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Abstract: Five new alkaloids have been isolated from the lipophilic extract of the Antarctic tunicate
Synoicum sp. Deep-sea specimens of Synoicum sp. were collected during a 2011 cruise of the R/V
Nathanial B. Palmer to the southern Scotia Arc, Antarctica. Crude extracts from the invertebrates
obtained during the cruise were screened in a zebrafish-based phenotypic assay. The Synoicum sp.
extract induced embryonic dysmorphology characterized by axis truncation, leading to the isolation
of aminopyrimidine substituted indolone (1–4) and indole (5–12) alkaloids. While the primary
bioactivity tracked with previously reported meridianins A–G (5–11), further investigation resulted
in the isolation and characterization of australindolones A–D (1–4) and the previously unreported
meridianin H (12).

Keywords: ascidians; indole alkaloids; zebrafish; meridianins

1. Introduction

Marine invertebrates have been the source of a multitude of bioactive compounds
in recent years, with interest drawn especially to sponges and tunicates [1–3]. Tunicates
can be found in both shallow and deep-water habitats, and due to their extensive diver-
sity, they can potentially be an important resource for biodiscovery [4,5]. Furthermore,
only a small number of deep-water tunicates have been analyzed chemically due to the
difficulties in accessing deep-sea habitats. Most of the compounds isolated from tunicates
are nitrogen-containing, with the most common being aromatic alkaloids and macrocyclic
metabolites [6–10].

Species of the genus Synoicum have been found in both shallow and deep-water around
the world [11]. Most species of Synoicum spp. that have been studied chemically are from
tropical shallow waters and only a few are from cold water habitats [9,10,12,13]. The existing
literature shows that this genus of ascidians produce a variety of secondary metabolites,
which are structurally diverse and include, but are not limited to, alkaloids, peptides,
and polyketides [14–17]. These secondary metabolites have shown anti-inflammatory,
anti-microbial, and cytotoxic activity [10,14–18].

Most marine secondary metabolites are from shallow tropical and temperate waters
due to the ease of access [19–21]. In contrast, less than 3% of the reported organisms are
from polar habitats, as they were once believed to lack biodiversity [19,22,23]. Antarctica is
one of the polar environments that in recent years has been increasingly attracting interest
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and has been the source of multiple bioactive metabolites. The two major contributors
to Antarctica’s biodiversity are the Antarctic Circumpolar Current, which has functioned
as a barrier creating biogeographic isolation of the species found there, and periods of
glaciation, which have periodically separated benthic populations in refugia, resulting in
speciation and/or the generation of different phenotypes within the same species [24,25].

Secondary metabolites from Antarctic invertebrates have seemingly co-evolved with
new phenotypes [26], resulting in new and novel scaffolds that have often demonstrated
activity in various assays modeling human disease. Zebrafish are an established in vivo
platform for disease modeling and drug discovery, and are valuable screening tools for a
variety of indication areas including neurological, cardiovascular, metabolic, and infectious
diseases and cancer [27–29]. Zebrafish are also widely used for toxicity analysis of small
molecules, with zebrafish-based assays enabling high-throughput in vivo screening for both
drug-induced organ toxicity and developmental toxicity [30,31]. Advantages of zebrafish
include their genetic and physiological similarities with humans, and the small size and
rapid ex utero development of their embryos and larvae, with which most screens are
performed. Over the past decade, zebrafish have also proven their utility for biodiscovery
(identification of bioactive natural products), in particular for bioassay-guided isolation
from complex extracts [32–35]. More recently, zebrafish assays have been used for marine
biodiscovery [36].

