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Abstract: Two nitrogenous metabolites, bacillimide (1) and bacillapyrrole (2), were isolated from
the culture broth of the marine-derived actinomycete Streptomyces bacillaris. Based on the results of
combined spectroscopic and chemical analyses, the structure of bacillimide (1) was determined to be
a new cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group, while the previously reported
bacillapyrrole (2) was fully characterized for the first time as a pyrrole-carboxamide bearing an alkyl
sulfoxide side chain. Bacillimide (1) and bacillapyrrole (2) exerted moderate (IC50 = 44.24 µM) and
weak (IC50 = 190.45 µM) inhibitory effects on Candida albicans isocitrate lyase, respectively. Based on
the growth phenotype using icl-deletion mutants and icl expression analyses, we determined that
bacillimide (1) inhibits the transcriptional level of icl in C. albicans under C2-carbon-utilizing conditions.

Keywords: Streptomyces bacillaris; bacillimide; bacillapyrrole; isocitrate lyase; Candida albicans

1. Introduction

The glyoxylate cycle is a modified tricarboxylic acid (TCA) cycle. Some bacteria,
algae, fungi, and protozoa can grow with acetate as the sole carbon source by using it to
synthesize TCA cycle intermediates in the glyoxylate cycle [1]. This cycle is composed of
several TCA cycle enzymatic reactions plus two additional enzymes: isocitrate lyase (ICL),
which cleaves isocitrate into glyoxylate and succinate, and malate synthase, which converts
glyoxylate and acetyl-CoA to malate [2]. The glyoxylate cycle allows microbial pathogens
such as Candida albicans and Mycobacterium tuberculosis to catabolize fatty acids via their
breakdown to acetyl-CoA when available simple sugars such as glucose do not exist in
the host environment [3,4]. In particular, the virulence and persistence of a C. albicans
mutant strain lacking the ICL enzyme were remarkably decreased in a mouse model of
systemic candidiasis [5–7]. Moreover, ICL has been considered a promising target for the
development of antimicrobial agents since the glyoxylate cycle is absent in mammalian cells.

Heterocyclic chemistry, a major division of organic chemistry, includes compounds
that have at least two different elements that have ring-membered atoms in their cyclic
structure [8,9]. These compounds have been a focus in both biological and industrial fields
due to their wide applications in cosmetics, polymers, and therapeutic agents [10]. Pyrrole,
a five-membered heterocyclic aromatic compound, has gained an immense amount of
attention based on its abundant pharmaceutical effects, placing pyrrole and its analogs
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at the center of attention [11]. In particular, the combination of diverse pharmacophores
with pyrrole ring systems has allowed the development of compounds exhibiting better
activities, such as anti-HIV [12], antiproliferative [13], anticancer [14], antimicrobial [15],
antiviral [16], anti-inflammatory [17] and antimalarial [18] activities.

During the course of our search for bioactive compounds from marine-derived mi-
crobes, we collected a strain of Streptomyces bacillaris MBTC38 from marine sediment from
Jeju Island in the Republic of Korea. We identified four lactoquinomycins and determined
the mode of action of lactoquinomycin A, which showed the strongest activity against
pathogenic bacteria [19]. In a continuous study with the MBTC38 strain, we observed
moderate inhibition by the culture extract against the C. albicans-derived ICL enzyme,
prompting our extensive investigation. The cultivation of this strain, followed by extraction
and chromatographic separation, yielded two nitrogenous metabolites. Subsequently, their
structures were identified by combined spectroscopic and chemical analyses, including
the electronic circular dichroism (ECD)-based computational method (Figure 1). In this
study, we reported the structure of bacillimide (1), a cyclopenta[c]pyrrole-1,3-dione of
a very rare structural class [20]. The structure of previously reported bacillapyrrole (2)
was fully characterized for the first time in this work. Although derivatives of the two
compounds exhibit diverse bioactivities, including antifungal [21], anti-inflammatory [22],
and antiviral [20] properties, their inhibitory activity against ICL has not been investigated.
Herein, we first evaluated the potential of two compounds as inhibitors of C. albicans ICL.
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Figure 1. The structures of bacillimide (1), benzoyl bacillimide (1a) and bacillapyrrole (2).

2. Results and Discussion
2.1. Structural Elucidation

The molecular formula of compound 1 was deduced to be C8H11NO3S bearing four
degrees of unsaturation by negative high-resolution fast atom bombardment mass spec-
trometry (HR-FAB-MS) analysis ([M − H]− m/z 200.0387, calcd 200.0387). The 13C nuclear
magnetic resonance (NMR) data of this compound showed signals of two carbonyl carbons
at δC 180.6 and 177.9. A strong absorption band at 1634 cm−1 in the infrared (IR) data
indicated these to be amide carbonyls. Then, the presence of a single nitrogen inherent
in the MS data linked these carbonyls to an imide group. With the aid of heteronuclear
single quantum coherence (HSQC) NMR data, the combination of the remaining carbons
and their attached protons diagnosed a nonprotonated carbon (δC 57.0), two methines
including an oxymethine (δC/δH 62.4/2.85, 74.2/4.26), two methylenes (δC/δH 33.7/2.18
and 2.07, 33.6/1.76 and 1.50), and a methyl group (δC/δH 12.5/2.14) (Table 1). Additionally,
two exchangeable protons (δH 11.49, 5.28) were found in the 1H NMR data. The lack of
sp2 carbons except for two carbonyls, in conjunction with the four unsaturation degrees
inherent in the MS data, suggested 1 is a bicyclic compound.



