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Abstract: Marine sponge-derived fungi have been proven to be a prolific source of bioactive natural
products. Two new alkaloids, polonimides E (1) and D (2), and a new butenolide derivative, eutypoid F
(11), were isolated from the Beibu Gulf sponge-derived fungus, Penicillium sp. SCSIO 41413, together
with thirteen known compounds (3–10, 12–16). Their structures were determined by detailed NMR,
MS spectroscopic analyses, and electronic circular dichroism (ECD) analyses. Butenolide derivatives
11 and 12 exhibited inhibitory effect against the enzyme PI3K with IC50 values of 1.7 µM and 9.8 µM,
respectively. The molecular docking was also performed to understand the inhibitory activity, while
11 and 12 showed obvious protein/ligand-binding effects to the PI3K protein. Moreover, 4 and 15
displayed obvious inhibitory activity against LPS-induced NF-κB activation in RAW264.7 cells at 10 µM.

Keywords: sponge-derived fungus; Penicillium sp.; PI3K; NF-κB

1. Introduction

The Beibu Gulf, a semi-closed gulf located in the northwest of the South China Sea,
is rich in fishery or marine biological resources, including seagrass, coral, and sponge [1].
It has become an important source region of marine natural compounds [2]. The marine
sponge, one of the most primitive and inferior multicellular animals, possesses abundant
microorganisms germinated in its body and surface on account of its unique filter feeding
system. Sponge-derived microorganisms act as an important guarantee for sponge survival
since the lack of morphological physical defense structures [3–5].

In recent years, sponge-derived microorganisms have become one of the most abun-
dant sources of new natural products, including terpenoids, alkaloids, sterols, peptides
fatty acids, amino acids, and so on. Plenty of new secondary metabolites of sponge-derived
fungi have been discovered with striking bioactive properties such as anti-tumor, antibacte-
rial, antiviral, anti-inflammatory, and other biological activities [6]. Diketopiperazines are
common secondary metabolites from a wide range of fungi, while quinazoline-containing
diketopiperazines are relatively rare, with the difficulty in the determination of their con-
figurations [7]. Butenolide derivatives, possessing the α,β-unsaturated γ-butyrolactone
skeleton, were frequently isolated from fungi with diverse biological activities, especially
the antitumor activity with diverse mechanisms or targets [8].

In our research for novel bioactive natural products from marine sponge-derived
fungi, the strain fungus Penicillium sp. SCSIO 41413 was isolated from a Callyspongia sp.
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sponge sample collected near the Weizhou Island, Beibu Gulf of the South China Sea. In the
chemical study of this strain, ten alkaloids (1–10), including four quinazoline-containing
diketopiperazines (2–5), two butenolide derivatives (11, 12), and four other metabolites
(13–16) were obtained. Among them, 1, 2, and 11 were new compounds. Herein, we report
the isolation, structural elucidation, and bioassay screening of all isolated compounds
(Figure 1).
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Figure 1. Chemical structures of 1–16. 

2. Results 
The fungus Penicillium sp. SCSIO 41413 was fermented in rice medium, which was 

extracted with EtOAc to obtain crude extract after 30-day fermentation. Several chroma-
tographic methods, including silica gel column and semi-preparative HPLC with octade-
cylsilyl (ODS) column, were used for isolation of these 16 compounds. 

Compound 1 was obtained as a yellowish oil. The molecular formula was established 
as C15H14N2O2 (m/z 255.1131 [M + H]+) in the HR-ESI-MS spectrum. The 1H NMR (Table 1) 
spectrum displayed eight aromatic proton signals (δH 7.19, H-7; 6.62, H-8; 7.63, H-9; 6.65, 
H-10; 6.72, H-13; 6.70, H-15; 7.14, H-16; 6.74, H-17). The 13C NMR spectrum showed one 
sp3 methyl (δC 32.0, C-3), one sp3 methylene (δC 72.0, C-4), twelve sp2 aromatic carbons (δC 
114.0, C-6; 133.2, C-7; 114.2, C-8; 127.3, C-9; 116.8, C-10; 146.4, C-11; 142.2, C-12; 116.8, C-
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2. Results

The fungus Penicillium sp. SCSIO 41413 was fermented in rice medium, which was
extracted with EtOAc to obtain crude extract after 30-day fermentation. Several chromato-
graphic methods, including silica gel column and semi-preparative HPLC with octadecylsi-
lyl (ODS) column, were used for isolation of these 16 compounds.

