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Abstract: Alginate is an acidic polysaccharide mainly extracted from kelp or sargassum, which
comprises 40% of the dry weight of algae. It is a linear polymer consisting of β-D-mannuronic acid
(M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages, possessing various applications in the
food and nutraceutical industries due to its unique physicochemical properties and health benefits.
Additionally, alginate is able to form a gel matrix in the presence of Ca2+ ions. Alginate properties
also affect its gelation, including its structure and experimental conditions such as pH, temperature,
crosslinker concentration, residence time and ionic strength. These features of this polysaccharide
have been widely used in the food industry, including in food gels, controlled-release systems and
film packaging. This review comprehensively covers the analysis of alginate and discussed the
potential applications of alginate in the food industry and nutraceuticals.

Keywords: alginate; food hydrocolloid; food film packaging; health effects

1. Introduction

Alginate, discovered in the 1880s [1], is a linear polysaccharide produced by brown
algae and bacteria [2,3]. It is not only a biopolymer but also a polyelectrolyte that is
considered to be non-toxic, biocompatible, biodegradable, and non-immunogenic. Alginate
is an anionic copolymer, and its structure is depicted in Figure 1, which includes β-D-
mannuronic acid (M) and α-L-guluronic acid (G) linked by 1,4-glycosidic bonds [4,5]. It is
arranged in an irregular block-wise pattern of varying proportions of GG, MG and MM
blocks. The physicochemical properties of alginate are critically affected by the M/G ratio
and the length of each block [6]. The MM blocks form a β-1,4-glycosidic bond, making the
M block section presents a linear flexible structure, while GG blocks have α-1,4-glycosidic
bonds, introducing space steric hindrance around the carboxyl. For this reason, the G-block
segment provides a folded and rigid structural conformation that is responsible for the
significant stiffness of the molecular chain [6].

Alginate is known to form hydrogels in the presence of divalent cations. With divalent
cations, especially Ca2+, alginate can form a gel matrix. These features enable this polysac-
charide to be used to control-release certain food ingredients, bioactive compounds and
pharmaceutical materials for various products [7].

Alginate is a general name for water-soluble alkali metal salts [8]. Alginate is a
major constituent of the brown algae (mainly sargassum algae and kelp) cell wall. It takes
about 40% of the dry weight of algae [6]. Alginate is mainly extracted based on its high
solubility in alkaline solution and low solubility in water. Sodium carbonate solution is

Mar. Drugs 2022, 20, 564. https://doi.org/10.3390/md20090564 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md20090564
https://doi.org/10.3390/md20090564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-2596-8515
https://orcid.org/0000-0003-0225-6643
https://doi.org/10.3390/md20090564
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md20090564?type=check_update&version=1


Mar. Drugs 2022, 20, 564 2 of 15

used to dissolve alginate from the algae cell wall, and then precipitate it out via adjustment
of the pH value with acid [9]. The main species of algae used for alginate extraction
are Laminaria hyperborean, Macrocystis pyrifera, Laminaria digitata, Ascophyllum nodosum,
Sargassum spp., Laminaria japonica, Ecklonia maxima and Lessonia nigrescens [10]. Since there
is no modification group such as sulfate in brown alginate, there is no need to consider the
problem of modification groups dropping in the process of acid precipitation [8,9].
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Recently, the development of an alginate delivery system and its other application
in the food industry has attracted more and more interest. This review briefly introduces
the structure and functional properties of alginate, including food gels, controlled-release
systems, film packaging and potential application as functional foods. The purpose of this
paper is to provide reference for the design and manufacture of alginate-based nutraceutical
delivery systems and their direct application in health care products in the future.

2. Structure, Derivatization and Analysis

Alginate structure is illustrated in Figure 1 where there are blocks of residues along the
chain. There are homopolymeric regions of polyguluronic acid (PG) and polymannuronic
acid (PM), interspaced with hetero-polymeric regions with PM-PG residue mixtures (PMG).
Different brown algae produce different proportion and sequence of M and G residues,
which influence the molecular weight and physical properties of alginate [7]. These struc-
tures in alginate are the result of a unique biosynthetic pathway in which G residues are
generated from preformed polymers of mannuronic acid by a family of isoenzymes with
C-5 epimerase activity [11–13]. PM and PG can be separated by hydrolyzing alginate with
hydrochloric acid (HCl) at pH 2.85. At this pH, the soluble portion contains 80–90% M
residues, and the insoluble precipitate contains 80–90% G residues [14]. The content of G in
Sargassum is higher, while the content of M in kelp is higher. The M/G ratio in alginate is
not fixed. Even for the same seaweed, the proportion will change with different growth
years, picking seasons and locations [15].