Mar. Drugs 2022, 20, 138 3 of 13

Table 1. 1H and 13C NMR data of compounds 1 and 2 in DMSO-d6 (δH and δC in ppm).

No.
1 a 2 b

δC, Type δH (J in Hz) δC, Type δH (J in Hz)

2 179.4, C 121.4, CH 6.83, d (1.5)
3 57.0, C 108.6, CH 6.07, t (2.0)
4 33.7, CH2 2.18, ddd (13.0, 6.5, 1.5) 110.0, CH 6.74, d (1.5)

2.07, dd (13.0, 6.0)
5 33.6, CH2 1.76, ddd (13.5, 6.5, 1.5) 126.0, C

1.50, ddd (13.0, 7.0, 2.5)
6 74.2, CH 4.26, br s 160.8, C
7 62.4, CH 2.85, s
8 176.4, C 32.6, CH2 3.60, ddd (14.0, 6.0, 1.5)

3.52, ddd (14.0, 7.0, 1.5)
9 12.5, CH3 2.14, s 53.6, CH2 3.00, ddd (13.0, 6.5, 1.0)

2.86, ddd (13.0, 6.0, 1.0)
10 38.1, CH3 2.58, s

1-NH 11.49, br s 11.45, br s
6-OH 5.28, s
7-NH 8.26, t (4.5)

a 1H and 13C NMR data were recorded at 800 and 200 MHz, respectively. b 1H and 13C NMR data were recorded
at 600 and 150 MHz, respectively.

The planar structure of 1 was determined by a combination of 1H correlation spec-
troscopy (COSY) and heteronuclear multiple bond correlation (HMBC) experiments. First,
a linear array of two methylenes (C-4 and C-5) with oxymethine (C-6) was revealed by the
COSY correlations of the attached protons (H2-4-H2-5-H-6) as well as the mutual HMBC
correlations among these protons (Figure 2). The oxygenated functionality at C-6 was
defined as a hydroxyl group by the COSY correlation of H-6 (δH 4.26) with an exchangeable
proton (δH 5.28) as well as the key HMBC correlations of the latter proton with neighboring
carbons: OH-6/C-5 and C-6. Due to the lack of significant proton-proton correlations, the
subsequent extension of the C-4-C-6 partial structure was accomplished with the HMBC
data. That is, the nonprotonated carbon (C, δC 57.0) and a methine group (CH, δC/δH
62.4/2.85) were placed at the neighboring C-3 and C-7 positions based on several of their
HMBC correlations with the C-4-C-6 group: H2-4/C and CH, H2-5/C and CH, H-6/C, and
H (δH 2.85)/C-4 and C-5. Distinguishing between C-3 and C-7 was also achieved by the
crucial three-bond correlation of the methine carbon with the 6-OH proton, placing this
methine at C-7 and the remaining nonprotonated carbon at C-3. The weak vicinal coupling
(J = 1.0 Hz) between H-6 and H-7 was attributed to the 5-membered ring and attachment of
the electron-withdrawing 6-OH and is discussed later. Further examination of the HMBC
data directly linked C-3 and C-7, constructing a cyclopentane moiety (C-3-C-7) by the
correlation at H-7/C-3. In addition, the distinct chemical shifts (δC/δH 12.5/2.14) of an
isolated methyl group (C-9) were indicative of a methylsulfide group that was directly
linked at C-3 by the three-bond HMBC correlation at H3-9/C-3.

Compound 1 was structurally defined as a bicyclic molecule by HR-FAB-MS analysis.
Since a cyclopentane moiety was unveiled by combined 2-D NMR analyses, the remaining
moiety must be composed of the predescribed imide group attached at the C-3 and C-7
open ends of the cyclopentane, forming a 5-membered succinimide (pyrrole-2,5-dione)
moiety. This interpretation was confirmed by the HMBC data in which both carbonyl
carbons (δC 179.4 and 176.4) showed long-range correlations with the H-7 methine proton
(Figure 2). An additional correlation with H2-4 assigned the former carbon at C-2, leaving
the latter one at C-8. Thus, the structure of 1, designated bacillimide, was determined
to be a cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group. A literature study
showed that 1 belongs to a very rare bacterial metabolite group preceded only by the
recently reported nitrosporeusines from the Arctic Streptomyces nitrosporeus [20]. The
most remarkable structural difference was the methylsulfide group of 1 replacing the p-
hydroxy-benzenecarbothio group of nitrosporeusines. Prompted by the antiviral activity of
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nitrosporeusines, several derivatives have been designed and synthesized, resulting in the
identification of significant anti-inflammatory agents [23].