In our continuing search for new bioactive compounds from cold-water habitats, an
extract of the tunicate Synoicum sp. collected in Antarctica was screened in a phenotypic
zebrafish assay [37]. This bioassay utilizes the rapid and ex vivo development of zebrafish
embryos to enable monitoring of phenotypic changes caused by extracts, fractions, and
compounds of interest. Incubation of developing zebrafish embryos with the extract from
Synoicum sp. induced a distinct embryonic dysmorphology characterized by the truncation
of the anterior–posterior axis. Synoicum sp. extract-treated embryos exhibited truncation
of the trunk and tail and overall developmental delay, indicating the potential involve-
ment of multiple signaling pathways known to be important for embryonic development
and anterior–posterior axis specification [37], therefore prioritizing this extract for further
investigation. In this paper we report the isolation of four new indolone alkaloids, aus-
tralindolones A–D (1–4), as well as the isolation of a new indole alkaloid, meridianin H (12),
and the previously reported meridianins A–G (5–11) (Figure 1). The isolation was guided
using 1H NMR spectroscopy and the zebrafish bioassay. While the bioactivity was tracked
with meridianins, the australindolones A–D (1–4) were obtained as new chemotypes from
the tunicate.
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2. Results and Discussion

Synoicum sp. was collected by trawling at a depth of 200 m near Shag Rocks and
South Georgia in the Southern Ocean, Antarctica. The sample was extracted and then
screened against various biological targets. The non-polar extract was identified as a hit in a
developmental zebrafish screening, resulting in the extract to be further investigated. Using
bioassay guided fractionation, the active MPLC fractions of the extract were further purified
using HPLC, resulting in the isolation of australindolones A–D (1–4) and meridianins
A–H (5–12) (Figure 1).

2.1. Australindolones A–D (1–4)

Australindolone A (1), was isolated as a yellow solid. The HRESIMS supported a
molecular formula of C12H10N4O2, which was corroborated by proton and carbon NMR
data (Table 1) recorded in DMSO-d6. The high degree of unsaturation (DU = 10), as well
as the deshielded 13C NMR shifts, were characteristic of a heteroaromatic ring system.
A number of functional groups were evident in the NMR data, including a broad sin-
glet at δH 6.74, exchangeable in D2O, and a 13C NMR shift at δC 177.4, suggestive of an
ester/amide-type carbonyl. The 13C NMR shift at δC 78.1 (C-3) is characteristic of a carbon
bearing oxygen and, since there is only one oxygen unassigned, the likely position of an
alcohol group. A deshielded proton at δH 10.41 (H-1) lacked HSQC correlation, placing it
on nitrogen.

Table 1. NMR spectroscopic data for compounds 1–4 in DMSO-d6.

1 2 3 4
Position δC

a δH
b HMBC δC

a δH
b HMBC δC

a δH
b HMBC δC

a δH
b HMBC

1 NH 10.41 (1H, s) 3 10.57 (1H, s) 10.57 (1H, s) 10.74 (1H, s)
2 177.4, C 176.9, C 177.3, C 177.2, C
3 78.1, C 78.1, C 77.8, C 78.3, C

3-OH 6.74 (1H, brs) 6.91 (1H, brs) 6.85 (1H, brs) 7.00 (1H, s)
3a 133.1, C 135.4, C 132.5, C 135.2, C
4 124.1, CH 6.99 (1H, d, 7.2) 3, 6, 7a 126.8, CH 7.12 (1H, d, 2.0) 3, 5, 6, 7, 7a 126.0, CH 6.95 (1H, d, 7.8) 3, 6, 7a 129.2, CH 7.32 (1H, s) 3, 3a, 5, 6, 7a
5 121.6, CH 6.89 (1H, dd, 7.5, 7.5) 3a, 7 113.2, C 124.2, CH 7.08 (1H, dd, 8.1, 2.0) 3a, 6, 7 115.8 C
6 129.4, CH 7.20 (1H, dd, 7.5, 7.5) 4, 7a 132.0, CH 7.39 (1H, dd, 8.2, 2.1) 4, 5, 7a 121.8, C 124.6 C
7 109.8, CH 6.84 (1H, d, 7.7) 3a, 5 111.9, CH 6.81(1H, d, 8.2) 3, 3a, 4, 5, 7a 112.6, CH 6.99 (1H, d, 2.0) 5, 6, 7a 115.1, CH 7.21 (1H, s) 3a, 5, 6, 7a
7a 142.8, C 142.2, C 144.6, C 144.0, C
1′ - - - - - - - - -
2′ 162.9, C 162.9, C 162.9, C 163.4, C