For the primary structure, M and G differ only in the position of the carboxyl group
on the C5 site, but just because of this small difference, they have significant differences in
spatial structure and physical properties. The spatial structure of PG shows that monosac-
charide units are in the 1C chair conformation and are stabilized by hydrogen bonds
between intramolecular O2 and O6, while PM is a boat conformation and stabilized by
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hydrogen bonds between intramolecular O2 and O5, resulting in folded and rigid confor-
mations of PG and a linear, flexible and flat conformation of PM [16]. Therefore, the high
G content provides higher strength for alginate than high M content [17]. Additionally,
these structural differences lead to great differences in the acid hydrolysis resistance of
PM, PG and PMG fragments. PMG is easily hydrolyzed, while PM and PG are not easily
hydrolyzed, and the acid hydrolysis resistance of PG is obviously stronger than that of
PM [14].

Alginate is widely used in industry because of its ability to gel with calcium ions;
however, this property is also strongly influenced by its uronic acid composition, i.e.,
M/G ratio [18]. The M/G ratio was originally determined using two-step hydrolysis
of sulfuric acid at different concentrations and paper chromatography to separate M
and G. Haug et al. improved this method, which was to separate each fragment by
heterogeneous partial acid hydrolysis and fractional precipitation and then determine the
uronic acid composition of each fragment by complete acid hydrolysis [14]. However,
identifying blocks in this way is laborious and time-consuming, requiring a large amount of
material [19]. Based on the carbazole reaction, which can give very different color intensities
for mannuronic and guluronic acids [20], Knutson et al. established a method to determine
the M/G ratio under two different reaction conditions, and this method worked well on
mixtures of mannuronic and guluronic acids [21,22]. However, in the specific application
of M/G ratio detection of alginate, the content of G is consistently overestimated, which
may be because carbazole reagents react differently from acids in polymer and monomer
forms [18]. The determination of the M/G ratio by nuclear magnetic resonance (NMR)
spectroscopy after alginate hydrolysis has improved substantially in terms of time and
material requirements [18,23,24], but it is still not fully suitable for routine screening of large
numbers of samples and spectra often needed to be acquired at high temperature to decrease
the viscosity of the alginate solution [25,26]. Morris et al. found that the circular dichroism
(CD) spectra of alginates showed a peak at 200 nm, and a trough at 215 nm, whose relative
magnitudes vary systematically with composition [19]. Based on this, they established a
simple equation to determine the relative amounts of M and G from the observed ratio of
peak height to trough depth. This method can obtain a reliable compositive estimate from
1 mg alginate, and the results obtained are consistent with those obtained by the hydrolysis
and NMR analysis of the same sample [19]. For high sensitivity analysis of the M/G ratio
of alginate and its derivatives, which were deeply hydrolyzed and then performed on high-
performance liquid chromatography (HPLC) [27], anion-exchange liquid chromatography
(AELC) [28], capillary electrophoresis (CE) [29], gas chromatography (GC) [30] and high-
performance anion-exchange chromatography (HPAEC) combined with using pulsed
amperometric detection for separation-based analysis were performed [26]. These methods,
however, need to hydrolyze the polysaccharide samples and cannot take into account the
recovery, or require derivatization after hydrolysis of polysaccharides to monosaccharides.

Alginate is a kind of hydrophilic polysaccharide, which can be modified into am-
phiphilic or hydrophobic molecules by derivation of hydroxyl and carboxyl groups. In
general, the derivatization of alginate occurs at the -OH position (C-2 and C-3) or -COOH
(C-6) [17]. The modification of the carboxyl group in the C6 position of alginate is usually
through esterification or amino reaction to introduce long alkyl groups or fatty acids, which
makes alginate become amphiphilic molecules [31,32]. On the other hand, the hydroxyl
group can be modified by sulfation [33,34], phosphorylation [35,36] and selenization [37–40]
to improve the bioactivity of alginate. Due to the distribution of a large number of hydroxyl
and carboxyl groups in the main chain of alginate, it can be easily chemically modified
to improve its characteristics. Although a lot of work has been done on the synthesis of
alginate derivatives, there are still many potential pathways to be studied. Meanwhile, the
application of sodium alginate derivatives in various fields still has great prospects.
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3. Traditional Application in Food
3.1. Hydrocolloidal Gel