Mar. Drugs 2022, 20, x FOR PEER REVIEW 4 of 13 
 

 

dione) moiety. This interpretation was confirmed by the HMBC data in which both car-
bonyl carbons (δC 179.4 and 176.4) showed long-range correlations with the H-7 methine 
proton (Figure 2). An additional correlation with H2-4 assigned the former carbon at C-2, 
leaving the latter one at C-8. Thus, the structure of 1, designated bacillimide, was deter-
mined to be a cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group. A literature 
study showed that 1 belongs to a very rare bacterial metabolite group preceded only by 
the recently reported nitrosporeusines from the Arctic Streptomyces nitrosporeus [20]. 
The most remarkable structural difference was the methylsulfide group of 1 replacing the 
p-hydroxy-benzenecarbothio group of nitrosporeusines. Prompted by the antiviral activ-
ity of nitrosporeusines, several derivatives have been designed and synthesized, resulting 
in the identification of significant anti-inflammatory agents [23]. 

 
Figure 2. Key correlations of COSY (bold) and HMBC (arrows) experiments for compounds 1 and 
2. 

Bacillimide (1) possesses three stereogenic centers at C-3, C-6, and C-7, which are 
identical to nitrosporeusines. Based upon the results of combined CD and crystallographic 
analyses, nitrosporeusines A and B were assigned the 3S, 6S, and 7R and 3R, 6S, and 7S 
configurations, respectively, having opposite ring junctures [20]. In our initial nuclear 
overhauser effect (NOESY) analysis, a conspicuous cross-peak at H-7/H3-9 assigned a cis 
ring juncture as nitrosporeusines (Figure 3). Another cross-peak was found at 6-OH/H-7, 
suggesting spatial proximity between these groups. This interpretation was supported by 
the chemical shifts and splitting patterns of several protons of 1 in the 1H NMR data in 
both DMSO-d6 and MeOH-d4, showing good accordance with those of synthetic analogs 
(Supporting Information Figures S1 and S7) [23]. However, the NOESY correlation of an 
exchangeable proton requires more decisive evidence. This problem was solved by chem-
ical derivatization of 1 to a more spatially occupying analog bearing nonexchangeable 
protons at the stereogenic centers. Thus, treatment of 1 with benzoic anhydride produced 
benzoyl bacillimide (1a). After the 13C and 1H NMR assignments, the NOESY data of 1a 
showed spatial proximity between H3-9 and H-2′, unambiguously confirming the 3R*, 6S*, 
and 7S* relative configurations. 

Figure 2. Key correlations of COSY (bold) and HMBC (arrows) experiments for compounds 1 and 2.

Bacillimide (1) possesses three stereogenic centers at C-3, C-6, and C-7, which are
identical to nitrosporeusines. Based upon the results of combined CD and crystallographic
analyses, nitrosporeusines A and B were assigned the 3S, 6S, and 7R and 3R, 6S, and 7S
configurations, respectively, having opposite ring junctures [20]. In our initial nuclear
overhauser effect (NOESY) analysis, a conspicuous cross-peak at H-7/H3-9 assigned a cis
ring juncture as nitrosporeusines (Figure 3). Another cross-peak was found at 6-OH/H-7,
suggesting spatial proximity between these groups. This interpretation was supported by
the chemical shifts and splitting patterns of several protons of 1 in the 1H NMR data in
both DMSO-d6 and MeOH-d4, showing good accordance with those of synthetic analogs
(Supporting Information Figures S1 and S7) [23]. However, the NOESY correlation of
an exchangeable proton requires more decisive evidence. This problem was solved by
chemical derivatization of 1 to a more spatially occupying analog bearing nonexchangeable
protons at the stereogenic centers. Thus, treatment of 1 with benzoic anhydride produced
benzoyl bacillimide (1a). After the 13C and 1H NMR assignments, the NOESY data of 1a
showed spatial proximity between H3-9 and H-2′, unambiguously confirming the 3R*, 6S*,
and 7S* relative configurations.
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The absolute configurations of 1 were initially investigated by the α-methoxy α-
trifluoromethylphenylacetic acid (MTPA) method. Possibly due to severe spatial crowding,
however, the production of MTPA esters was partially successful (compound 1 was highly
reactive with (R)-MTPA-Cl, readily producing the (S)-MTPA ester). However, it was
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inert against (S)-MTPA-Cl under diverse reaction conditions. Consequently, the absolute
configurations were determined by the ECD-based computational method. As shown
in Figure 4, the measured CD profile of 1 was highly compatible with the calculated
ECD of 3R, 6S, and 7S configurations, the same as nitrosporeusine B. A similar analysis
against benzoyl derivative 1a also showed identical results supporting the ECD-based
absolute configurations of 1. Thus, the structure of bacillimide (1) was determined to be a
cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group.
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The molecular formula of compound 2 was established as C8H12N2O2S by positive
high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analysis ([M +
H]+ m/z 201.0687, calcd C8H13N2O2S, 201.0692). The 13C, 1H and HSQC NMR data of
this compound diagnosed signals to a carbonyl carbon (δC 160.8), four aromatic/olefinic
(δC/δH 126.0, 121.4/6.83, 110.0/6.74, and 108.6/6.07), two methylene (δC/δH 53.6/3.00
and 2.86, and 32.6/3.60 and 3.52), and a methyl group (δC/δH 38.1/2.58). Additionally,
two exchangeable protons (δH 11.45 and 8.26) were found in these data (Table 1). Further
examination of spectroscopic data was informative of key structural motifs. That is, for
the carbonyl functionality, a strong absorption band at 1682 cm−1 in the IR data was
indicative of an amide group. The small proton-proton coupling constants (J 2.0–1.5 Hz)
among the aromatic/olefinic protons were interpreted as being derived from a pyrrole-type
moiety [24]. Finally, the remarkably deshielded chemical shifts of the isolated methyl
group were determined to be sulfur-bearing, which was thought to be attributable to
a sulfinylmethyl group based on a strong absorption band at 1039 cm−1 in the IR data.
According to this information, the SciFinder study revealed that compound 2 was indeed
a commercially available compound (CAS #1928723-80-1). However, spectroscopic data
were unreported, urging full chemical characterization of this compound.

