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Abstract: Peptic ulcer is a widespread disease, with a lifetime frequency of 5–10% among the general
population and an annual incidence of 0.1–0.3%. Ovothiol A is naturally produced from sea urchin
eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose
(5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A
doses. Molecular docking studies were used to examine the interactions between ovothiol A and the
H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice
volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST,
SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture
preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of
ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and
stabilization of fibroblast growth factors to promote gastric ulcers healing.
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1. Introduction

Peptic ulcer is a lesion of the digestive system caused by gastric acid that typically de-
velops in the stomach or proximal duodenum [1]. Peptic ulcer disease (PUD) is widespread,
with a lifetime frequency of 5–10% among the general population and an annual incidence
of 0.1–0.3% [2]. In 2019, there were nearly 8 million prevalent incidences of PUD [3].

PUD is due to a mismatch between defensive factors (mucus secretion, non-enzymatic
and enzymatic antioxidants, surface active phospholipids, blood flow, prostaglandins, and
cell renewal) and offensive agents such as (gastric acid, pepsin and reactive oxygen species
(ROS) [4]. However, the two most important factors that cause an imbalance between
the acid and the mucus are H. pylori infection, non-steroidal anti-inflammatory medicines
(NSAIDs), and a rise in alcohol and smoking misuse [5–9].

The commonly used proton pump inhibitors (PPIs) and histamine receptor type-2
antagonists have shown side effects and several medication interactions [10]. Therefore,
the need to face these challenges has encouraged research reports to explore new active
compounds from natural sources [11].

The incredible biodiversity of sea environment creatures contributed to the identifica-
tion of numerous new chemicals, the biological features, and technological applications of
which are being thoroughly researched [12,13]. More attention has recently been paid to
marine-isolated ovothiols (1-N-methyl-4-mercaptohistidine) from invertebrates, algae, and
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protozoa [14]. The three types of ovothiols (A, B, and C) differ in the nitrogen methylation
of the aminoacidic side chain (non-, mono- and di-methylated, respectively).

Ovothiol A was first found in some echinoderm’s eggs (for example, the sea urchin
Paracentrotus lividus) and in some mollusks and polychaetes biological fluids [15]. The
thiol group of all ovothiols on their histidine imidazole ring has exceptional antioxidant
characteristics [16–18]. Only the anionic thiolate form of thiols functions well as an electron
donor, and ovothiol A is almost totally present in this form, giving it its special natural
antioxidant capabilities. An in-vitro endothelial dysfunction model revealed hyperglycemic-
induced anti-inflammatory and antioxidant effects of ovothiol A’s disulphide form [15,19].

The present study aims to investigate the therapeutic potential of ovothiol isolated
from sea urchin eggs against an ethanol-induced peptic ulcer in rats.

2. Results
2.1. Molecular DFT Calculation of Ovothiol A

Figure 1 demonstrates ovothiol A’s optimized structures as the lowest energy configu-
rations. The dipole moment and the natural charges obtained from Natural Bond Orbital
Analysis (NBO) are shown on the active sites of oxygen, nitrogen, and sulfur atoms. The
MEP loosely or excess electrons) charged electrostatic potential in the molecule. Both bond
lengths and angles are shown in Table 1.
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Table 1. Selected optimized bond lengths (Å) and bond angles (◦) of ovothiol A.

Type of Bond Bond Length (Å) Type of Bond Bond Length (Å)

S1-C10 1.777 N6=C11 1.316
S1-H23 1.348 C7-C8 1.492
O2-C13 1.357 C7-C9 1.560
O2-H24 0.970 C7-H14 1.094
O3=C13 1.205 C7-H15 1.095
N4-C8 1.391 C8=C10 1.342

N4-C11 1.360 C9-C13 1.530
N4-C12 1.455 C9-H16 1.092
N5-C9 1.459 C11-H17 1.080

N5-H21 1.015 C12-H18 1.090
N5-H22 1.014 C12-H19 1.090
N6-C10 1.367 C12-H20 1.093

Type of Angle Angle (◦) Type of Angle Angle (◦)