2′-NH2 6.48 (2H, brs) 6.53 (2H, brs) 6.51 (2H, brs) 6.55 (2H, brs) 2′, 4′, 6′

3′ - - - - - - - - -
4′ 170.6, C 170.0, C 170.1, C 169.9, C
5′ 105.8, CH 6.97 (1H, d, 5.1) 3, 6′ 105.8, C 6.99 (1H, d, 5.1) 3, 4′, 6′ 105.7, CH 6.97 (1H, d, 4.9) 6′ 106.3, CH 7.00 (1H, d, 5.0) 3, 4′, 6′

6′ 158.9, CH 8.28 (1H, d, 5.1) 2′, 4′, 5′ 159.1, C 8.30 (1H, d, 5.1) 3, 2′, 4′, 5′ 159.0, CH 8.30 (1H, d, 4.9) 4′,5′ 159.7, CH 8.33 (1H, d, 5.0) 3, 2′, 4′, 5′

a 125 MHz, multiplicity from HSQC; b 500 MHz (integration, multiplicity, J (Hz)).

Analysis of the australindolone A (1) 2D NMR data was instructive in developing the
scaffold, despite the limited number of protons. The COSY NMR spectrum demonstrated a
spin system (Figure 2) establishing the contiguous relationship of δH 6.99 (H-4), 6.89 (H-5),
7.20 (H-6) and 6.84 (H-7). The HMBC data further extended the scaffold; the combination
of H-5 correlating to 133.1 (C-3a), H-4 with δC 78.1 (C-3), and δH 10.41 (H-1) to C-3 created
a spin system which could be bridged with δC 177.4 (C-2), creating an indolone skeleton.
The shift of H-1 (δH 10.41), and the HMBC correlation of H-6 to δC 142.8 (C-7a) supported
that assignment. This indolone scaffold has one open valence, at C-3, which was correlated
in the HMBC to an additional aromatic system at δH 6.97 (H-5′) that was COSY correlated
to δH 8.28 (H-6′). Besides the COSY to H-5′, H-6′ demonstrated HMBC correlation to δC
170.6 (H-4′). This extended indolone skeleton accounted for C11H8NO2 and all COSY
correlations; one remaining HMBC relationship was established between H-6′ and the last
unaccounted for carbon at δH 162.9 (H-2′). To complete the structure of australindolone A,
N3H2 and three degrees of unsaturation needed assignment. Chemical shifts of C-2′, C-4′

and C-6′ matched well with the 2-aminopyrimidine ring systems seen in, for example, the
meridianins [6], which were also found in this extract. HMBC correlation of H-6′ to C-2′ was
supportive of australindolone A as the C-2/C-3 oxidized derivative of meridianin G (11).
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Figure 2. Key COSY (bold) and HMBC (arrows) correlations for indolone 1.