Compound 1 was obtained as a yellowish oil. The molecular formula was established
as C15H14N2O2 (m/z 255.1131 [M + H]+) in the HR-ESI-MS spectrum. The 1H NMR (Table 1)
spectrum displayed eight aromatic proton signals (δH 7.19, H-7; 6.62, H-8; 7.63, H-9; 6.65,
H-10; 6.72, H-13; 6.70, H-15; 7.14, H-16; 6.74, H-17). The 13C NMR spectrum showed one
sp3 methyl (δC 32.0, C-3), one sp3 methylene (δC 72.0, C-4), twelve sp2 aromatic carbons
(δC 114.0, C-6; 133.2, C-7; 114.2, C-8; 127.3, C-9; 116.8, C-10; 146.4, C-11; 142.2, C-12; 116.8,
C-13; 157.6, C-14; 115.4, C-15; 129.6, C-16; 116.8, C-17), and a conjugated carbonyl carbon
(δC 162.5, C-1). The presence of an ortho substituted aromatic ring was established by
detailed analysis of the 1D NMR data. The HMBC correlations (Figure 2) from H-7 to
C-8/C-9/C-11, and from H-3 to C-1/C-4, suggested the 4-quinazolone ring system in the
molecule. The NMR data of 1 were closely related to those of glycozolone A, a racemic
natural quinazoline alkaloid [9]. The main difference was the appearance of 5-NH and
14-OH groups in 1 instead of 1-NCH3 and a hydrogen atom in glycozolone A, respectively,
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which was confirmed in 1H-1H COSY correlation of NH-5/H-4 and HMBC correlations
from H-16 to C-12/C-14/C-17. Given the low measured specific optical rotation ([α]25

D −3.9
(c 0.03, MeOH)) and a marginal CD effect (Figure S9) of 1, it was suggested to be a racemic
mixture, which was not subjected to chromatographic resolution due to limited sample
quantities. Therefore, the structure of 1 was determined as 2-(3-hydroxyphenyl)-3-methyl-2,
3-dihydroquinazolin-4(1H)-one and was given trivial name polonimide E (1).

Table 1. The 1H (500 MHz) and 13C NMR (125 MHz) data of 1 and 2 (TMS, δ in ppm, DMSO-d6).

Position
1 2

δC Type δH Mult. (J in Hz) δC Type δH Mult. (J in Hz)

1 162.5, C 165.3, C
3 32.0, CH3 2.84, s 126.7, C
4 72.0, CH 5.72, d, (2.4) 145.5, C
5 7.26, d, (2.4)
6 114.0, C 147.0, C
7 133.2, CH 7.19, dd, (7.7, 1.6) 126.3, CH 7.53, m
8 114.2, CH 6.62, m 134.8, CH 7.84, ddd, (8.2, 7.1, 1.5)
9 127.3, CH 7.63, dd, (7.7, 1.6) 126.8, CH 7.69, d, (8.2)
10 116.8, CH 6.65, dd, (7.7, 1.6) 125.3, CH 8.13, dd, (8.2, 1.5)
11 146.4, C 119.7, C
12 142.2, C 159.9, C
13 112.8, CH 6.72, t, (2.1)
14 157.6, C 54.3, CH 5.19, m

15 115.4, CH 6.70, ddd, (7.8, 2.1, 1.3) 27.4, CH2
2.13, dq, (14.0, 7.0)2.04, dq,

(14.0, 7.0)
16 129.6, CH 7.14, t, (7.8) 29.5, CH2 2.37, q, (7.0)
17 116.8, CH 6.74, dt, (7.8, 1.3) 171.4, C
18 127.2, CH 6.22, d, (10.3)
19 25.0, CH 2.98, m
20 22.0, CH3 1.08, d, (6.5)
21 22.3, CH3 1.05, d, (6.5)

22 65.7, CH2
3.90, ddd, (10.4, 6.6,

4.0)3.78, ddd, (10.4, 6.6, 4.0)
23 69.1, CH 3.57, q, (5.7)
24 62.2, CH2 3.29, dd, (5.7, 4.0)
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Compound 2 was obtained as a white amorphous powder. The molecular formula of
C21H25N3O6 (11 degrees of unsaturation) was established by the positive high-resolution
electrospray ionization mass spectroscopy (HR-ESI-MS) peak at m/z 416.1820 [M + H]+