C10-1-23 96.80 N5-C9-C13 116.4
S1-C10-N6 118.1 N5-C9-H16 108.6
S1-C10-C8 130.5 H21-N5-H22 107.0
C13-O2-24 107.3 C10-N6-C11 105.0
O2-C13-O3 122.5 N6-C10-C8 111.3
O2-C13-C9 113.1 N6-C11-H17 125.5
O3-C13-C9 124.4 C8-C7-C9 113.6
C8-N4-C11 106.9 C8-C7-H14 108.7
C8-N4-C12 127.1 C8-C7-H15 111.1
N4-C8-C7 125.0 C7-C8-C10 130.7

N4-C8-C10 104.3 C9-C7-H14 108.4
C11-N4-12 126.0 C9-C7-H15 108.4
N4-C11-N6 112.5 C7-C9-C13 108.0

N4-C11-H17 122.0 C7-C9-H16 107.2
N4-C12-H18 108.4 H14-C7-H15 106.3
N4-C12-H19 109.9 C13-C9-H16 105.4
N4-C12-H20 110.9 H18-C12-H19 109.5
C9-N5-H21 110.7 H18-C12-H20 108.4
C9-N5-H22 111.1 H19-C12-H20 109.7
N5-C9-C7 110.8

The computed total energy of ovothiol A is −986.465 Hartree, the highest occupied
molecular orbital (HOMO) energy is −5.6010 eV, the lowest unoccupied molecular orbital
(LUMO) energy is −0.8496 eV and the dipole moment is 6.9314 Debye. The higher total
energy negativity indicates compound stability. Also, the energy gap (Eg) = ELUMO −
EHOMO = 4.7514 eV, Figure 2 and Table 2. Many reactivity descriptors such as ionization
potential (I), electron affinity (A), Electronegativity (χ), chemical potential (µ), hardness
(η), softness (S) and electrophilicity index (ω), all derived from the HOMO and LUMO
energies, proposed to comprehend many reactivity-related features of chemical processes,
Table 2.

Table 2. Calculated energies and the properties of ovothiol A.

Property Ovothiol A Equation Ovothiol A

The total energy E (a.u.) −986.465 Eg = ELUMO−EHOMO (eV) 4.7514

EHOMO (eV) −5.6010 Ionization potential: I = −EHOMO 5.6010

ELUMO (eV) −0.8496 Electron affinity: A = −ELUMO 0.8496

Dipole moment (Debye) 6.9314 chemical softness: S = 1/2η 0.2104

Electronegativity: χ = (I + A)/2 3.2253 chemical potential: µ = −χ −3.2253

Chemical hardness: η = (I − A)/2 2.3757 Electrophilicity: ω = µ2/2η 2.1894
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Figure 2. HOMO and LUMO charge density maps of B3LYP/6-311G++ (dp).

2.2. Molecular Docking Interaction between Ovothiol A with 1AFC (PDB ID: 1AFC)

The free energy binding of ovothiol A’s to the active sites of the 1AFC receptor was
determined in the current investigation to be −4.3 kcal/mol, according to Table 3. The
stronger the binding, the more negative the binding energy (Table 3 and Figure 3).

Table 3. The Docking interaction data calculations of ovothiol A with 1AFC (PDB ID: 1AFC).

Receptor Interaction Distance (Å) * E (kcal/mol)

O2 OG SER 117 H-donor 2.91 (1.98) −2.6
O3 N VAL 31 H-acceptor 3.08 (2.12) −1.2

5-ring CG ARG 116 pi-H 3.54 −0.5
* The lengths of H-bonds are in brackets.
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Figure 3. The 2D and 3D molecular docking simulation studies of the interaction between ovothiol A
with 1AFC. Hydrophobic interactions with amino acid residues are shown with dotted curves.

2.3. Ulcer l Markers

The gastric juice volume and ulcer index were significantly elevated (p < 0.05) while the
pH was significantly reduced (p < 0.05) in the ulcer group compared to the control group.
However, the ovothiol A administration with both concentrations caused a significant
decrease (p < 0.05) in gastric juice volume and ulcer index compared to the ulcer group, as
shown in Table 4 and Figure 4.

Table 4. The curative potency of ovothiol A on the gastric ulcer markers in rats.

