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Abstract: Marine fungi-derived secondary metabolites are still an important source for the discovery
of potential antimicrobial agents. Here, five new polyketides (1, 2, and 6–8) and seven known com-
pounds (3–5 and 9–12) were obtained from the culture of the marine-derived fungus Trichoderma sp.
JWM29-10-1. Their structures were identified by extensive spectrographic data analyses, including
1D and 2D NMR, UV, IR, and HR-ESI-MS. Further, the absolute configurations of new compounds
were determined by circular dichroism (CD) spectrum and alkali-hydrolysis in combination with
the in situ dimolybdenum CD method. Subsequently, the antimicrobial effects of these isolated
compounds were assessed by examining the minimal inhibition concentration (MIC) with the broth
microdilution assay. Compounds 1 and 2 exhibited potent antimicrobial activity against Helicobacter
pylori, including multidrug-resistant strains, with MIC range values of 2–8 µg/mL. Moreover, com-
pound 1 showed significant inhibitory effects on the growth of Gram-positive pathogens, including
methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and vancomycin-resistant
Enterococcus faecium, which greatly threaten human health. This study demonstrates that chromone
derivatives 1–2, especially for 1, could be potential lead compounds for the development of new
antimicrobial agents and provides insight for future medicinal chemistry research.

Keywords: marine-derived fungus; Trichoderma sp. JWM29-10-1; polyketide; antibacterial effect;
antifungal effect

1. Introduction

Marine fungi have the ability to produce biologically active lead compounds due to
their special living environment. Increasing numbers of marine natural products (MNP)
from marine fungi have been newly discovered in recent years [1,2]. Trichoderma sp. fungus
is a filamentous fungus that mainly exists in marine animals, plants, and sediments attached
to the seafloor [3,4]. Numerous chemical and pharmacological investigations have proved
that Trichoderma sp. strains can produce abundant secondary metabolites, which exert po-
tential anti-phytopathogenic, insecticidal, cytotoxic, antibacterial, and antioxidant activities,
etc. [4,5] Polyketides, an important type of secondary metabolites from Trichoderma sp., were
reported with vital antibacterial and anti-phytopathogenic effects [6]. Khamthong et al.
reported the isolation of two new polyketides from Trichoderma aureoviride PSU-F95 and
discovered one compound exhibited a certain antibacterial activity against Methicillin-
resistant Staphylococcus aureus (MRSA) [6]. As infectious diseases seriously threaten human
health due to the frequent occurrence of antibiotic resistance [7], polyketides have attracted
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significant attention due to their diverse biological effects, especially for their remarkable
antimicrobial effects [8].

As part of our ongoing search for antimicrobial bioactive compounds from marine
fungi, twelve polyketides, including five new compounds (1–2 and 6–8) and seven known
ones (3–5 and 9–12), were isolated from the ethyl acetate (EtOAc) extract of the culture
of fungus Trichoderma sp. JWM29-10-1. Here we described the isolation and chemical
characterization of these isolated compounds. Meantime, the antimicrobial effects of these
compounds were evaluated, and their preliminary structure-activity relationship (SAR)
was also discussed.

2. Results

Various chromatographic methods, including silica gel column chromatography (CC),
ODS CC, and semi-preparative RP HPLC, were used to investigate the chemical compo-
nents in Trichoderma sp. JWM29-10-1, which resulted in the isolation of five new polyketides
(1–2 and 6–8) and seven known ones (3–5 and 9–12) (Figure 1). The known compounds
were identified as 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3) [9], 5-
hydroxy-2,3-dimethyl-7-methoxychromone (4) [9], trichoharin A (5) [10], tandyukisin D
(9) [11], tandyukisin C (10) [11], trichoharzin (11) [12], and deoxynortrichoharzin (12) [12]
by comparing their MS, 1H and 13C NMR data, and specific rotation with those reported.
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2.1. Structure Elucidation