Australindolone B (2) was also isolated as a yellow solid. The HRESIMS of 2 established
a molecular formula of C12H9N4O2Br, supported by the 1H and 13C NMR data. The NMR
shifts supported the existence of a heteroaromatic ring system similar to 1, but with the
presence of a bromine atom. The functional groups present in the molecule were once again
established as a carbon bearing oxygen at δC 78.1 (C-3), an amide carbonyl at δc 176.9 (C-2),
and a proton on nitrogen at δH 10.57 (H-1). The COSY NMR spectrum showed the vicinal
relationship between a proton at δH 7.39 (H-6) and δH 6.81 (H-7). The HMBC correlation of
H-7 to a carbon at δC 135.4 (C-3a) and that of H-4 to a carbon at δC 142.2 (C-7a) and to C-3,
extended the scaffold. From the 1H NMR data, the presence of two meta-oriented protons,
δH 7.12 (H-4), H-6 (J = 8.2, 2.1 Hz) and two ortho-oriented protons, H-6 and H-7 (J = 8.2 Hz)
was established. The coupling constants indicated a mono-substituted indolone aromatic ring,
with the bromine in either position C-5 (δC 113.2) or C-6 (δC 132.0). The correlation from H-6
to C-7a established the bromine in position C-5. Further, the deshielded shift of C-3a (δC 135.4)
combined with the deshielded shift of C-4 (δC 126.8) and the HMBC correlations of H-6 to
C-7a (δC 142.2), strengthened the positioning of the Br on C-5. The second ring system was
created based on the COSY correlations of δH 6.99 (H-5′) and δH 8.30 (H-6′). The HMBC
correlations of H-6′ to a carbon at δc 162.9 (C-2′) and one at δc 170.0 (C-4′) assisted in assigning
the 2-aminopyrimidine ring, positioned on C-3 based on the HMBC correlation of H-5′ to C-3
(Figure 3A). Australindolone B provided crystals suitable for X-ray analysis that supported
the structure assignment (Figure 3B); the alkaloid crystalizes in the Pbcn centrosymmetric
space group as a racemate.
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Australindolone C (3), a yellow solid similar to other members of this indolone family,
displayed a molecular formula of C12H9N4O2Br, based on HRESIMS, 1H, and 13C NMR
data. The chemical shift and the 2D NMR data indicated it as isomeric to 2. The coupling



Mar. Drugs 2022, 20, 196 5 of 11

pattern of two ortho-oriented protons H-4 (δH 6.95, d, J = 7.8 Hz) and H-5 (δH 7.08, dd,
J = 8.1, 2.0 Hz), and two meta-oriented protons, H-5 and H-7 (δH 6.99, d, J = 2.0 Hz),
indicated once again the presence of the bromine in either position C-5 (δC 124.2) or C-6
(δC 121.8). The shielded shift of the 3-OH (δH 6.85) when compared to 2 and combined
with the upfieldshielded shift of H-4 (δH 6.95) indicated that the position of the Br is on C-6.
Further confirmation is given by the deshielded shift of C-7a (δC 144.6) and shielded shift
of C-3a (δC 132.5), as well as the shielded shift of C-6 when compared to 2 and the HMBC
correlation of H-5 to C-3a.

Australindolone D (4) was isolated as a yellow solid and the molecular formula was
determined as being C12H8N4O2Br2, based on HRESIMS and supported by the 1D NMR
data. The lack of COSY correlations combined with the presence of exchangeable protons
with no HSQC correlation complicated the structure elucidation. The HMBC correlations
of the protons at δH 7.32 (H-4) and at δH 7.21 (H-7) to the carbons at δC 115.8 (C-5), δC
124.6 (C-6), and δC 144.0 (C-7a) indicated the existence of an aromatic ring. The HMBC
correlation of H-4 to a carbon at δc 135.2 (C-3a) assisted in closing the ring. The multiplicity
of H-4 (s) and H-7 (s) suggested the positioning of the bromines being in positions 4 and 6, 5
and 6, or 5 and 7. The HMBC correlation of H-4 to an oxygen bearing carbon at δC 78.3 (C-3)
indicated that the two bromines could not be in positions 4 and 7. Using the shielded shift
of C-5 and C-6, as well as the deshielded shift of H-4, H-7 and the proton at δH 7.00 (3-OH)
the two bromine atoms were placed in positions C-5 and C-6 and the ring was bridged
with the amide type bond between the proton at δH 10.74 (1-NH), supported by a carbon
resonance at δC 177.2 (C-2). Next the correlation between a proton at δH 7.00 (H-5′) and one
at δH 8.33 (H-6′) was the only COSY correlation observed. H-5′ and H-6′ showed HMBC
correlations to a carbon at δC 169.9 (C-4′), while H-6′ also showed a correlation to a carbon
at δC 163.4 (C-2′), creating the 2-aminopyrimidine ring similar to the other australindolones
(1–3). The HMBC correlation of H-5′ and H-6′ to C-3 connected the two partial structures
(Figure 4).
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2.2. Meridianins A–H (5–12)