Groups pH Volume (mL) Ulcer Index

Control 5.80 ± 0.12 d 1.50 ± 0.37 a -

Ulcer 2.80 ± 0.21 a 4.83 ± 0.26 c 0.91 ± 0.05 c

Ovothiol A (250 mg/kg) 3.77 ± 0.13 b 3.08 ± 0.36 b 0.49 ± 0.03 b

Ovothiol A (500 mg/kg) 5.52 ± 0.18 c 2.96 ± 0.17 b 0.33 ± 0.04 a

Values are mean ± SEM (n = 6). Values with different superscript letters a–d are significantly different (p < 0.05).
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2.4. Markers of Oxidative Stress

Gastric MDA level was significantly increased (p < 0.05), while GSH and GST levels
were significantly reduced (p < 0.05) in the ulcer group compared to the control group.
Moreover, ovothiol A treatment significantly (p < 0.05) decreased MDA levels and elevated
(p < 0.05) GSH and GST levels compared to the ulcer group, as shown in Table 5.

Table 5. The curative potency of ovothiol on oxidative stress markers of ethanol-induced gastric ulcer
induced in rats.

Groups MDA
(nmol/g Tissue)

GSH
(mg/g Tissue)

GST
(U/g Tissue)

SOD
(U/g Tissue)

Control 1.27 ± 0.03 a 1.32 ± 0.05 d 0.53 ± 0.03 c 29.60 ± 1.13 c

Ulcer 2.31 ± 0.07 d 0.29 ± 0.01 a 0.11 ± 0.02 a 16.74 ± 1.03 a

Ovothiol A
(250 mg/kg) 1.84 ±0.05 c 0.49 ± 0.03 b 0.33 ± 0.04 b 21.34 ± 1.04 b

Ovothiol A
(500 mg/kg) 1.43 ± 0.03 b 0.63 ± 0.04 c 0.41 ± 0.05 b 27.13 ± 1.64 c

Values are mean ± SEM (n = 6). Values with different superscript letters a–d are significantly different (p < 0.05).

2.5. NO, PGE-2, IL6, and Cytochrome C

Table 6 showed significant ethanol-induced elevation (p < 0.05) in the cytochrome c,
PGE-2 and IL6 levels compared to the control group. The levels of the aforementioned
parameters were restored near the normal level by the administration of ovothiol A with
its two doses.

Table 6. The curative potency of ovothiol on Apoptosis and inflammatory parameters in Ethanol-
induced gastric ulcer in rats.

Groups Cytochrome C
(ng/mg Tissue)

IL-6
(pg/mg Tissue)

PGE2
(pg/mg Tissue)

NO
(µmol/g Tissue)

Control 1.65 ± 0.04 a 1.81 ± 0.08 a 3.17 ± 0.58 c 460.05 ± 15.78 c

Ulcer 2.77 ± 0.26 c 2.67 ± 0.28 c 1.97 ± 0.32 a 347.23 ± 11.91 a

Ovothiol A
(250 mg/kg) 2.26 ± 0.08 b 2.24 ± 0.11 b 2.42 ± 0.10 b 405.93 ± 13.17 b

Ovothiol A
(500 mg/kg) 2.06 ± 0.06 b 1.92 ± 0.08 a 2.92 ± 0.24 c 442.82 ± 19.92 c

Values are mean ± SEM (n = 6). Values with different superscript letters are significantly different (p < 0.05).
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2.6. Histopathological Analysis

The control group revealed a standard histological structure characterized by a long
tubular gastric gland (acini) in the mucosal layer that extended deep into the lamina propria
and was covered by simple columnar epithelium (Figure 5a). The gastric acini showed
the digestive enzyme-secreting zymogenic cells (chief cells) and the gastric acid-secreting
parietal cells (oxyntic cells). The submucosal layer showed the blood vessels, nerves
and ganglionated plexus within loose connective tissue. The muscular layer was well
developed, with serosal covering the outer surface of the stomach (visceral peritoneum).
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Figure 5. Stomach from control group (a) showing normal histological structure of stomach tissue
that consisted of mucous epithelium covering gastric acini (H&E stain). Stomach from ulcer group
showing destruction of the mucosal covering associated with extensive hemorrhage (b), and ex-
pansion of the submucosal layer with edema, and diffuse extensive hemorrhage (c). Stomach from
ovothiol A (250 mg/kg) treated group showing apparently normal gastric mucosa (d) with mild to
moderate submucosal edema and lowered number of mononuclear cells infiltration (e). stomach
from ovothiol A (500 mg/kg) treated group showing apparently normal gastric mucosa (f) and few
mononuclear cells infiltration with mild submucosal edema (g).
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In contrast, the ethanol in the ulcer group triggered a severe gastric injury (Figure 5b,c).
The mucosal layer showed severe alteration and loss of the epithelial cells with hemorrhages
and congested blood capillaries. The lamina epithelialis and the lamina propria were
infiltrated with inflammatory cells. Some examined areas presented severe necrosis of
the gastric acini with mononuclear cell infiltration. The submucosal layer was severely
expanded with the dispersion of the connective tissue by inflammatory edema and severely
dilated blood vessels associated with extensive hemorrhage.