Compound 1 was obtained as a colorless powder. It has the molecular formula
of C18H18O8 with ten degrees of unsaturation by the HR-ESI-MS data at m/z 363.1084
[M + H]+ (calcd. m/z 363.1080, see Supplementary Materials). The UV absorptions at 208,
230, 250, 257, and 292 nm, and IR bands at 1677 cm−1 (conjugated carbonyl) and 1625,
1545 cm−1 (aromatic system) implicated the presence of a chromone core structure [9]. The
1H NMR spectrum showed resonances for phenolic hydroxyl at δH 12.63 (1H, s, 5-OH), two
aromatic protons at δH 6.34 (2H, brs, H-6 and H-8), a methoxy at δH 3.85 (3H, s, 7-OMe),
an oxymethylene at δH 5.11 (2H, s, H-10), a methylene at δH 3.15 (2H, s, H-4′), and two
methyls at δH 2.50 (3H, s, H-9) and 2.25 (3H, s, H-6′) (Table 1). The 13C NMR spectrum
aided by the DEPT135 spectrum revealed the presence of 18 carbon resonances for ten
quaternary carbons, including three carbonyl carbons at δC 181.0 (C-4), 165.7 (C-1′), and
174.6 (C-5′), three oxygenated aromatic carbons at δC 167.6 (C-2), 162.3 (C-5), and 165.9
(C-7), and four aromatic or olefinic carbons; three methines at δC 98.2 (C-6), 92.6 (C-8),
and 119.6 (C-2′); two methylenes at δC 56.0 (C-10) and 45.5 (C-4′); a methoxyl at δC 55.9
(7-OMe) and two methyls at δC 18.6 (C-9) and 19.2 (C-6′). A comparison of the NMR
data with that reported revealed the core structure of 1 as 5-hydroxy-3-hydroxymethyl-
2-methyl-7-methoxychromone [13]. Additionally, analyses of the 1H and 13C NMR data
in combination with the HMBC correlations of H-6′ with C-2′–4′, of H-4′ with C-3′ and
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C-5′, and of H-2′ with C-1′ and C-4′ implicated the presence of a 3-methyl-2-pentenedioic
acid side chain [14]. The HMBC correlation of H-10 with C-1′ attached the side chain at
the hydroxymethyl of C-10. Thus, the planar structure of 1 was identified, which was
confirmed by key HMBC correlations (Figure 2). Furthermore, the NOESY correlation of
H-2′ with H-4′ indicated the E configuration of a double bond at C-2′ and C-3′. Thus, the
structure of 1 was identified and named as (2E)-1-[(5-hydroxy-7-methoxy-2-methyl-4-oxo-
4H-1-benzopyran-3-yl)methyl]3-methyl-2-pentenedioate.

Table 1. 1H and 13C NMR data for compounds 1 and 2 (400 MHz for 1H and 100 MHz for 13C).

NO.
1 a 2 b

δC δH (J in Hz) δC δH (J in Hz)

2 167.6 76.6 4.66 (1H, m)
3 114.8 54.3 2.59 (1H, dt, 9.6, 4.0)
4 181.0 198.2
4a 104.9 104.1
5 162.3 165.3
6 98.2 6.34 (1H, brs) 95.5 6.02 (1H, d, 2.4)
7 165.9 169.5
8 92.6 6.34 (1H, brs) 94.7 6.00 (1H, d, 2.4)
8a 157.6 164.0
9 18.6 2.50 (3H, s) 19.3 1.54 (3H, d, 6.4)

10 56.0 5.11 (2H, s) 58.1 4.26 (1H, dd, 11.2, 4.0)
3.79 (1H, dd, 11.2, 4.0)

5-OH 12.63 (1H, s)
7-OMe 55.9 3.85 (3H, s) 56.2 3.82 (3H, s)

1′ 165.7
2′ 119.6 5.81 (1H, s)
3′ 151.5
4′ 45.5 3.15 (2H, s)
5′ 174.6
6′ 19.2 2.25 (3H, s)