(calcd 416.1816 for C21H26N3O6). The 1H and 13C NMR data collected in DMSO-d6 (Table 1)
showed two methyl signals (δH/C 1.08/22.0, CH3-20; 1.05/22.3, CH3-21), four methylenes
(δH/C 3.90, 3.78/65.7, CH2-22; 3.29/62.2, CH2-24; 2.37/29.5, CH2-16; and 2.13, 2.04/27.4,
CH2-15), and eight methines (δH/C 7.84/134.8, CH-8; 7.69/126.8, CH-9; 8.13/125.3, CH-10;
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7.53/126.3, CH-7; 6.22/127.2, CH-18; 3.57/69.1, CH-23; 5.19/54.3, CH-14; and 2.98/25.0,
CH-19). Moreover, the 13C NMR spectrum also displayed three carbonyls (δC 165.3, C-1;
159.9, C-12; and 171.4, C-17) and four quaternary carbons (δC 126.7, C-3; 145.5, C-4; 147.0,
C-6; and 119.7, C-11). With careful analyses of the 1D-NMR data, it was found that 2 shared
the same quinazoline core as that of co-isolated polonimide A (4), a diketopiperazine
alkaloid isolated from the fungus Penicillium polonicum [7]. Interestingly, the methoxy
group in 4 was replaced by a glycerol moiety in 2, which was confirmed by the 1H-1H
COSY correlations of H2-22/H-23/H2-24 (Figure 2). The HMBC correlations (Figure 2)
from H2-22 to C-17, C-23, and C-24; from H-23 to C-22 and C-24; and from H-24 to C-23
and C-22 also verified the above-mentioned glycerol moiety attached at C-17. Thus, the
planar structure of 2 was determined and was named polonimide D (2).

The relative configuration (RC) of the ∆3,18 double bond in 2 was mainly determined
by comparing the chemical shifts of CH-18, CH-19, and C-3 with those reported siblings,
polonimides A (4) and B (3), aurantiomide C (5), RCs of which were determined by selective
1D nuclear overhauser effect (NOE) experiments [7]. The chemical shifts of CH-18 (δH/C
6.22/127.1), CH-19 (δH/C 3.00/25.0), and C-3 (δC 126.6) of 2 measured in DMSO-d6 were
completely identical with those [CH-18 (δH/C 6.22/127.2), CH-19 (δH/C 2.98/25.0), and C-3
(δC 126.7)] of polonimide A (4) also measured in DMSO-d6 [7], suggesting Z-configuration
of the ∆3,18 double bond in 2. Moreover, the experimental ECD spectra (Figure 3) of 2
also showed good agreement with those reported both experimental and calculated ECD
spectra of 3–5, revealing the shared 14S absolute configuration (AC) among them, AC of
which was reliably assigned by Marfey’s analysis [7]. The Mosher’s reaction approach for
determining the absolute configuration of the chiral center C-23 turned to failure, thus it
was unsolved owing to limited obtained quantities.
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Figure 3. Experimental ECD spectra of 2–5.

Compound 11 possessed the elemental composition of C17H14O6 (11 degrees of un-
saturation) as established by the HRESIMS data (m/z 315.0867 [M + H]+). The 1H and
13C NMR data measured in DMSO-d6 (Table 2) showed six methines (δH/C 6.77/120.1,
CH-18; 6.44/119.2, CH-12; 6.95/116.1, CH-14; 6.55/115.9, CH-8; 6.66/115.8, CH-11; and
6.80/115.6, CH-17), two methylenes (δH/C 4.69/70.8, CH2-5; 3.74/32.5, CH2-6), one car-
bonyl (δC 173.2, C-2), and eight quaternary carbons (δC 124.9, C-3; 160.2, C-4; 127.4, C-7;
145.5, C-9; 144.2, C-10; C-120.8, C-13; 145.2, C-15; and 145.9, C-16). Detailed analysis of
the NMR data of 11 was closely related to those of 12 [10], which also suggested 11 was a
butenolide derivative with two 1,2-disubstituted benzene moieties. The main difference
was the hydroxyl substitution at C-9 and a methylene of CH2-5 in 11 instead of a hydrogen



Mar. Drugs 2023, 21, 27 5 of 11

atom at C-9 and hydroxyl substituted methine in 12, respectively, which was confirmed by
HMBC correlations (Figure 2) from H-11, H-8 to C-9, H-5 (δH 4.69, s, 2H) to C-2, and C-3 in
11. Hence, the structure of 11 was determined and was named as eutypoid F (11).