Combined 1H COSY and HMBC analyses of 2 readily defined the aromatic moiety as a
2-substituted pyrrole (1-NH, C-2-C-5) (Figure 2). However, substitution at this pyrrole moi-
ety was unmade by the lack of proton-carbon correlations in the given HMBC experiments
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(JCH = 2 and 8 Hz). In addition, the COSY data revealed a linear array of an exchangeable
proton (7-NH, δH 8.26) and two methylenes (8-CH2 and 9-CH2) that were supported by the
HMBC correlations at 7-NH/C-8, H2-8/C-9, and H2-9/C-8. Similarly, the methylsulfoxide
group was placed at C-10 by the HMBC correlations at H2-9/C-10 and H3-10/C-8 and
C-9. The amide group was also confirmed by the HMBC correlations at 7-NH/C-6 and
H2-8/C-6. Although it was not directly proven by spectroscopic data, two open ends of
2-D NMR correlations at C-5 of pyrrole and the C-6 carbonyl carbon were rationally linked
to each other. Thus, the structure of compound 2, designated bacillapyrrole, was fully
characterized as N-(2-(methylsulfinyl)ethyl)-1H-pyrrole-2-carboxamide.

2.2. ICL Inhibitory Activity and Antifungal Activity of Isolated Compounds

Two isolated compounds (1 and 2) were tested for inhibitory activity against C. albicans
ICL based on previously reported methods [25]. The half-maximal inhibitory concentration
(IC50) values of the two compounds and 3-nitropropionate, known as a potent ICL inhibitor,
are shown in Table 2. Compounds 1 and 2 exhibited moderate and weak inhibitory activities
toward the ICL enzyme of C. albicans, with IC50 values of 44.24 µM and 190.45 µM, respec-
tively, which were less than that of a known ICL inhibitor, 3-nitropropionate (IC50 = 21.49µM).
To confirm the type of inhibition, kinetics analysis was carried out with 1 at the IC50 or
twofold IC50 based on a Lineweaver and Burk plot (Figure 5). The inhibitor constant was
obtained by a Dixon plot. Bacillimide (1) behaved as a mixed inhibitor, with an inhibitor
constant (Ki) value of 0.42 mM. Fungal growth inhibition tests showed that compounds 1
and 2 did not exert inhibitory effects on ATCC10231 cultured in glucose (Table 2).

Table 2. Inhibitory activity of isolated compounds against the ICL enzyme and growth of C. albicans
ATCC10231.

Compound ICL IC50 (µM) MIC (µM) in Glucose

Bacillimide (1) 44.24 ± 1.05 >1273.64
Bacillapyrrole (2) 190.45 ± 3.86 >1280.00
3-Nitropropionate 21.49 ± 0.97 >2149.46
Amphotericin B ND 0.5

3-Nitropropionate and amphotericin B were used as a standard inhibitor of ICL and a representative antifungal
drug, respectively. ND: not determined.
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respectively. Each data point shows the mean of three independent experiments.

2.3. Inhibition of C2 Carbon Source Utilization

It was expected that ICL inhibitory compounds would suppress nutrient uptake from
C2 carbon sources and disturb the survival of pathogens in macrophages. To evaluate
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whether bacillimide (1) affects the usage of C2 substrate, five C. albicans strains (ATCC10231,
ATCC10259, ATCC11006, ATCC18804, and SC5314) were grown in yeast nitrogen base
(YNB) broth containing either 2% glucose or 2% potassium acetate as the sole carbon
source. Bacillimide (1) inhibited the growth of C. albicans in acetate-containing broth
at a concentration of 256 µg/mL but had no inhibitory effect on fungal cells grown in
glucose (Table 3). These results demonstrated that bacillimide (1) inhibits ICL-mediated
proliferation of the fungus under C2-carbon-utilizing conditions.