Meridianins A–G (5–11), which were first isolated from the ascidian Aplidium merid-
ianum, were isolated as yellow solids, with meridianin E (9) being the major secondary
metabolite of the extract [6–10]. The molecular formula of the compounds were estab-
lished using HRESIMS as C12H10N4O for 5, C12H9N4OBr for 6 and 9, C12H9N4Br for
7 and 8, C12H8N4Br2 for 10, and C12H10N4 for 11. Comparison of the 1H NMR data
(Figures S25–S40) to the literature values assisted in assigning the structures as meridianins
A–G (5–11) [6–10].

Meridianin H (12) was isolated as a yellow solid, with the HRESIMS indicating a
molecular formula of C12H8N4OBr2. The 1H and 13C NMR spectra in DMSO-d6 indicated
the presence of heteroaromatic shifts (Table 2). HMBC correlations of δH 7.23 (H-5′) and δH
8.17 (H-6′) to δC 159.3 (C-4′), H-6′ to δC 104.6 (C-5′), H-5′ to δC 159.4 (C-6′), and H-5′/H-6′

COSY correlation supported the presence of the heteroaromatic 2′-aminopyrimidine sys-
tem observed in other meridianins. This was further supported by a broad singlet at
δH 6.91 (2H), characteristic of the amine function. H-5′ further correlated in the HMBC
spectrum to δC 114.7 (C-3), placing the 2-aminopyrimidine. The sharp deshielded signal at
δH 15.07 (s), which is absent in the CD3OD spectrum, indicated the presence of a phenol,
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which displayed an HMBC correlation to δC 116.3 (C-3a), δC 148.7 (C-4), and δC 99.1 (C-5).
Further HMBC correlations were observed between δH 8.34 (H-2), δC 114.7 (C-3), C-3a, and
δC 136.1 (C-7a), which, similarly to the 2-aminopyrimidine ring system, correlates well
with other meridianin pyrrole/indole rings. The indole ring system can be completed by
observation of HMBC correlations from δH 7.42 (H-6) to quaternary aromatic carbons C-4,
C-5, and δC 93.0 (C-7). The two bromine atoms in the molecular formula fill the last two
open valences (Figure 5).

Table 2. NMR spectroscopic data for meridianin H (12) in DMSO-d6.

12
Position δC

a δH
b HMBC

1 12.14 (1H, s)
2 130.0, CH 8.34 (1H, s) 3, 3a, 7a
3 114.7, C
3a 116.3, C
4 148.7, C

4-OH 15.07 (1H, s) 3a, 4, 5
5 99.1, C
6 128.6, CH 7.42 (1H, s) 4, 5, 7, 7a
7 93.0, C
7a 136.1, C
1′ - - -
2′ 161.4, C

2′-NH2 6.91 (2H, brs)
3′ - - -
4′ 159.3, C
5′ 104.6, CH 7.23 (1H, d, 5) 3, 4′, 6′

6′ 159.4, CH 8.17 (1H, d, 5) 4′, 5′

a 125 MHz, multiplicity from HSQC; b 500 MHz (integration, multiplicity, J (Hz)).
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2.3. On the Stereochemistry of the Australindolones

All of the australindolones (1–4) produced very small but consistent optical rotations
(−7 to −12 degrees). This contrasts with the crystal analyzed by XRD, which was racemic.
Complicating the discussion, at the concentration tested, these rotations are near the limit
of detection of the polarimeter. However, small rotations, including several with rotations
under 10 degrees (absolute value) have been reported for 3-substituted oxindolones [37].
Whether the australindolones are racemic or scalemic remains to be determined.