Table 2. The 1H (500 MHz) and 13C (125 MHz) NMR data of 11 (TMS, δ in ppm, DMSO-d6).

Position
11

δC Type δH Mult. (J in Hz)

2 173.2, C
3 124.9, C
4 160.2, C
5 70.8, CH2 4.69, s
6 32.5, CH2 3.74, s
7 127.4, C
8 115.9, CH 6.55, d, (2.2)
9 145.5, C
10 144.2, C
11 115.8, CH 6.66, d, (8.0)
12 119.2, CH 6.44, dd, (8.0, 2.2)
13 120.8, C
14 116.1, CH 6.95, d, (2.0)
15 145.2, C
16 145.9, C
17 115.6, CH 6.80, d, (8.1)
18 120.1, CH 6.77, dd, (8.1, 2.2)

The thirteen known compounds were identified as polonimide B (3) [7], polonimide
A (4) [7], aurantiomide C (5) [11], fructigenine A (6) [12], 3-O-methylviridicatin (7) [13],
viridicatol (8) [14], arctosin (9) [15], cyclopenin (10) [16], 8-hydroxyhelvafuranone (12) [10],
verrucosidinol acetate (13) [17], deoxyverrucosidin (14) [18], nordeoxyverrucosidin (15) [19],
and aspterric acid methyl ester (16) [12], respectively, by comparison of their NMR and MS
data with those reported in the literature. Notably, 8-hydroxyhelvafuranone (12) was also
obtained as a racemic mixture due to the low measured specific optical rotation ([α]25

D +3.1
(c 0.05, MeOH)) and a marginal CD effect (Figure S26).

All compounds were assessed for antibacterial activities against six pathogenic bacte-
ria, including Acinetobacter baumannii (ATCC 19606), Staphylococcus aureus (ATCC 29213),
Enterococcus faecalis (ATCC 29212), Klebsiella pneumoniae (ATCC 13883), Escherichia coli
(ATCC 25922), and Methicillin-resistant Staphylococcus aureus, and eight phytopathogenic
bacteria, including Colletotrichum asianum HNM408, Colletotrichum gloeosporioides HNM1003,
Colletotrichum acutatum HNMRC178, Fusarium oxysporum HNM1003, Pyricularia oryaza HNM
1003, Alternaria alternate, Curvularia australiensis, and Rhizoctonia solani, using disc agar diffu-
sion method. Two human prostate cancer cell lines, PC-3 (androgen receptor negative) and
22Rv1 (androgen receptor positive), were also used in the cytotoxicity test [20]. However,
none of them showed obvious antibacterial or cytotoxic activities.

Because of the diverse biological activities reported with quinazoline-containing
diketopiperazines and butenolide derivatives [7,8], further bioactivity screening is nec-
essary, such as anti-tumor related enzymatic bioassay. Enzymes phosphatidylinositol 3-
kinase (PI3K) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFK-2/FBPase
3, PFKFB3), which played a significant role in the regulation of glycolysis in cancer cells as
well as its proliferation and survival [21], were used for assessment of enzyme activities
in our study. As a result, none of the compounds showed inhibition above 50% against
PFKFB3 enzyme at 20 µM, while 11 and 12 displayed obvious inhibition against PI3K with
IC50 values of 1.7 µM and 9.8 µM, respectively.

To obtain an insight into the molecular interactions between 11 and 12 and PI3K,
molecular docking analysis was carried out. Butenolide derivatives 11 and 12 expressed
the interaction with PI3K protein (PDB ID: 1E7U) perfectly, and the docking scores were
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−11.688 and −8.863, respectively. KWT (molecule of wortmannin) is a ligand in 1E7U
designated by the RCSB. As shown in Figure 4A-C, phenolic hydroxy groups of 11 formed
hydrogen bonds with the active site residues THR887, TYR867, and ALA885, and the ester
group also interacted with VAL882 by hydrogen bond. Meanwhile, phenolic hydroxy
groups of 12 formed three hydrogen bonds with residues THR887, TYR867, and ASP950.
These results provide us rational explanation of the interactions between butenolide deriva-
tives 11 and 12 and PI3K, which provides valuable information for further development of
PI3K inhibitors.
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Nuclear factor-κB (NF-κB) is a protein complex that controls transcriptional DNA, cy-
tokine production, and cell survival, and is an important intracellular nuclear transcription
factor [22]. The over-activation or defect of NF-κB can lead to the abnormal expression of
various target cell genes, which is related to the inflammatory changes of many human
diseases such as rheumatoid arthritis and heart and brain diseases. Therefore, inhibiting
the NF-κB signal transduction pathway by drugs may become a means to treat many in-
flammatory diseases [23]. Seven compounds (3–6, 14–16) were screened for their inhibitory
activities of LPS-induced NF-κB activation in RAW264.7 at 10 µM, and four of them (3–4,
and 14–15) were revealed with the activity of varying strength (Figure 5). Compounds 4
and 15 showed significant inhibitory activity against LPS-induced NF-κB (p < 0.001).
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3. Materials and Methods
3.1. General Experimental Procedures