Table 3. Inhibitory effect of bacillimide (1) on five C. albicans strains grown in glucose and acetate as
sole carbon sources.

Strain

MIC (µg/mL)
Glucose Acetate

Bacillimide (1) Amph B 1 Bacillimide (1) Amph B 1

SC5314 >1024 0.5 256 0.5
ATCC10231 >1024 0.5 256 0.5
ATCC10259 >1024 0.5 256 0.5
ATCC11006 >1024 1 256 0.5
ATCC18804 >1024 1 256 1

C. albicans (2.5 × 103 cfu/mL) were incubated with various concentrations of bacillimide (1) for 2 days at 28 ◦C in
YNB broth containing 2% glucose and 2% potassium acetate. 1 Amphotericin B (Amph B) was used as a standard
antifungal drug.

2.4. Effects of Bacillimide (1) on Growth Phenotype and icl Gene Expression

To confirm whether bacillimide (1) affects the cell phenotype of the wild-type and
the icl-deletion mutant under C2-assimilating conditions, an in vitro growth assay was
carried out using C. albicans SC5314 (wild-type), icl-deletion mutant (MRC10), and icl-
complementary mutant (MRC11). These strains were streaked onto YNB agar plates
supplemented with 2% glucose or 2% potassium acetate with or without 256 µg/mL 1. All
strains normally developed their phenotypes on both YNB agar plates with glucose and
glucose plus 1. However, the MRC10 strain did not grow on an agar medium in which
acetate was the sole carbon source. Moreover, no cell growth was observed on the YNB
agar plate with acetate plus 1 (Figure 6a). These results indicated that the ICL enzyme is
related to the growth of C. albicans on the C2 substrate.

We further conducted semiquantitative reverse-transcription (RT)-PCR to confirm the
effects of bacillimide (1) on the mRNA expression of icl. The icl-specific PCR product was
not detected in the whole strains cultured in YNB broth with glucose, while icl expression
was strongly induced when strains were cultured in YNB broth containing acetate due
to activation of the glyoxylate cycle. The intensity of the PCR band corresponding to the
mRNA expression of icl was reduced with increasing concentrations of 1 in the cell cultures
(Figure 6b). The expression of GAPDH, a housekeeping gene in C. albicans, was uniformly
observed in all cell cultures regardless of the presence of 1. These results indicate that
bacillimide (1) inhibits icl expression in C. albicans under C2-carbon-utilizing conditions.

Based on the overall experimental results, bacillimide (1) diminished both the ICL
enzyme activity and transcriptional level of icl. Bacillimide (1) inhibited ICL enzyme activity
at a concentration of 256 µg/mL in the growth phenotype assay, while it initiated a decrease
in the mRNA expression of icl at a concentration of 64 µg/mL. Moreover, 128 µg/mL 1
impeded almost all icl gene expression (Table 3 and Figure 6b). Hence, we deduced that
transcriptional inhibition would be a preferential target of bacillimide (1). Further studies
are required to clarify the relationship between the reduction in icl expression and inhibition
of ICL enzyme activity and to identify the main cellular target of bacillimide (1).
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Figure 6. Analysis of growth phenotypes and icl expression in presence of bacillimide (1). (a) C. al-
bicans SC5314 (wild-type strain), MRC10 (∆icl) (icl-deletion strain) and MRC11 (∆icl + ICL) (icl-
complementary strain) were cultured on YNB agar plates with 2% glucose or 2% potassium acetate
containing 0 µg/mL or 256 µg/mL bacillimide (1) for 2 days at 28 ◦C. (b) Mid-log phase of three C.
albicans strains in YNB broth containing 2% glucose (Glu) were untreated, while those in YNB broth
containing 2% potassium acetate (Ace) were treated with various concentrations of bacillimide (1)
(C1: 64 µg/mL, C2: 128 µg/mL, C3: 256 µg/mL) and incubated for 4 h at 28 ◦C. Total RNA was
extracted, and icl expression was analyzed with semiquantitative RT–PCR. GAPDH, a housekeeping
gene, was used as a positive control.