Hydrocolloid gel particles have potential application value in the food, chemical and
pharmaceutical industries. Alginate gel particles with the advantages of good biocompat-
ibility, non-toxic, biodegradable, low price and simple production, are one of the most
widely used gel particles at present [7]. Also, they are particularly valuable for encapsulat-
ing applications, protecting cells, DNA, nutrients and microorganisms, and also enabling
the slow release of flavors, minerals and drugs by encapsulating in gel particles [41]. Im-
portantly, it has been determined that the compound loaded in Ca-alginate gel particles
does not adversely affect its flavor release during consumption [42]. The application and
limitation of alginate-based hydrocolloidal gels was summarized in Table 1.

3.1.1. Ionic Gel

Alginate has the ability to form an ionic gel in the presence of multivalent cations,
which is widely utilized in the encapsulation of active substances in the food industry. The
binding of alginate with divalent cations has high selectivity, and the affinity of alginate to
cations is Mn < Zn, Ni, Co < Fe < Ca < Sr < Ba < Cd < Cu < Pb, which depends directly on G
content in the alginate [43]. This is because in the formation of gels, it is mainly G that binds
to divalent cations, and the mechanism is the dimerization of G, resulting in a tightly bound
polymer whose structure forms an “egg-box” shaped junction region [7]. Alginate with
high G content can format gels which are strong and brittle, with good thermal stability,
while alginate gels with high M content are weak and more elastic, with good freeze-thaw
properties [7,17,44]. In practical applications, considering toxicity and other reasons, the
calcium ion is the most widely used ion to prepare the alginate gel (Ca-alginate gel).

The methods of Ca-alginate gel particles formation include external gelation or internal
gelation. The main difference is that the Ca2+ is introduced into alginate polymers in
different ways [7]. In the internal gelation, alginate exposure to Ca2+ was controlled
to achieve uniform distribution of alginate in hydrogel. Gelation occurs simultaneously
anywhere in the alginate solution, resulting in a uniform hydrogel structure. First, insoluble
calcium salt such as CaCO3 or CaSO4 are added to a solution of sodium alginate and
extruded into oil [45]. Acid is then added to acidify the mixture, releasing Ca2+ from these
compounds. This process can be achieved either immediately, by direct addition of glacial
acetic acid [45,46], or in a controlled fashion using D-glucono-d-lactone [46–48]. In the
external gelation method, Ca2+ is diffused from a region of higher concentration into the
interior of alginate. In the outermost layer of the hydrogel, the concentration of Ca2+ is
high, which enables the alginate to gel rapidly. Ca-alginate gel produced by this method is
inhomogeneous, with high Ca2+ and alginate gradients near the gel surface that decrease
as the core is approached [7,46].

Puguan et al. compared the structure, physical and chemical properties and diffu-
sion behavior characterization of calcium alginate gel prepared by these two methods
in detail [49]. The results showed that the Ca-alginate gel particles synthesized by the
internal gelation method have looser structure and larger pore size than those synthesized
by the external gelation method. As a result, vitamin B12 diffused faster in the gel particles
prepared by the internal gelation method [49]. Additionally, it was found that (I) the Ca2+

concentration was the decisive factor in gel formation, (II) the loss of weight and volume
were effective because of water removal, (III) Na+ acted as the competitor with Ca2+ and
(IV) the pH values controlled the gel formation by regulating alginate dissociation and cal-
cium complexation in Ca-alginate gel particles prepared by external gelation method [49].
Temperature also has an influence on gel formation. Jeong et al. reported that lowering the
gel temperature can slow down the diffusion rate of Ca2+ in the Ca-alginate gel particles,
making the internal structure of Ca-alginate gel particles more regular and improving
the rupture strength of the gels [50]. In the thermal treatments, the water loss promoted
the formation of a dense, porous structure in the gels, which would improve the fracture
strength of the Ca-alginate gel particles [51]. However, alginate gel particles tend to harden
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after drying, which limits their application. A recent study found that the addition of
glycerol can stabilize the gel network structure and improve the tolerance of gel particles by
hydrogen bonding with alginate [52]. However, a major limitation of calcium-alginate gels
is that they become unstable in the presence of calcium chelators such as citrate, phosphate,
carbonate and lactate [7].