The NMR spectra were obtained on a Bruker Avance spectrometer (Bruker, Billerica,
MA, USA) operating at 500 and 700 MHz for 1H NMR, and 125 and 175 MHz for 13C
NMR, using tetramethylsilane as an internal standard. High-resolution mass spectra were
recorded on a Bruker miXis TOF-QII mass spectrometer (Bruker, Billerica, MA, USA). Opti-
cal rotations were measured on a PerkinElmer MPC 500 (Waltham, MA, USA) polarimeter.
UV and ECD spectra were recorded on a Chirascan circular dichroism spectrometer (Ap-
plied Photophysics, Leatherhead Surrey, UK). The TLC and column chromatography (CC)
were performed on plates precoated with silica gel GF254 (10–40 µm), and over silica gel
(200–300 mesh) (Qingdao Marine Chemical Factory, Qingdao, China), Sephadex LH-20
(Amersham Pharmacia Biotech AB, Uppsala, Sweden), and semi-preparative HPLC using
an ODS column (YMC-pack ODS-A, YMC Co., Ltd., Kyoto, Japan, 10 mm × 250 mm, 5 µm).
All solvents employed were of analytical grade. The sea salt (Guangzhou Haili Aquarium
Technology Company, Guangzhou, China) was a commercial product.

3.2. Fungal Strain

The fungal strain Penicillium sp. SCSIO 41413 was isolated from a sponge (Callyspongia sp.)
sample which was collected near the Weizhou Island (Guangxi, China), Beibu Gulf of the South
China Sea. This strain was stored on MB agar (malt extract 15 g, sea salt 10 g, H2O 1 L, PH
7.4–7.8) slants at 4 ◦C and deposited at Key Laboratory of Tropical Marine Bioresources and
Ecology, Chinese Academy of Sciences. The ITS sequence region of the strain SCSIO 41413 was
amplified by PCR, and rDNA sequencing showed that it shared significant homology to that
of Penicillium. The rDNA sequence has 100% sequence identity to that of Penicillium polonicum
(GenBank accession no. NR_103687.1), so it was designated as Penicillium sp. SCSIO 41413.

3.3. Fermentation and Extraction

Seed medium (malt extract 15 g, sea salt 10 g, distilled water 1000 mL) was inoculated
with Penicillium sp. SCSIO 41413 and incubated at 25 ◦C for 72 h on a rotating shaker
(180 rpm/s). The strain Penicillium sp. SCSIO 41413 was cultured in the flasks (×60) of rice
medium (rice 200 g/flask, sea salt 7.0 g/flask, distilled H2O 200 mL/flask). These flasks
were incubated statically at 25 ◦C under a normal day/night cycle. After 30 days, the rice
medium was soaked in EtOAc (600 mL/flask), cut into small pieces, and sonicated for
20 min. Then, they were poured into fermentation vats, which were extracted with EtOAc
four times and concentrated under reduced pressure to obtain a crude extract. The crude
extract was suspended in MeOH and then partitioned with an equal volume of petroleum
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ether (PE) in order to remove the oil. At last, the MeOH solution was concentrated under
reduced pressure to obtain a black crude extract (85.0 g).