The low dose (250 mg/kg) of ovothiol A reduced the histopathologic scores, attenu-
ating gastric damage, and inflammatory cell infiltration (Figure 5d,e) and decrease gastric
hemorrhage with architecture preservation of the gastric mucosa in other examined sections.

Rats received a high dose of (500 mg/kg) ovothiol resulted in the highest protection of
the gastric histological structure (Figure 5f,g). Few examined sections showed a reduction
of mononuclear inflammatory cells compared with the ulcer group and low dose ovothiol
treated group. Most examined sections revealed normal glandular gastric mucosal surface.
The total histopathological lesion score showed the peak value recorded by the ulcer
group that a significant difference from other experimental groups (Figure 6). The high
dose of ovothiol showed a better improvement and scored fewer histopathological lesions
compared with a low dose of the same drug.
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3. Discussion

Major complications such as hemorrhage, perforation, or stomach outlet obstruction
affects roughly 25% of people with peptic ulcer disease [3]. People worldwide are still
suffering from peptic ulcer complications and looking for safe and effective treatment. The
immense potential of marine natural products has been recently revealed by developments
in the discovery, approval, and therapeutic use of marine pharmaceuticals. This work
investigated the anti-inflammatory and antioxidant potential of ovothiol A extracted from
sea urchins against ethanol-induced gastric ulcers.

In the current study, ethanol administration increased gastric juice secretion and ulcer
index and decreased pH in rats. Acid secretion, oedema, haemorrhage, necrosis, and
inflammation all contributed to higher gastric juice volume and gastric ulcer index in the
ulcer group, as confirmed by the histopathological investigation. The mucous membrane
of the digestive tract easily absorbs ethanol. High ethanol concentrations would damage
the gastric mucosa and may cause hemorrhagic gastritis within 30 min [20]. Ethanol and
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its byproduct, acetaldehyde, can damage the gastric mucosa’s epithelial and vascular
endothelial cells [21–23]. Ovothiol A (250 and 500 mg/kg) showed a therapeutic effect
against gastric ulcers indicated by a significantly elevated gastric pH with decreased gastric
juice volume and gastric ulcer index.

Under typical physiological conditions, the body has a built-in system to maintain a
healthy balance between oxidation and antioxidation [24]. One of the main reasons why
gastric ulcers happen is because this system is out of balance [25]. Malondialdehyde (MDA)
is the major diagnostic for evaluating lipid peroxidation. In line with prior findings, the
administration of ethanol in rats resulted in a considerable elevation in gastric issue’s MDA
levels [26,27]. High ethanol intake produces substantial ROS, which react with membrane
lipids to produce lipid peroxides [28]. Several investigations have indicated that antioxidant
substances that scavenge free radicals prevent ethanol-induced stomach ulcers [26,29]. In
our study, the rat treated with ovothiol A (250 and 500 mg/kg) showed a decrease in MDA
levels which indicated the antioxidant activity of ovothiol.

According to our results, ulcer groups showed a significant decrease in rats’ antiox-
idant system (GSH, CAT, GST and SOD), which is considered the initial defense against
ethanol-induced free radical damage to gastric mucosal cells [30]. Because of the antioxidant
activity of ovothiol A [31] the gastric tissues restored the antioxidant system levels.

Prostaglandin E2 (PGE2) and nitric oxide (NO) are essential mediators for maintaining
gastric mucosal defense integrity and healing gastric ulcers [32]. In the current study,
ethanol caused a significant decrease in NO and PGE2 levels. NO is a vasodilator factor that
keeps the integrity of the gastric epithelial and mucus barriers by regulating blood flow [33].
Most importantly, NO is an important part of angiogenesis and tissue regeneration and
could help heal ulcers [34]. Also, several studies found that NO plays a protective role in
peptic ulcers and can speed gastric ulcer healing [35,36]. PGE2 is one of the endogenous
gastric mucosa protective factors by increasing the blood flow, enhancing mucus and
bicarbonate secretion, and making epithelial cells more resistant to stimuli [37]. Having
oxidative damage present, which causes prostaglandins to be converted into oxidation
products like 8-isoprostaglandin F2alpha, was thought to be responsible for ethanol’s
suppressive effect on gastric mucosal PGE2 level [38,39].