Diffusion characteristics studied showed that the concentration of alginate and Ca2+

did not affect the diffusion of solutes into Ca-alginate gel particles with molecular weight <
20,000 Da [53]. However, the study on diffusion coefficient during the release of vitamin
B12 showed that the diffusion coefficient of vitamin B12 decreased slightly with the increase
of alginate concentration, and the lower the calcium concentration, the higher the release of
vitamin B12 [53]. Lopez-Sanchez et al. reported that the Ca-alginate gel particles with high
concentrations sugar (glucose:fructose, >60%) were characterized by less connectivity and
open network aggregation chains in gastric fluid. The reason might be that the presence of
high sugars as co-solute results in less alginate chain extension and reduced connectivity of
the calcium alginate network. This swelling and shrinkage of gels influenced the release
of sugars from Ca-alginate gel particles. While the sugar content did not exceed 30%
(wt), the release mechanism from Ca-alginate gel particles was similar to the diffusion
driving mechanism, suggesting that Ca-alginate gel particles can be used as a carrier of
low molecular weight sugars (sugar < 30%) without blocking the release of sugars in the
digestive tract [54].

In food applications, Ca-alginate gel particles used to encapsulate plant polyphenols
could improve the functionality and stability of polyphenols in food products. As reported
by Stojanovic et al., Ca-alginate gel particles could effectively prevent the degradation of
active substances by encapsulating the Thymus serpyllum L. aqueous extracts, and there
was no chemical interaction between the active substances and the alginate. In addition,
the encapsulation efficiency could be up to 80% [55]. Similar studies on the encapsulation
of lemon balm extracts by Ca-alginate gel particles showed that Ca-alginate gel particles
could maintain the antioxidant activity of lemon balm extracts, and there was no chemical
interaction between lemon balm extracts and the alginate, indicating the fitness of alginate
for loading natural antioxidants [56]. In order to achieve efficient and sustained release of
catechin, Kim et al. prepared Ca-alginate gel particles loaded with catechin by emulsifying
gel method using sunflower seed oil as raw material. The continuous release of catechins
under acidic conditions was determined, suggesting that Ca-alginate gel particles by
emulsion gelation method are an effective catechin transport system [57]. However, this
only allows catechins to be released mostly in the stomach and does not allow catechins
to enter the gut. Ca-alginate gel particles also can be used to encapsulate probiotics. Ca-
alginate gel particles containing Lactobacillus rhamnosus and Lactobacillus acidophilus were
prepared by a novel impinging aerosols method, with the particle size below the limits of
sensory detection. This particle could provide some protection for these probiotics in high
acid and bile environments [58]. On the other hand, Petzold et al. prepared the Ca-alginate
gel particles loaded with liquid smoke flavoring using the dripping method, and the load
capacity reached above 96%. Importantly, it could release several volatile compounds
while the particles heated [59]. Ca-alginate gel particles also could be used to immobilize
D-limonene, the major flavor compound of citrus oil, to maintain the thermal stability of
D-limonene [42].

In foods, in order to minimize the powdery or grainy sensation found in foods such
as yogurt and ice cream, the average diameter of gels used should ideally not exceed
30 µm [60]. This allows food manufacturers to increase the number of bioactive ingredients
in their products while maintaining their original taste and texture. Therefore, in food
production, the size of most reports about Ca-alginate gel particles is less than 30 µm.

3.1.2. Acidic Gel

Since the dissociation constant (pKa) of M and G residues are 3.38 and 3.65, respectively,
this causes alginate to be negatively charged over a wide pH range. When the pH value
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of the solution falls below the pKa of the residues, alginate in the solution could form
gels spontaneously [61]. Two forms of colloid can be formed by adjusting the rate of pH
value reduction in alginate solution. When the pH value of the solution decreases rapidly,
alginate molecules will precipitate in the form of aggregation, while when the pH value
decreases slowly and steadily, continuous alginate bulk gel will be formed [62,63]. Unlike
the ionic gel, the acid gel of alginate is steadied by hydrogen bonds, and M residues are
also involved in the formation of gels [64]. The similarity is that gel strength is related to
G residue content in the polymer chain [63]. The low pH required for colloid formation
makes the acid gel of alginate difficult to use in the food field [7]. However, it can be used
as an antacid to relieve gastric reflux and heartburn [65,66].