3.4. Isolation and Purification

The crude extract was subjected to silica gel column chromatography (30 × 500 mm)
using step gradient elution with CH2Cl2-MeOH (v/v 100:1, 80:1, 50:1, 20:1, 0:1, 500 mL
each) to obtain ten subfractions (Frs.1–10) based on TLC analysis. Fr.4 was subjected to ODS
CC (20 × 300 mm) with MeOH-H2O (v/v, 1:9, 3:7, 5:5, 7:3, 10:0, 200 mL each) to obtain ten
subfractions (Fr.4.1-4.10). Then, Fr.4-5 and Fr.4-4 were purified by semi-preparative HPLC
using an ODS column (YMC-pack ODS-A, YMC Co., Ltd., Kyoto, Japan, 10 × 250 mm,
5 µm) to obtain 5 (3.4 mg, 33% MeOH/H2O, 2.5 mL/min, tR = 30.8 min), and 2 (3.5 mg,
37% MeCN/H2O, 2.5 mL/min, tR = 12 min), 12 (11.1 mg, 43% MeOH/H2O, 2.5 mL/min,
tR = 21 min), 11 (7.1 mg, 35% MeCN/H2O, 2.5mL/min, tR = 14.5 min), 1 (1.1 mg, 60%
MeOH/H2O, 2.5 mL/min, tR = 12 min), and 10 (19.5 mg, 38 % MeCN/H2O, 2.5 mL/min,
tR = 14.5 min). Fr.2 was subjected to ODS CC with MeOH-H2O (3:7-10:0, v/v) to obtain ten
subfractions (Fr.2.1-2.10). Then, Fr.2-10 and Fr.2-6 were further purified by semi-preparative
HPLC to obtain 14 (6.1 mg, 75% MeOH/H2O, 2.5 mL/min, tR = 19 min), and 15 (7.6 mg,
75% MeOH/H2O, 2.5 mL/min, tR = 18 min), 7 (2.8 mg, 45% MeCN/H2O, 2.5 mL / min,
tR = 27 min), 4 (19.2 mg, 45 % MeCN/H2O, 2.5 mL/min, tR = 30 min), and 16 (10.7 mg, 64%
MeOH/H2O, 2.5 mL/min, tR = 30 min). Fr.5 and Fr.3 were purified by HPLC to obtain
3 (3.1 mg, 47 % MeCN/H2O, 2.5 mL/min, tR = 12 min), 6 (3.9 mg, 53 % MeCN/H2O,
2.5 mL/min, tR = 24 min), 13 (2.5 mg, 53% MeCN/H2O, 2.5 mL/min, tR = 18 min), 8
(7.5 mg, 60% MeOH/H2O, 2.5 mL/min, tR = 10 min), and 9 (5.6 mg, 38% MeCN/H2O,
2.5 mL/min, tR = 14.5 min).

Polonimide E (1): yellow oil; [α]25
D −(c 0.03, MeOH); UV (MeOH) λmax (logε): 204 (3.00),

222 (3.08) nm; ECD (0.3 mg/mL, MeOH) λmax (∆ε) 200 (+8.38), 202 (−0.89), 212 (+2.62), 219
(−2.56); IR (film) νmax 3288, 2927, 1625, 1608, 1487, 1456, 1278, 1153, 1024 cm−1. 1H NMR
(DMSO-d6, 700 MHz) and 13C NMR (DMSO-d6, 176 MHz) data, see Table 1; HRESIMS
m/z 255.1131 [M + H]+ (calcd for C15H15N2O2 255.1128), 277.0953 [M + Na]+ (calcd for
C15H14N2O2Na 277.0947).

Polonimide D (2): yellow oil; [α]25
D −11.1 (c 0.10, MeOH); UV(MeOH) λmax (logε): 209

(2.85), 306 (1.77) nm, ECD (0.3 mg/mL, MeOH) λmax (∆ε) 202 (−9.93), 225 (+9.73), 249
(−6.50); IR (film) νmax 2960, 2868, 1716, 1682, 1582, 1560, 1394, 1336, 1292, 1247, 1168,
1024 cm−1. 1H NMR (DMSO-d6, 500 MHz) and 13C NMR (DMSO-d6, 125 MHz) data, see
Table 1; HRESIMS m/z 416.1820. [M + H]+ (calcd for C21H26N3O6 416.1816), 438.1639 [M +
Na]+ (calcd for C21H25N3O6Na, 438.1636).

Eutypoid F (11): white powder; UV (MeOH) λmax (logε): 204 (3.98), 290 (2.93) nm. IR
(film) νmax 2945, 2833, 2260, 2129, 1732, 1602, 1520, 1362, 1283, 1199, 1115, 1020 cm−1.1H
NMR (DMSO-d6, 500 MHz) and 13C NMR (DMSO-d6, 125 MHz) data, see Table 2; HRES-
IMS m/z 315.0867 [M + H]+(calcd for C17H15O6 315.0863), 337.0689 [M + Na]+ (calcd for
C17H14O6Na 337.0863).