2.4. Bioactivity of the Aminopyrimidines

Our investigation of the chemistry of Synoicum sp. was initiated based on activity
of the crude extract using a zebrafish developmental model. Purified meridianins (5–11)
were found with the most potent effect, in which embryos showed truncation of the
anterior–posterior axis (e.g., Figure 6C), which was observed by the curling of the tail and
body when compared to the negative control (Figure 6A), as well as the lack of proper
elongation of the tail and the incomplete growth of the main body [38]. Other observations
made include necrosis, observed as darkened spots under the microscope at different parts
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of the embryo. Australindolones (1–4) displayed considerably less activity (e.g., Figure 6B).
Additional work is currently underway to establish the underlying cause of the observed
phenotype in the meridianins.
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Figure 6. Zebrafish embryos at 24 h post-fertilization (hpf) after 20 h of compound treatment:
(A). control (no treatment); (B). 300 µM australindolone D (4); (C). 60 µM meridianin H (12). Solid
arrows indicate partial truncation of posterior structures (tail); dashed arrows indicate reduction in
size of anterior structures (head). Scale bar 250 µm.

3. Materials and Methods
3.1. General Experimental Procedures

A Rudolph Research (Hackettstown, NJ, USA) Autopol IV polarimeter was used
to measure the optical rotation at 589 nm. IR spectra were measured using an Agilent
Technologies (Santa Clara, CA, USA) Cary 630 FTIR. UV spectra were measured using an
Agilent Technologies (Santa Clara, CA, USA) Cary 60 UV-Vis spectrophotometer. A Varian
Innova 500, Varian Direct Drive 500, or Varian Innova 400 MHz NMR spectrometer (Agilent,
Santa Clara, CA, USA) at 298 K was used to record the NMR spectra. The NMR spectra were
recorded using as reference the residual non-deuterated shifts from DMSO-d6 (δH 2.50 ppm
and δC 39.51 ppm) (Cambridge Isotopes Laboratory, Tewksbury, MA, USA). The high-
resolution mass spectra were recorded on an Agilent Technologies (Santa Clara, CA, USA)
LC/MS ToF electrospray ionization spectrometer. MPLC was carried as direct injections
on a RediSep C18 50 g flash column using a Teledyne Isco (Lincoln, NE, USA) Combiflash
Rf200i, equipped with an evaporative light scattering detector. HPLC was performed using
a preparative YMC-Pack (Devens, MA, USA) ODS RP column (250 × 20 mm, 10 µm) and
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analytical C-18 columns (250 × 10 mm, 5 µm) on a LC-20AD Shimadzu (Columbia, MD,
USA) system and an SPD-20A UV detector.

3.2. Animal Material

The yellow tunicate Synoicum sp. was collected by trawling at a depth of 200 m near
Shag Rocks and South Georgia in Antarctica (−42.0188 S,−53.4215 W) and stored at−20 ◦C
until it was analyzed. The organism was identified by Dr. Linda Cole of the Smithsonian
Institution (National Museum of Natural History accession number 2059503, http://n2t.
net/ark:/65665/305f419e7-84a0-41d7-902e-b7758b253e87 (accessed on 3 February 2022)).

3.3. Extraction and Isolation

Frozen Synoicum sp. was lyophilized, and 200 g of dry organism were extracted using
1:1 CH2Cl2/MeOH three times for 24 h each. The extract was dried on a rotary evaporator,
and the residue was partitioned between hexane and 95% aqueous MeOH to remove
non-polar components. The aqueous layer was concentrated and further partitioned
between EtOAc and H2O to remove salts. The EtOAc layer was dried, and the 2 g of crude
extract were subjected to medium pressure liquid chromatography with a H2O/MeOH
gradient, collected in 7 fractions. Further purification was performed on HPLC using
5–100% H2O/MeCN and a C-18 analytical column, to afford australindolones A (1) (2.0 mg),
B (2) (4.0 mg), C (3) (1.0 mg), D (4) (2.0 mg), meridianin H (12) (2.0 mg), and the known
meridianins A–G (5–11) (A: 2.0 mg, B: 4.0 mg, C: 2.0 mg, D: 3.5 mg, E: 5.0 mg, F: 1.5 mg,
G: 1.0 mg); meridianins A–G were identified by comparison with published NMR data.
Overall yields of alkaloids were found as 0.001% for 5, 7, 12, 1, and 4, 0.002% for 6 and 2,
0.00175% for 8, 0.0025% for 9, 0.00075 for 10, and 0.0005% for 11 and 3. All of the alkaloids
were isolated as yellow, solids.