3.1.3. New Emulsion Gel

Ca-alginate gels are pH sensitive and are often used to construct core-shell structures,
but they are very unstable in the gastrointestinal tract. Therefore, using Ca-alginate gel as a
delivery system to load nutrients or active substances could cause most of the nutrients or
active substances to be released in the stomach, exposing them to strong acid conditions
and causing damage. This delivery system cannot guarantee the smooth passage of the
nutrients or active substances loaded in the gels into the gut. At present, researchers
have not only used alginate to prepare gels but also introduced some new substances,
including but not limited to protein and polysaccharides, to enhance colloidal properties.
Lin et al. introduced the soy protein isolate into the Ca-alginate gels-based emulsion
and found that the soy protein isolate could improve the properties of the emulsion,
including morphological properties, shrinkage, water loss and elasticity [67]. They also
found that adding a low concentration of soy protein isolate-stabilized emulsions into
alginate solutions could produce a more stable emulsion than adding alginate solutions
into soy protein isolate-stabilized emulsions with mild stirring [68]. A similar study showed
that casein and whey protein isolate also could improve the properties of Ca-alginate-based
emulsion gels [48,69]. However, the viscosity of the Ca-alginate gels-based emulsion after
introducing whey protein isolate was higher than that of the emulsion after introducing
soy protein isolate. The particle size distribution of droplets of the emulsion introduced
whey protein isolate was smaller than that of emulsion introduced soy protein isolate, as
well as the flocculation phenomenon [70]. Similar to the introduction of soy protein isolate,
the introduction of whey protein isolate also can prevent the emulsion from losing water
during the gel process [67,70]. Importantly, the presence of whey protein isolates and soy
protein isolate resulted in a higher shrinkage rate and Young’s modulus change rate of
emulsions during in vitro gastric digestion, and delayed lycopene release of emulsions
during in vitro intestinal digestion [70]. A new core-shell structure (sporopollenin exine
capsules as the core and Ca-alginate (Alg)/carboxymethylpachymaran (CMP) gel as the
shell) was developed to protect probiotics, both to improve the storage and lyophilization
stability of probiotics and to achieve sustained release in the gastrointestinal tract [71].

Furthermore, the induction of the protein and other substances into the alginate-based
emulsion gels can improve the stability of an active substance or nutrient loaded in the
gels. Chen et al. reported that the emulsion gels can protect both lipophilic and hydrophilic
bioactive substances, while those bioactive substances coated with oil droplets are more
likely to be retained during heating [47]. Simultaneous encapsulation of two bioactive
substances (Epigallocatechin gallate and β-carotene) in whey protein isolate/ Ca-alginate-
based emulsion gels can produce synergistic effects and improve their chemical stability [47].
A double cross-linked emulsion gel with a dense mesh structure and high viscoelasticity
was prepared by cross-linking zein with transglutaminase and alginate with the calcium
ion. By comparing the effects of gels on the photostability and bio-accessibility of co-loaded
polyphenols (curcumin and resveratrol), it was found that double crosslinked emulsion gels
had higher photostability and bio-accessibility than single crosslinked emulsion gels [72].

Ca-alginate gel particles can also be used to prepare low-fat mayonnaise and other
similar emulsions [73]. Yang et al. prepared a type of thixotropic and viscoelastic emulsion
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gel by using alginate and konjac glucoman, which showed good thermal and freeze-thaw
stability. Moreover, no oil droplets coalescence was observed after the emulsion was heated
at 100 ◦C for 30 min or frozen at −18 ◦C for 24 h. These results suggested that konjac
glucoman/Ca-alginate gel emulsions system is expected to provide a template for the
design of low-fat mayonnaise food emulsions [74]. Yang et al. also prepared an oil-in-water
emulsions through electrostatic complexation between alginate and egg yolk proteins at
acidic pH (<5.0), and the emulsion gel products showed good viscoelasticity, thixotropy
and were comparable to 75% oil full fat mayonnaise products. To obtain a good sensory
profile, vinegar was used for condiments added into the products [75]. These studies may
contribute to the decrease in overconsumption of fatty foods in humans and thus reduce
the incidence of chronic diseases in humans.