However, treatment with ovothiol A (250 and 500 mg/kg) increased NO and PGE2
levels that protect the stomach lining against ethanol-caused ulcers.

Interleukins are important regulators of the mucosal defense barrier [40]. There is
evidence that ethanol may stimulate the innate immune system, changing the levels of
inflammatory cytokines, including Interleukin 6 (IL-6) [41,42]. The current data demon-
strated ethanol-induced elevated levels of IL-6 in the gastric tissue that could activate
oxidative stress, drive neutrophils, lymphocytes, and phagocytes in the inflammatory areas
and create toxic metabolites and lysosomal enzymes, injuring the gastric mucosa [43]. Our
findings showed that ovothiol A treatment with different doses decreased the IL-6 level

Moreover, apoptosis is a key mechanism in multicellular organisms for maintaining
homeostasis and responding to environmental stimuli. The release of many substances
from mitochondria mediates apoptosis. The interaction of the pro-apoptotic protein’s
caspase-3 and -9 regulates the release of cytochrome c that may turn on or off apoptosis [44].
In the current study, ethanol administration increased cytochrome C levels in rats. It
was reported that ethanol stimulated the mitochondrial signaling pathway of apoptosis
in the gastric mucosa [45]. The release of cytochrome c was linked to ROS production
such as H2O2 [46,47]. In our study, ovothiol A treatment (250 and 500 mg/kg) decreased
the cytochrome C levels, indicating its effective gastroprotective activity. Furthermore,
Zhu et al. [48] reported that fibroblast growth factors (FGFs) binding to their receptors
more effectively if they are bound to sulfate. According to the current study, ovothiol A
promotes the healing of gastric ulcers by stabilizing FGFs to prevent denaturation in the
stomach’s acidic pH.
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4. Materials and Methods
4.1. Drugs and Chemicals

All solvents, chemicals and drugs were purchased from Sigma Aldrich Co. (St. Louis,
MO, USA).

4.2. Isolation of Ovothiol A from Sea Urchin Eggs

Ovothiol-A was isolated using the Russo et al. technique [49]. Prior to setting the
sea urchin on the water’s surface, we injected its eggs with about 1 mL of KCl. The
gathered sea urchin eggs were centrifuged at 2000 RPM for 10 min, and the supernatant
was discarded. The eggs were crushed and agitated for 12 h in a mixture of 20 mL 1 M
HCl and 80 mL ethanol. At 4 ◦C the homogenate was centrifuged for 15 min at 6000 RPM.
A rotatory evaporator was used to evaporate the ethanol (at 40 ◦C), and the supernatant
was then gathered. The lipids were eliminated from the mixture using 50 mL of diethyl
ether. Through the use of an alumina column, peroxide is eliminated from the solution.
The Dowex 50WX2 (1 cm × 22 cm) column was loaded with the acidic solution. Water,
0.1 M, 0.5 M, and 4 M HCl were used as elusions. The 4M fraction’s ovathiol was converted
to ovathiol disulfide after being exposed to air for 4 h at a pH of 8. Before repeating the
chromatography on the same Dowex column, the pH of the solution was brought down
to 2. A 40 ◦C oven was used to dry the crystals, which resulted in colorless, glassy solid
crystals. 3.5 mg of ovathiol-A is produced from each 10 g eggs. For characterization details
of ovathiol-A, please refer to the Supplementary Materials.

4.3. Ovothiol-A Molecular DFT Calculation

Using the Gaussian 09 programme, density functional theory (DFT) simulations were
performed to examine the equilibrium geometry of ovathiol A at the B3LYP/6-311G++ (dp)
level of theory.

4.4. Molecular Docking Interaction between Ovothiol A with 1AFC (PDB ID: 1AFC)

Utilizing the MOA2019 programme, molecular docking studies were conducted to
determine the potential binding modes for the receptor 1AFC’s most active location. The
proton-pump inhibitor drugs target 1AFC, which is gastric H+,K+ ATPase (the gastric
acid pump).

4.5. Experimental Animals

Twenty-four male Wister rats Rattus Norvegicus with similar age (± one week) and
weight (130–150 (±2 g) were used in the experiments. Steel-wire topped polycarbonate
boxes were used for animal housing and were bedded with wood shavings. The animals
were provided with a standard laboratory diet, and water ad libitum and kept under fixed
housing and handling conditions.