Australindolone A (1): [α]D
21 = −11 (c = 0.1, MeOH); UV (MeOH) λmax (log ε): 213

(3.87), 297 (3.19) nm; IR (thin film): 3379, 2929, 1726, 1625, 1577 cm−1; 1H and 13C NMR
data, see Table 1; HRESIMS m/z 243.0866 [M + H]+ (calculated 243.0877 for C12H11N4O2).

Australindolone B (2): [α]D
21 = −7 (c = 0.1, MeOH); UV (MeOH) λmax (log ε) 211

(3.03), 297 (2.42) nm; IR (thin film): 3361, 1636, 1581 cm−1; 1H and 13C NMR data, see
Table 1; HRESIMS m/z 320.9951 [M + H]+ (calculated 320.9982 for C12H10N4O2Br).

Australindolone C (3): [α]D
21 = −12 (c = 0.1, MeOH); UV (MeOH) λmax (log ε) 218

(3.99), 303 (3.13) nm; IR (thin film): 3371, 2925, 1737, 1618, 1569 cm−1; 1H and 13C NMR
data, see Table 1; HRESIMS m/z 320.9944 [M + H]+ (calculated 320.9982 for C12H10N4O2Br).

Australindolone D (4): [α]D
21 = −13 (c = 0.1, MeOH); UV (MeOH) λmax (log ε) 223

(3.79), 298 (3.06) nm; IR (thin film): 3353,1733, 1618, 1584 cm−1; 1H and 13C NMR data, see
Table 1; HRESIMS m/z 398.9059 [M + H]+ (calculated 398.9087 for C12H9N4O2Br2).

Meridianin H (12): UV (MeOH) λmax (log ε) 223 (3.53), 345 (3.01) nm; IR (thin film):
3402, 2925, 1737, 1625, 1584 cm−1; 1H and 13C NMR data, see Table 2; HRESIMS m/z
382.9138 [M + H]+ (calculated 382.9138 for C12H9N4OBr2).

3.4. X-ray Diffraction of Australindolone B (2)

X-ray diffraction data for australindolone B (2) were measured on a Bruker D8 Venture
PHOTON 100 CMOS diffractometer equipped with a Cu Kα INCOATEC ImuS micro-focus
source (λ = 1.54178 Å). Indexing was performed using APEX4 (Bruker, Madison, WI, USA;
Difference Vectors method). Data integration and reduction were performed using Saint-
Plus (Bruker, Madison, WI, USA). Absorption correction was performed by the multi-scan
method implemented in SADABS [39]. Space group was determined using XPREP imple-
mented in APEX3 (Bruker, Madison, WI, USA). Structure was solved using SHELXT [40]
and refined using SHELXL-2018/3 [41] (full-matrix least-squares on F2) through the OLEX2
interface program [42]. An ellipsoid plot was drawn with Platon [43]. Minor parts of
disorder were refined with restraints. There are several violations of systematic absences
in the data that could be due to presence of minor twinning. Refinement of the model
solved in lower symmetry space groups did not result in elimination of residual peaks and

http://n2t.net/ark:/65665/305f419e7-84a0-41d7-902e-b7758b253e87
http://n2t.net/ark:/65665/305f419e7-84a0-41d7-902e-b7758b253e87
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significant improvement of R-factors. No obvious signs of twinning were detected, residual
peaks were modeled as minor disordered part of main molecule. Data and refinement
conditions are shown in Table S1. CCDC Deposition Number 2151169.