3. Materials and Methods
3.1. General Experimental Procedure

Optical rotations were measured on a JASCO P1020 polarimeter (Jasco, Tokyo, Japan)
using a 1 cm cell. Ultraviolet (UV) spectra were acquired with a Hitachi U-3010 spec-
trophotometer (Hitachi High-Technologies, Tokyo, Japan). ECD spectra were recorded on a
Chirascan plus CD spectrometer (Applied Photophysics Ltd., Leatherhead, Surrey, UK). IR
spectra were recorded on a JASCO 4200 FT-IR spectrometer (Jasco, Tokyo, Japan) using a
ZnSe cell. 1H and 13C NMR spectra were measured in DMSO-d6 or MeOH-d4 solutions on
a Bruker Avance −400, −500, −600, or −800 instrument (Billerica, MA, USA), with solvent
peaks at δH 2.50/δC 39.50 and δH 3.31/δC 49.00 as their internal standards. High-resolution
ESI mass spectrometric data were obtained at the National Instrumentation Center for
Environmental Management (Seoul, Korea) and were acquired using an AB Sciex 5600
QTOF HR-MS instrument (Sciex, MA, USA). High-performance liquid chromatography
(HPLC) analysis was conducted using a Shimadzu SCL-10A (Shimadzu, Tokyo, Japan)
control system connected to a UV–Vis SPD-10A detector (Shimadzu). All solvents used
were of spectroscopic grade or distilled from glass prior to use.

3.2. Taxonomic Identification and Fermentation

In our previous study, the isolated bacterial strain MBTC38 from underwater sediment
on Jeju Island showed 100% similarity with Streptomyces bacillaris, and we assigned the
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strain Streptomyces bacillaris MBTC38 (GenBank accession number: MK402083.1) [19]. The
Streptomyces bacillaris strain MBTC38 was sporulated on colloidal chitin agar plates (4 g of
chitin, 0.7 g of K2HPO4, 0.5 g of MgSO4·7H2O, 0.3 g of KH2PO4, 0.01 g of FeSO4·7H2O,
0.001 g of MnCl2·4H2O, 0.001 g of ZnSO4·7H2O, 20 g of agar, and 17 g of sea salt in 1 L of
distilled water) at 28 ◦C for 10 days. Mature spores were inoculated into 500 mL of colloidal
chitin liquid medium and incubated at 28 ◦C for 7 days on a rotatory shaker.

3.3. Extraction and Isolation

The entire culture (160 L) was filtered through filter paper and extracted with an
equal volume of EtOAc twice. The organic solvents were evaporated to dryness under
reduced pressure to obtain 4.4 g of total extract. Based on inhibitory activities toward
the ICL enzyme, the entire extract (4.4 g) was separated through reversed-phase HPLC
(Agilent Eclipse XDB-C18, 5 µm, 9.4 × 250 mm; H2O-MeCN, 88:12, 2.0 mL/min) with
0.1% trifluoroacetic acid (UV detection at 254 nm) to yield a mixture of Compounds 1
and 2 as a single peak (tR = 10.6 min). Final purification was accomplished by analytical
HPLC (YMC-ODS-A column, 5 µm, 4.6 × 250 mm; H2O-MeOH, 75:25, 0.7 mL/min; 1:
tR = 15.4 min, 9.1 mg, 2: tR = 14.2 min; 7.8 mg).

3.3.1. Bacillimide (1)

Brown oil; [α]25
D +14 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 213 (2.66), 256 (3.19) nm;

ECD (c 1.0 mM, MeOH) λmax (∆ε) 210 (2.78), 230 (−25.57), 248 (2.50), 269 (44.23) nm; IR
(ZnSe) νmax 2925, 2359, 1634, 1366, 1183 cm−1; 1H and 13C NMR data, Table 1; HRESIMS
m/z 200.0387 [M − H]− (calcd for C8H10NO3S, 200.0387).

3.3.2. Bacillapyrrole (2)

Light brown gum; [α]25
D +40 (c 0.2, MeOH); UV (MeOH) λmax (log ε) 209 (1.83), 265

(2.98) nm; IR (ZnSe) νmax 3282 (br), 2925, 2358, 1682, 1566, 1337, 1205, 1039 cm−1; 1H and
13C NMR data, Table 1; HRESIMS m/z 201.0687 [M + H]+ (calcd for C8H13N2O2S, 201.0692).

3.4. Benzoylation of Compound 1

Benzoylation was performed for the assignment of absolute configurations of Com-
pound 1. Compound 1 (0.7 mg, 3.5 µmol) in pyridine (200 µL) was added dropwise to
a solution of benzoic anhydride (2.2 mg, 9.7 µmol) and dimethylaminopyridine (DMAP,
0.1 mg, 0.81 µmol) in pyridine (200 µL). The mixture was stirred at room temperature
for 8 h. The reaction was diluted with EtOAc and slowly added to 1 N HCl until the pH
became acidic. The crude reaction mixture was concentrated in vacuo and then purified by
analytical HPLC (YMC-ODS column, 4.6 × 250 mm; 0.7 mL/min; H2O-MeCN gradient
from 80:20 to 10:90 in 40 min) to yield benzoyl bacillimide (1a) (0.9 mg, 2.9 µmol, 85% yield).

