seeded in 3.5 cm dishes at a density of 200 cells per well. The cells
were then treated with CHNQD-00824 at concentrations ranging between 0 and 8 µM for
a period of 13 days. During this time, the growth medium was replaced every 3 days to
maintain cell viability. After the treatment period, the cells were washed three times with
pre-cooled phosphate-buffered saline (PBS) for 5 min each time. Subsequently, the cells
were incubated with a 0.4% paraformaldehyde (Sigma, St. Louis, MO, USA) solution for
30 min. Following another three washes with pre-cooled PBS, the cells were stained with a
0.5% crystal violet solution for 30 min. The excess crystal violet (Sangon, Shanghai, China)
solution was then rinsed off to remove any unbound dye. The samples were photographed
and observed under an inverted microscope. Clonal populations consisting of more than
50 cells were considered as individual clones and were counted.
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3.5.6. Cell Proliferation Assay

BT549 cells were divided into 24-well plates with 1000 cells per well. After allowing
the cells to adhere, cells were treated with CHNQD-00824 at a concentration of 5 µM. The
DMSO-treated group was used as a negative control. Three wells of each treatment group
were digested every 24 h and counted separately using an Automated Cell Counter (LUNA-
II, logos biosystems). Counts were performed for 7 consecutive days. A cell proliferation
curve was drawn to compare the cell proliferation rate.

3.5.7. The Scratch Assay

Cells were seeded into 12-well plates at a density of approximately 5 × 105 cells
per well. Once the cells reached confluency and formed a monolayer, a 200 µL tip was
used to create a scratch across the surface of the cells, ensuring an even and consistent
scratch. The suspended cells were then removed by gently washing the wells with PBS
solution. Next, serum-free medium containing different concentrations of CHNQD-00824
(ranging between 0 and 10 µM) was added to each well. The plates were then incubated
for a specified time period, such as 0 h, 12 h, and 24 h. At each time point, the scratches
were imaged using an inverted microscope. The Image-J software (version 10.0.5, Media
Cybernetics Inc., Rockville, Maryland) was used to measure the area of the scratch, allowing
for a quantification of cell migration. By comparing the scratch area at different time points,
the rate of cell migration can be assessed.

3.5.8. Cell Cycle Analysis

BT549 cells were plated in a 6 cm dish at a density of 2× 106 per well. After adherence,
the cells were treated with CHNQD-00824 (0–1 µM) for 24 h. The cells were digested
with pancreatic enzymes and rehung in 1.5 mL medium. Then, the cells were washed
twice with pre-cooled PBS. The cells were then suspended with 70% ethanol and frozen
at −20 ◦C overnight. After centrifugation to remove 70% ethanol, they were washed
twice with pre-cooling PBS. Then, the cells were stained with a propidium iodide solution
(Yeasen, Shanghai, China). The results were detected through flow cytometry and analyzed
using Flowjo.

3.5.9. Cell Apoptosis Assay

Approximately 2 × 106 cells per well were seeded in a 6 cm dish and incubated until
the cell adhered to the well. Then, the cells were treated with CHNQD-00824 (0–1 µM) for
24 h. The cells were digested with EDTA-free pancreatic enzymes and then suspended,
then washed twice with pre-cooled PBS. The PBS was removed through centrifugation
and the staining solution (Yeasen, Shanghai, China) containing Annexin V/FITC-PI was
added. Reaction at room temperature and away from light for 10–15 min. The apoptosis
was evaluated through flow cytometry and analyzed using Flowjo.

3.5.10. Western Blotting Assay

BT549 cells were seeded in 6-well plates and treated with CHNQD-00824 for 24 h.
Then, the cells were collected and lysed with loading buffer. The protein lysates were
then separated using SDS-PAGE (Sangon, Shanghai, China) and transferred into nitro-
cellulose membranes (Millipore, Billerica, MA, USA). To prevent non-specific binding,
the membranes were blocked with skim milk powder for 2 h. Then, membranes were
incubated overnight with specific primary antibodies at 4 ◦C and secondary antibodies at
room temperature for 2 h. The enhanced chemiluminescence kit was then prepared and
added to the membranes in drops, and photographed and analyzed using a protein imager
(Universal Hood II, BIO-RAD, Milan, Italy).

3.5.11. AO Staining Assay

Zebrafish embryos were obtained by mating wild-type female and male zebrafish.
The embryos were then cultured in embryo medium containing PTU until they reached
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24 h post-fertilization (hpf). After the 24 h culture period, the embryos were treated with
varying concentrations of CHNQD-00824, ranging from 0 to 15 µM, for an additional
24 h. Following the treatment, the embryos were stained with acridine orange (AO) at
a concentration of 2 µg/mL for 30 min. The stained embryos were then washed three
times with embryo culture medium to remove any excess dye. The results were visualized
and photographed using a fluorescence microscope (SMZ645, Nikon, Tokyo, Japan). The
Image-pro-plus software (version 10.0.5, Media Cybernetics Inc., Rockville, Maryland) was
used to analyze the images and quantify the results obtained from the stained embryos.

3.5.12. In Vivo Anticancer Assay of Zebrafish

To(krasG12V) genotype female and male zebrafish were mated to obtain embryos.
Embryos were cultured to 3 dpf in embryo medium containing PTU and then embryos
were treated with CHNQD-00824 (0–5 µM) and DOX (60 mg/L, Sangon, China) for 4 days
in embryo medium containing PTU. The embryo culture medium was changed once at
5 dpf. At 7 dpf, zebrafish were anesthetized with tracaine (0.08%, w/v) and transferred to
methyl-cellulose (2%, w/v) for photo observation. The results were photographed using a
fluorescence microscope and analyzed using image-pro-plus.

3.5.13. Statistics

The Prism 8 software was used for statistical analysis. The results were shown as the
mean ± SD. For all data, p-value < 0.05 was considered statistically significant.

4. Conclusions

The findings of this study highlight the discovery of a terphenyllin derivative called
CHNQD-00824 from the marine compound library. CHNQD-00824 has shown potential as
an anticancer agent. Moreover, further investigations revealed that CHNQD-00824 has the
ability to induce DNA damage. DNA damage is a crucial mechanism in cancer treatment
as it can lead to cell death or inhibit cell proliferation. This finding suggests that CHNQD-
00824 may be acting through a mechanism that disrupts the integrity of cancer cell DNA. In
addition to its activity against multiple cell lines in vitro, CHNQD-00824 was evaluated in a
DOX-induced liver-specific enlargement model in zebrafish. In this model, CHNQD-00824
significantly suppressed tumor growth when administered at a concentration of 5 µM.
Zebrafish have emerged as a valuable model organism in cancer research, complementing
the insights gained from murine models and cell culture systems. Their small size, rapid
development, genetic conservation, and ease of genome manipulation make them an
excellent tool for studying tumor initiation, progression, and response to treatment. This
observation suggests that CHNQD-00824 may have potential in inhibiting tumor growth
in vivo, making it a promising candidate for further development as a cancer drug agent.
Further research is needed to explore the mechanisms, pharmacokinetics, and safety profile
of CHNQD-00824 in order to assess its clinical potential.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md21100512/s1, Figure S1–S33: 1H NMR, 13C NMR. Figure S34: Fer-
mentation yield comparison chart. Figure S35: UPLC analysis of the reaction process of terphenyllin
1 treated with allyl bromide (2.5 equivalent).
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