3.5. Bioassay Procedure

Wildtype Danio rerio fish were used for the assay. Once the zebrafish eggs were
collected, they were placed in fresh media along with methylene blue, to deter fungal
growth. The embryos were sorted and placed in a 96-well plate and the volume was
standardized. For the purpose of this screening, it was determined that the optimal point to
add the compounds was 4 h post-fertilization (hpf) and the ending point of the assay was
72 hpf. The delay in growth and the dysmorphologies were monitored and assessed. The
maximum tolerated concentration was identified for each extract and compound. The plates
were incubated at 28 ◦C and examined under a microscope periodically for up to 72 hpf.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md20030196/s1, Figure S1: Australindolone A (1) 1H NMR spectrum, Figure S2: Australin-
dolone A (1) 13C NMR spectrum, Figure S3: Australindolone A (1) COSY NMR spectrum, Figure S4:
Australindolone A (1) HMBC NMR spectrum, Figure S5: Australindolone A (1) HSQC NMR spec-
trum, Figure S6: Australindolone A (1) HRESIMS, Figure S7: Australindolone B (2) 1H NMR spectrum,
Figure S8: Australindolone B (2) 13C NMR spectrum, Figure S9: Australindolone B (2) COSY NMR
spectrum, Figure S10: Australindolone B (2) HMBC NMR spectrum, Figure S11: Australindolone
B (2) HSQC NMR spectrum, Figure S12: Australindolone B (2) HRESIMS, Figure S13: Australin-
dolone C (3) 1H NMR spectrum, Figure S14: Australindolone C (3) 13C NMR spectrum, Figure S15:
Australindolone C (3) COSY NMR spectrum, Figure S16: Australindolone C (3) HMBC NMR spec-
trum, Figure S17: Australindolone C (3) HSQC NMR spectrum, Figure S18: Australindolone D
(4) HRESIMS, Figure S19: Australindolone D (4) 1H NMR spectrum, Figure S20: Australindolone
D (4) 13C NMR spectrum, Figure S21: Australindolone D (4) COSY NMR spectrum, Figure S22:
Australindolone D (4) HMBC NMR spectrum, Figure S23: Australindolone D (4) HSQC NMR spec-
trum, Figure S24: Australindolone D (4) HRESIMS, Figure S25: Meridianin A (5) 1H NMR spectrum,
Figure S26: Meridianin A (5) 13C NMR spectrum, Figure S27: Meridianin A (5) HRSEIMS, Figure S28:
Meridianin B (6) 1H NMR spectrum, Figure S29: Meridianin B (6) HRESIMS, Figure S30: Meridianin C
(7) 1H NMR spectrum, Figure S31: Meridianin C (7) 13C NMR spectrum, Figure S32: Meridianin C (7)
HRESIMS, Figure S33: Meridianin D (8) 1H NMR spectrum, Figure S34: Meridianin D (8) HRESIMS,
Figure S35: Meridianin E (9) 1H NMR spectrum, Figure S36: Meridianin E (9) HRESIMS, Figure S37:
Meridianin F (10) 1H NMR spectrum, Figure S38: Meridianin F (10) HRESIMS, Figure S39: Meridianin
G (11) 1H NMR spectrum, Figure S40: Meridianin G (11) HRESIMS, Figure S41: Meridianin H (12)
1H NMR spectrum, Figure S42: Meridianin H (12) 13C NMR spectrum, Figure S43: Meridianin H (12)
COSY NMR spectrum, Figure S44: Meridianin H (12) HMBC NMR spectrum, Figure S45: Meridianin
H (12) HSQC NMR spectrum, Figure S46: Meridianin H (12) HRESIMS, Table S1: Crystal data and
structure refinement for australindolone B (2).
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