Benzoyl Bacillimide (1a)
1H NMR (DMSO-d6, 800 MHz) δH 7.98 (2H, d, J = 8.0 Hz, H-2′, H-6′), 7.51 (1H, t,

J = 7.5 Hz, H-4′), 7.55 (2H, t, J = 7.5 Hz, H-3′, H-5′), 5.46 (1H, d, J = 3.8 Hz, H-6), 3.28 (1H,
overlap, H-7), 2.31 (1H, dd, J = 13.1, 7.1 Hz, H-4), 2.13 (3H, s, H-9), 2.10 (1H, m, H-4), 2.02
(1H, J = 14.3, 6.9 Hz, H-5), 1.78 (1H, m, H-5); 13C NMR (DMSO-d6, 800 MHz) δc Undetected
(C-2, C-8), 164.8 (C, C-7′), 133.5 (CH, C-4′), 129.6 (C, C-1′), 129.2 (CH, C-2′, C-6′), 128.8 (CH,
C-3′, C-5′), 78.0 (CH, C-6), 60.2 (CH, C-7), 57.9 (C, C-3), 34.3 (CH2, C-5), 31.2 (CH2, C-4),
12.6 (CH3, C-9); ECD (c 1.0 mM, MeOH) λmax (∆ε) 213 (3.58), 234 (0.25), 262 (37.77) nm;
HRESIMS m/z 328.0612 [M + Na]+ (calcd for C15H15NO4SNa, 328.0614).

3.5. Electronic Circular Dichroism (ECD) Calculations

Based on density functional theory (DFT) calculations, the geometries were optimized
to the ground-state energy level by Turbomole computer software. The basis parameter
sets, def-SVP, and the B3-LYP functional for all atoms were employed. The calculated ECD
data were measured based on the optimized structures obtained with TDDFT at the B3-LYP
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functional. The ECD spectra were obtained by overlapping Gaussian functions for each
transition, where σ is the width of the band at height 1/e. Values ∆Ei and Ri represent the
excitation energy and rotatory strength for transition i, respectively. In this work, the value
of σwas 0.10 eV.

∆ε(E) =
1

2.297× 10−39
1√
2πσ

∑
(

A
i

)
∆EiRie[−(E−∆Ei)

2/(2σ)2]

3.6. ICL Inhibitory Activity Assay

Expression and purification of recombinant ICL protein from C. albicans were per-
formed using the following procedures with minor modifications followed by evaluation
of the ICL inhibitory activity of isolated compounds [25]. The ICL inhibitory activity assay
was carried out according to previously described methods [26,27]. Compounds 1, 2, and
3-nitropropionate, known as an ICL inhibitor, were dissolved in DMSO at 12.8 mg/mL. A
total of 772 (first cuvette) and 390 (other cuvettes) µL of reaction MOP buffer containing
3.75 mM MgCl2, 1.27 mM threo-DL (+) isocitrate and 4.1 mM phenylhydrazine was mixed
with 8 µL of tested samples and serially diluted (final DMSO concentration, 1%). Then,
10 µL of purified ICL (concentration = 2.5 µg/mL) was added and incubated at 37 ◦C for
30 min. The absorbance at 324 nm was measured by a UV mini 1240 spectrophotometer
(Shimadzu, Kyoto, Japan) at 0 min and 30 min after incubation. The ICL inhibitory effect of
each compound was calculated as an absorbance percentage relative to that of the sample
treated with only DMSO. The half-maximal inhibitory concentration (IC50) was measured
by nonlinear regression analysis (GraphPad ver. 8.0, Prism). 3-Nitropropionate was used
as a positive control [28].

3.7. In Vitro Growth Assay

An in vitro growth assay was performed under the following procedures with minor
modifications [29]. Five wild-type C. albicans strains (SC5314, ATCC10231, ATCC10259,
ATCC11006, and ATCC18804) were cultured overnight at 28 ◦C in YNB medium with 2%
glucose and 2% potassium acetate and diluted to match the turbidity of a 0.5 McFarland
standard at 530 nm wavelength. Stock solutions of 1 and amphotericin B were prepared in
DMSO at 25.6 mg/mL. Each stock solution was diluted in YNB media to concentrations
ranging from 0.25 to 256 µg/mL. The final DMSO concentration was maintained at 1% by
adding DMSO to the medium according to CLSI guidelines. In each well of a 96-well plate,
90 µL of YNB media containing two compounds was mixed with 10 µL of broth with the
test strain C. albicans (final concentration: 2.5 × 103 cfu/mL). The plates were incubated for
2 days at 28 ◦C, and amphotericin B was used as a positive control. The MIC value was
defined as the lowest concentration of the test compound that prevented cell growth.

3.8. Grow Phenotype and icl Expression Analysis

C. albicans SC5314 (wild-type strain), MRC10 (∆icl) (icl-deletion strain), and MRC11
(∆icl + ICL) (icl-complementary strain) were used to confirm the growth phenotype [7].
Three strains were cultured in YNB broth containing 2% glucose and 2% potassium acetate
at 28 ◦C for 24 h. Cells were centrifuged (8000× g, 2 min) and washed with distilled
water. The harvested cells were streaked on YNB agar plates containing 2% glucose or 2%
potassium acetate containing 0 µg/mL or 256 µg/mL 1 and incubated at 28 ◦C for 2 days.