3.2. Film Packaging

Environmentally safe and biodegradable natural polysaccharide materials are a new
type of film packaging, mostly made from extracts of by-products of fruit and vegetable
processing, which not only maximizes the value of fruit and vegetables, but also reduces
waste and improves the environment [76]. Alginate has unique colloidal properties, in-
cluding thickening, stabilization, suspension, film formation, gel formation and emulsion
stabilization. This allows films made from alginate to be strong and resistant to oil and
grease [77], but to have poor water resistance due to their hydrophilicity [78]. Therefore,
alginate is generally mixed with other biopolymers to improve the mechanical properties of
the films. The application and limitation of alginate-based film was summarized in Table 1.
Ismillayli et al. reported that the carboxyl group of alginates and the ammonium group of
chitosans can have electrostatic interactions. Under the same thickness, the tensile strength
and resistance to pH changes of the alginate-chitosan film were higher than that of natural
alginate film and chitosan film. In addition, the alginate-chitosan membrane has good
antibacterial potential against Staphylococcus aureus and Escherichia coli [79]. Reyes-Avalos
et al. reported that alginate-chitosan coating is an excellent post-harvest technology for
preserving not only the organoleptic and sensory properties of figs during cryopreservation
but also their bioactive constituents by modifying the internal atmosphere of figs [80,81].

The complex film prepared by alginate only or with other polymers combined with
some substances with antibacterial and antioxidant activities not only has good mechanical
properties but also has some special bio-activities. For example, Gelatin–alginate film
containing 1.5% oregano essential oil could effectively delay bacterial growth on rainbow
trout (Oncorhynchus mykiss) slices, including lactic acid bacteria, Pseudomonas spp. and
Enterobacteriaceae [82]. While the gelatin-alginate film was prepared by incorporating
tea polyphenols, not only were the mechanical properties of the films improved, but their
antioxidant activity also improved [83].

Addition of vitamin C to the alginate-based edible film decreased the tensile strength
of the film, but it made the film more stable, and it could be stored at refrigeration in the
dark for up to five months [84]. A new polysaccharide composite film packaging with good
tensile strength and elongation at break was prepared from citrus pectin and alginate. After
being crosslinked with calcium chloride, the water solubility of the film decreased, and
the thermal stability increased. The addition of pterostilbene as an antioxidant reduced
the values of tensile strength and elongation at break, but gave better water resistance and
oxidation resistance, showing that this film could be utilized as an excellent antioxidant
packaging material in fruit and vegetable preservation [76]. The addition of epigallocatechin
gallate into alginate and carboxymethyl cellulose prepared edible films could improve the
tensile strength of the edible films and reduce their elongation at break, and also showed
strong antioxidant activity in fatty foods [85].

Alginate films incorporated with lemon-grass oil and glycerol, which acted as a
natural antimicrobial agent and plasticizer, respectively, are also effective in inhibiting the
growth of Escherichia coli [78]. Adding AgNPs to alginate-based edible film improved the
tensile strength and elongation at break, and the growth inhibition rate of alginate-based
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edible film was higher than 79% in all strains [86]. Adding hawthorn berry (Crataegus
pinnatifida) extract [87], mulberry (Morus australis) leaf extract [88] or essential oils [89]
to alginate-based edible film made not only similar mechanical property improvements
and antibacterial effects but also can improve the sensory sensation of foods [90]. In films
prepared from alginate/pullulan and capsaicin, with an increase of capsaicin content, the
light transmittance, elongation at break and moisture content of the films decreased, while
the tensile strength, permeability and surface contact angle increased. In addition, the film
has good antibacterial performance against Escherichia coli and Staphylococcus aureus and
has achieved good results in apple protection [91].

Alginate is widely found in seaweed, so the alginate-based film has the advantage of
low cost. Although the alginate-based film has poor water resistance, its compatibility with
other polysaccharides can ameliorate this shortcoming. Furthermore, the addition of some
active substances into the film endows the film with good antibacterial and antioxidant
activities, thus extending the shelf life of food. Up until now, there have been few studies
on the application of AOS in the preparation of edible films, possibly due to poor colloidal
properties. However, AOS have good biological activity and may play certain functions in
other polysaccharide-based films.