3.5. Bioassay

The antibacterial activity was assessed using the K-B disc agar diffusion method [24]. Com-
pounds 1–16 were tested for antibacterial activities against six pathogenic bacteria,
Acinetobacter baumannii (ATCC 19606), Staphylococcus aureus (ATCC 29213), Enterococcus faecalis
(ATCC 29212), Klebsiella pneumoniae (ATCC 13883), Escherichia coli (ATCC 25922), and
Methicillin-resistant Staphylococcus aureus (MRSA), in which ampicillin and gentamicin were used
as a positive control for gram-positive and gram-negative bacteria, respectively, and eight phy-
topathogenic bacteria, Colletotrichum asianum HNM408, Colletotrichum gloeosporioides HNM1003,
Colletotrichum acutatum HNMRC178, Fusarium oxysporum HNM1003, Pyricularia oryaza HNM
1003, Alternaria alternate, Curvularia australiensis, and Rhizoctonia solani, in which nystatin and
methanol were used as the positive control and negative control, respectively.
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Two human prostate cancer cell lines, PC-3 (androgen receptor negative) and 22Rv1
(androgen receptor positive), were used in the cytotoxicity tests, and cell viability was
analyzed by MTT assay as previously described [20].

Enzyme activities of those compounds against PI3K [25] and PFKFB3 [21] were eval-
uated using the methods reported. For preliminary screening, the final concentration of
20 µM was used. Further PI3K enzyme activity assay was performed to determine the 50%
inhibition concentration (IC50) values of 11 and 12, with the concentrations of 80, 40, 20, 10,
5, 2.5, 1.25, and 0.625 µM.

The inhibitory activities of LPS-induced NF-κB activation in RAW264.7 cells were
evaluated as detected by luciferase reporter gene assay as described previously [20]. In
other words, the RAW264.7 cells stably transfected with luciferase reporter gene were
placed in 96-well plates and pretreated with tested compounds (10 µM) and BA Y11-7082
(NF-κB inhibitor as positive control, 5 µM, Sigma-Aldrich) for 30 min. Then, they were
stimulated with 5 µg/mL LPS for 8 h. The cells were collected, and luciferase activities of
the triplicate tests were measured using the luciferase assay system (Promega, Madison,
WI, USA).

3.6. Molecular Docking

The Schrödinger 2017-1 suite (Schrödinger Inc., New York, NY, USA) was employed to
perform the docking analysis. The crystal structure of PI3K (PDB code: 1E7U) [26] obtained
from the Protein Data Bank was used as a starting model with all of the waters and the
N-linked glycosylated saccharides removed and was constructed following the Protein
Prepare Wizard workflow in Maestro 11-1. The prepared ligands were then flexibly docked
into the receptor using the induced-fit module with the default parameters. The figures
were generated using PyMol molecular graphics software (Schrödinger 2017-1, Schrödinger
Inc., New York, NY, USA).

4. Conclusions

In summary, chemical investigation of the marine fungus Penicillium sp. SCSIO
41413, which was isolated from a Beibu Gulf sponge sample, led to the isolation of two
new alkaloids, polonimides E (1) and D (2), a new butenolide derivative, eutypoid F
(11), and thirteen known compounds (3−10, 12−16). Their planar structures and absolute
configurations were elucidated by detailed NMR, MS spectroscopic analyses, and measured
and calculated ECD analyses. Butenolide derivatives 11 and 12 exhibited obvious inhibitory
against the enzyme PI3K with IC50 values of 1.7 µM and 9.8 µM, respectively, while 4 and
15 exhibited obvious inhibitory activity against LPS-induced NF-κB activation in RAW264.7
cells at 10 µM. The molecular docking with PI3K protein was also performed to understand
the inhibitory activity. This study provides valuable information for further development
of PI3K or NF-κB inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21010027/s1. The ITS sequence data of Penicillium sp. SCSIO
41413. Figures S1−24: 1H, 13C-NMR, HSQC, HMBC, 1H-1H COSY, HRESIMS, IR, and UV spectra of
compounds 1−2, 11. The physicochemical data of compounds 3−10, 12−16.
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