For icl expression analysis, overnight cultured C. albicans SC5314 was diluted with
YNB media containing 2% glucose or 2% potassium acetate and incubated to mid-log phase.
Various concentrations of 1 (64, 128, or 256 µg/mL) were added to media containing 2%
potassium acetate and incubated at 28 ◦C for 4 h. Total RNA extraction was carried out
using easy-BLUETM reagent (Intron Biotechnology), and cDNA was reverse-transcribed
with a SuperScript III cDNA synthesis kit (Enzynomics). Semiquantitative RT–PCR was
performed using icl-specific primers: 5′-ATGCCTTA CACTCCTATTGACATTCAAAA-3′

(forward), 5′-TAGATTCAGCTTCAGCCATCAA AGC-3′ (reverse), under the following
conditions: initial denaturation at 95 ◦C for 5 min, 30 cycles of denaturation at 95 ◦C for 20 s,
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annealing at 55 ◦C for 30 s and elongation at 72 ◦C for 1 min and final extension at 72 ◦C
for 5 min. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as a loading control.

4. Conclusions

Two nitrogenous metabolites, bacillimide (1) and bacillapyrrole (2), were isolated
from the culture broth of the marine-derived actinomycete Streptomyces bacillaris. Based
on combined spectroscopic and chemical analyses, the structure of 1 was determined
to be a cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group, thus belonging
to a very rare structural class. The previously reported 2 was fully characterized as a
pyrrole-carboxamide bearing an alkyl sulfoxide side chain by this work. Moreover, the
absolute configuration of 1 was determined by analyses of NOESY correlation and ECD-
based computational method. Bacillimide (1) exhibited a remarkable difference in that it
was a new compound that substituted the methylsulfide group at C-3 for the p-hydroxy-
benzenecarbothio group among similar compounds, nitrosporeusines. Because antiviral
activities were observed in a previous study of nitrosporeusines, therefore, we confirmed
antiviral activities of bacillimide (1) against coronavirus, but meaningful results were
not elicited (data not shown) [20]. Alternatively, bacillimide (1) and bacillapyrrole (2)
exhibited biological activities toward C. albicans ICL with an IC50 value of 44.24 µM and
IC50 = 190.45 µM, respectively. Pathogenic strain C. albicans demands a glyoxylate cycle
to retain virulence and persistence since there are plentiful C2 carbon sources, including
fatty acids and acetate, in macrophages. Consequently, the strain accelerates the switch of
the metabolic pathway from glycolysis to the glyoxylate cycle to utilize the C2 substrate
when C. albicans is phagocytosed by macrophages [30]. The growth assay revealed that
bacillimide (1) specifically inhibits the ICL enzyme of the glyoxylate cycle and blocks
nutrient uptake from the C2 carbon source because no growth of C. albicans SC5314 (wild-
type) and MRC11 (∆icl + ICL) was observed on the YNB agar plates containing acetate
plus the compound at 256 µg/mL. Moreover, icl transcriptional levels reduced as a result
of treatment with 1, indicating that compound 1 inhibits icl mRNA expression rather than
having a direct effect on the enzyme active site. Further studies are required to clarify
the relationship between ICL activity inhibition and the reduction of icl expression and to
identify the main cellular target of bacillimide (1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20020138/s1, Figure S1: The 1H NMR (800 MHz, DMSO-d6)
spectrum of 1; Figure S2: The 13C NMR (200 MHz, DMSO-d6) spectrum of 1; Figure S3: The COSY
(500 MHz, DMSO-d6) spectrum of 1; Figure S4: The HSQC (800 MHz, DMSO-d6) spectrum of 1;
Figure S5: The HMBC (800 MHz, DMSO-d6) spectrum of 1; Figure S6: The NOESY (600 MHz, DMSO-
d6) spectrum of 1; Figure S7: The 1H NMR (500 MHz, MeOH-d4) spectrum of 1; Figure S8: HR-ESI-MS
data of 1; Figure S9: The 1H NMR (800 MHz, DMSO-d6) spectrum of 1a; Figure S10: The 13C NMR
(200 MHz, DMSO-d6) spectrum of 1a; Figure S11: The NOESY (800 MHz, DMSO-d6) spectrum of 1a;
Figure S12: HR-ESI-MS data of 1a; Figure S13: The 1H NMR (600 MHz, DMSO-d6) spectrum of 2;
Figure S14: The 13C NMR (150 MHz, DMSO-d6) spectrum of 2; Figure S15: The COSY (600 MHz,
DMSO-d6) spectrum of 2; Figure S16: The HSQC (600 MHz, DMSO-d6) spectrum of 2; Figure S17:
The HMBC (600 MHz, DMSO-d6) spectrum of 2; Figure S18: HR-ESI-MS data of 2; Figure S19: The
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