Table 1. The type of alginate-based materials.

Alginate-Based Materials Application Limitation Reference

Hydrocolloidal gel
Ionic gel

Encapsulation of active
substance in the

food industry

1. Tend to harden
after drying

2. Unstable in the presence of
calcium chelators

[42–59]

Acidic gel An antacid to relieve gastric
reflux heartburn

Low pH required for colloid
formation [7,65,66]

Emulsion gel

1. Encapsulation of active
substance.

2. Low-fat mayonnaise and
other similar emulsions

Not mentioned [67–75]

Film
Made from

alginate only Packaging Poor water resistance [77,78]

Made from alginate
and other biopolymers Packaging Not mentioned [78–91]

4. Potential Application as Functional Foods of Alginate
4.1. Reducing Obesity and Resistance to Diabetes

Obesity has become a pandemic affecting a third of the world’s population, which
brings high risk of type 2 diabetes to those obese people [92]. Currently, there are not
many effective and safe anti-obesity drugs on the market. An emerging trend is to use
natural ingredients from food to combat obesity. Alginate has been developed as a food
supplement for energy restriction, which can improve weight loss in obese subjects. This
has been shown in a 12-week dietary intervention project [93]. It might be that alginate
can form both acid and ionic gels in the stomach, leading to a decrease in the activity of
digestive enzymes such as pancreatic lipase and subsequent satiation [94–96]. Similarly,
Guo et al. reported that the calcium carbonate-containing sodium alginate system formed
a gel in stomach conditions, and the formation of the gel lowered the dextrin and whey
protein isolate (WPI) hydrolysis rate in vitro [97]. They also found that long-term feeding
containing sodium alginate in the diet could reduce food intake, body weight, apparent
protein digestibility and blood glucose in rats, indicating that alginate could potentially
be effective in the treatment of obesity [97]. However, another study has reported that
sustained consumption of alginate over a short period of time (10 days) has been proven to
have no effect on gastric motor functions, satiation, appetite or gut incorporation, raising
doubt on whether short-term alginate treatment is effective in weight loss [98]. In a high-
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fat diet with streptozotocin (STZ) injection-induced type 2 diabetic mice, alginate from
Sargassum fusiforme can effectively reduce blood glucose, TG and TC, and can increase HDL-
c and improve glucose tolerance. Furthermore, administering alginate to diabetic mice
has a moderate effect on adipose hepatic, skeletal muscle and heart tissues’ pathological
changes. It also can diminish oxidative stress [99].

4.2. Regulation of Gut Microbiota

It has been shown that gut microbes can affect many diseases, including food aller-
gies [100], AD [101], and obesity [102,103]. There is much evidence that alginate and AOS
interact with intestinal microbes, which may affect a number of diseases. As mentioned
above, oral alginate can restore the ovalbumin-induced gut microbiota disorder in a mouse
model of egg allergy, recovering the richness and diversity of gut microbial groups [104].
Alginate from Sargassum fusiforme can significantly increase benign bacteria including Lac-
tobacillus, Bacteroides, Akkermansia Alloprevotella, Weissella and Enterorhabdus, and
significantly decrease harmful bacteria such as Turicibacter and Helicobacter in a type 2
diabetic mouse model. Meanwhile, alginate can significantly decrease branched-chain
amino acids (BCAAs) and aromatic amino acids (AAAs) in the colons of type 2 diabetic
mice, indicating a positive benefit of alginate in type 2 diabetes [99]. Huang et al. reported
that alginate extracted from Laminaria increased the abundance of beneficial bacteria but
decreased pathogenic bacteria in the intestine of immunosuppressed BALB/c mice induced
by cyclophosphamide. Additionally, alginate treatment can reverse intestinal mucosal
injury and increase intestinal permeability by upregulating the expression of tight junction
proteins, indicating that alginate may be able to enhance immunity [105]. Ejima found that
diets with alginate could suppress HFD-induced metabolic syndrome (MetS) via an effect
on the gut microbiota, including changing the gut microbiota composition and increasing
the abundance of Bacteroides [106]. Similarly, alginate from Laminaria japonica could also in-
crease the abundance of Bacteroides after fermenting with fresh fecal samples from healthy
volunteers [107]. Al-Najjar et al. found that when Wistar rats were fed calcium-crosslinked
alginate aerogel for 14 days at a dose of 250 mg/day, the Clostridia and Bacteroides groups
increased and continued to increase after aerogel feeding. Other gut bacteria groups, in-
cluding Erysipelotrichia and Candidatus saccharibacteria, increased during the aerogel
administration, and then decreased one month afterwards [108].