4.6. Ethical Consideration

The experimental techniques and practices of the study were approved by the Faculty
of Science Institutional Animal Care and Use Committee (IACUC) at Cairo University,
Egypt. Under ethical approval number CUIF3120, all of the experiments were done in line
with international rules for the care and use of laboratory animals.

4.7. Induction of Peptic Ulcer

All animals fasted 24 h before administration of ethanol (5 mL/kg of body weight,
orally) [50].

4.8. Experimental Design

The rats were divided into four equal groups (n = 6):

Group I (control group): Rats were administrated orally with dist. water (5 mL/kg), then
after one hour, dist. water was administrated again.
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Group II (ulcer group): Rats were administrated orally with ethanol (5 mL/kg), then after
one hour, dist. water was administrated again.

Group III (ovothiol A-500): Rats were administrated orally with ethanol (5 mL/kg), then
after one hour, ovothiol A (500 mg/kg) [31] was administrated.

Group IV (ovothiol A-250): Rats were administrated with ethanol 5 mL/kg orally, then
after one hour, ovothiol A (250 mg/kg) was administrated.

4.9. Animal Handling and Specimen Collection

Animals were euthanized using 3% sodium pentobarbital (100 mg/kg) overdose one
hour after the last treatment [51]. The stomach was then collected and blotted with filter
paper. For the biochemical study, a section of the stomach was frozen at −80 degrees Celsius.
Another section of the stomach was fixed before histological analysis by suspending it in
10% formal saline.

4.10. Ulcer Markers

After collecting the gastric juice by cutting open the stomachs, the samples were
centrifuged for 10 min at 3000 rpm to remove the solids from the liquid, and the supernatant
volume was measured. A pH meter was used to measure the pH level of the gastric juice.
Stomachs were inspected for ulcers using magnification (×10). Methods used to evaluate
the ulcer index included: Below 1 mm = 1 point, 1–2 mm = 2 points, and >3 mm = 3 points
for ulcer length. The ulcer index was calculated by taking the total number of points and
dividing it by 10 (lens magnification) [52].

4.11. Stomach Homogenate Preparation

10% w/v of stomach tissue was homogenized in ice-cold 0.1 M Tris-HCl buffers
(pH 7.4). The homogenate was centrifuged at 3000 rpm at 4 ◦C for 15 min, and the
supernatant was biochemically analyzed.

4.12. Biochemical Parameters

Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), nitric oxide
(NO) reduced glutathione (GSH), and glutathione-S-transferase (GST) were determined
following the manufacturer’s instructions. Interleukin 6 (IL-6), prostaglandin E2 (PGE2)
and cytochrome c were determined using the relevant enzyme-linked immunosorbent
assay (ELISA) kit following the manufacturer’s instructions.

4.13. Histopathological Analysis

For each rat, a small gastric tissue section was fixed with 10% neutral buffered formalin,
embedded in paraffin, cut into 5 µm thickness and stained with hematoxylin and eosin
stain. The specimens were examined under Olympus BX43 light microscope, and sections
were captured by Olympus DP27 camera connected to Cellsens dimensions software
(Olympus). A 0–14 range was used to score the microscopic damage according to [53,54],
where epithelial cell loss or the presence of inflammatory cells scored 0–3 and oedema in
the upper mucosa or hemorrhagic damage scored 0–4. The total microscopic score was
obtained by summating the four histopathological scores.

4.14. Statistical Significance

The statistical analysis was performed using SPSS for Windows (version 15.0). Data
were expressed in the form of means ± standard error of the mean (SEM). The one-way
analysis of variance (ANOVA) was used to perform within-group comparisons, and the
Duncan post hoc test was used to compare the group means. p values < 0.05 were considered
statistically significant.



Mar. Drugs 2023, 21, 25 12 of 14

5. Conclusions

The current study revealed that ovothiol A exhibited antiulcerogenic activity by
reducing gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, increasing gastric
juice pH, GSH, CAT, GST, SOD, and NO, and improving gastric mucosa architecture.
The therapeutic pathways of ovothiol A include scavenging free radicals, inhibition of
inflammation, regulation of apoptosis, and promotion of the healing of stomach ulcers by
stabilizing fibroblast growth factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21010025/s1, Supplementary Material: Characterization of
ovothiol A.
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