Generally, alginate is not digested in the upper digestive tract. When it reaches the
colon, it can be used by gut microbes, which digest it into short chain fatty acids (SCFAs),
which promotes the growth of beneficial bacteria and inhibit harmful bacterial growth [109].
In addition, in obesity and type 2 diabetes, SCFAs in the colon can maintain the health of
the host and prevent colonic diseases [110].

4.3. Immunomodulatory and Antitumor Activities

Receptors on surface of innate immune cells are important for recognizing pathogens
and initiating immune responses. They play essential roles in the regulation and activation
of complement and phagocytosis, initiation of pro-inflammatory signaling pathways, and
induction of apoptosis [111]. Kurachi et al. compared the abilities of alginate polymers with
different Mw and M/G rations on tumor necrosis factor (TNF)-α production in RAW264.7
cells, confirming that alginate treatment could induce TNF-α release in RAW264.7 cells [112].
Yang et al. found that alginate caused innate immune responses in macrophage-like cells
(RAW264.7 cells), inducing the production of cytokines, such as interleukin (IL)-1β, IL-6,
IL-12 and TNF-α with time and dose-dependence, through nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) signaling pathway activation [113]. Further
study showed that alginate can not only activate the NF-κB signaling pathway but also
the p38 mitogen-activated protein kinase (MAPK) signaling pathway by Toll-like receptor
4 (TLR4) activation in RAW264.7 cells, and then enhance the intracellular phagocytosis
of gold nanoparticles, fluorescent microspheres and immunoglobulin G (IgG)-opsonized
Staphylococcus aureus [114]. Alginate also can attenuate the systemic anaphylaxis response
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in compound 48/80-induced Wistar rats via the suppression of NF-κB activation [115]. In
addition, the alginate aqueous solution (Mw = 108 kDa) also exhibited non-Newtonian char-
acteristics, including viscoelasticity and shear-thinning behavior, which may be a significant
factor affecting the ability of the gastrointestinal tract to contact and take in ovalbumin, the
main allergen that causes egg allergy. In ovalbumin-induced mouse models of egg allergy,
oral alginate aqueous solutions can effectively attenuate the occurrence of allergic reactions,
decrease the histamine IgE and IL-4 levels in serum, increase the level of IFN-γ in serum,
increase the number of Treg cells in spleen tissues and inhibit differentiation of T-helper
type 0 (Th0) cells into Th2 cells [116]. Further research showed that oral alginate can restore
the ovalbumin-induced gut microbiota disorder, recovering the richness and diversity of
Alloprevotella, Bacteroides, Parabacteroides and Rikenellaceae_RC9_gut_group [104].

Cancer is the leading cause of death in economically developed countries and the
second most common cause of death in developing countries. More than 30 years ago,
Fujihara et al. reported the alginate showed antitumor activity against various murine
tumors, such as Sarcoma-180 and Ehrlich ascites carcinoma tumors [117] and found that
the higher content of M block in alginate may correlate with higher antitumor activity [118]
and that the antitumor activity of alginate could be improved by adding Ca2+ [119].

5. Conclusions and Prospects

Alginate is a natural and safe food additive. Compared with other seaweed polysaccha-
rides, alginate has excellent functional properties such as ion cross-linking, pH sensitivity,
biocompatibility and biodegradability, which has been widely applied in the food and
nutraceutical fields (Figure 2). Alginate is also the only polysaccharide that naturally
contains carboxyl groups in each constituent residue. It can be used to produce food
colloids and food films. In addition, it has a variety of good biological activities, providing
opportunities for it to be developed into functional foods and nutraceuticals. Although
research progressions are made toward the production and application of alginate in the
food and nutraceutical industries, more investigations are still required to improve our
understanding of its bioactivities and potential usages. The improved analysis methods
and safety knowledge are the foundation for its development in functional foods or nu-
traceuticals. Further research in the above area will certainly provide an improved basis for
the future production and application of alginate.
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