a Measured in CDCl3; b Measured in CD3OD.
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Compound 2 was isolated as a solid white powder. It has the molecular formula of
C12H14O5 characterized by the HR-ESI-MS data at m/z 239.0925 [M + H]+ (calcd. m/z
239.0919), implying six degrees of unsaturation. Comparison of the 1H and 13C NMR
data with that of 5,7-dihydroxy-2,3-dimethyl-4-chromanone suggested that 2 was also a
chromone derivative [9], and the main difference laid in the 13C resonance of C-10. The
13C resonance of C-10 at 58.1 ppm in 2 instead of 9.7 ppm in 5,7-dihydroxy-2,3-dimethyl-
4-chromanone indicated that 2 was the oxidative derivative of C-10 in 5,7-dihydroxy-2,3-
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dimethyl-4-chromanone [15]. Thus, the planar structure of 2 was identified, which was
confirmed by 1H-1H COSY and HMBC correlations (Figure 2). The relative configuration
of 2 was established by a NOESY experiment (Figure 3). In the NOESY spectrum, the
correlations of H-3 with H-9 and of H-2 with H-10 indicated the trans orientation of H-2
and H-3, leading to the relative configuration of 2S* and 3S*. Since 2 showed opposite
Cotton effects at 218 (∆ε, −2.4), 286 (∆ε, 1.1), and 310 (∆ε, −0.4) nm with those of (2R,
3R)-5,7-dihydroxy-2,3-dimethyl-4-chromanone [15], the absolute configuration of 2 was
determined to be 2S, 3S. The opposite specific optical rotation of 2 with that of (2R, 3R)-
5,7-dihydroxy-2,3-dimethyl-4-chromanone confirmed the above deduction [15]. Thus, the
structure of 2 was determined and named (2S,3S)-5-hydroxy-3-hydroxymethyl-7-methoxy-
2-methyl-4-chromanone.
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Compound 6 was isolated as a pale-yellow oil, and its molecular formula was deter-
mined to be C25H38O7 by the HR-ESI-MS data at m/z 451.2707 [M + H]+ (calcd. 451.2696),
accounting for seven degrees of unsaturation. Its IR spectrum exhibited characteristic bands
at 3449, 1711, and 1623 cm−1 for hydroxyl groups, esters, and ketone, respectively. Analyses
of the 1H and 13C NMR data aided by HSQC revealed five quaternary carbons, including
three carbonyls at δC 215.5 (C-3), 170.2 (C-1′), and 170.4 (C-5′); ten methines including
three olefinic methines at δH 6.01 (1H, brd, J = 10.4 Hz, H-11)/δC 125.7 (C-11), δH 5.70
(1H, brd, J = 10.4 Hz, H-12)/δC 124.1 (C-12), and δH 5.82 (1H, s, H-4′)/δC 119.3 (C-4′); two
oxymethines at δH 5.24 (1H, d, J = 3.2 Hz, H-8)/δC 74.0 (C-8) and δH 3.56 (1H, dd, J = 10.8,
3.2 Hz, H-9)/δC 74.3 (C-9); five methylenes including one oxymethylene at δH 3.82 (1H, m,
H-1b)/ 3.90 (1H, m, H-1a)/δC 58.1 (C-1), and five methyls (Table 2). A comparison of the
NMR data with that of Tandyukisin D (9) implicated that they shared the same eujavanicol
A core structure, and the main difference lay in the side chain. The side chain was identified
to be (2E)-3-methyl-2-pentenedioic acid by the 13C NMR data analysis and key HMBC
correlations (Figure 2). Further, the relative configuration of eujavanicol A fragment in 6
was identified by NOESY experiments. The NOESY correlations of H-19 with H-6, H-10,
and H-13, and of H-13 with H-17 suggested that they were on one face (Figure 4). The
NOESY correlations of H-5 with H-9 and H-18 indicated that they were on the other face
and the decalin was trans. Thus, the relative configuration of 6 was identified as 4S*, 5S*,
6R*, 8R*, 9S*, 10R*, 13S*, 14R*, in line with that in 9. Additionally, the 13C resonance of C-6′

at δC 19.4 ppm, less than 20 ppm, supported the E configuration of the double bond in 6 [16].
The absolute configuration of 6 was determined by chemical derivatization in combination
with in situ dimolybdenum CD method. Treatment of 6 with NaOH aqueous in MeOH
resulted in the acquisition of 6A, which was identified to be eujavanicol A [17] according
to their 1H and 13C NMR data and optical rotation value (6A: [α]25

D +19.0, eujavanicol A:
[α]25

D +21.1), confirming the relative configuration of 6. Subsequently, the CD spectrum of
complexes formed by vic-diols in 6A with dimolybdenum tetraacetate [Mo2(OAc)4] was
measured. The negative Cotton effects at 310 and 400 nm arising within the d-d absorption
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bands of the metal complexes inferred the 8R and 9S configurations in 6A (Figure 4) [18,19].
Thus, the absolute configuration of 6 was deduced as 4S, 5S, 6R, 8R, 9S, 10R, 13S, and 14R.
Finally, the structure of 6 was identified and named Tandyukisin G.

Table 2. 1H and 13C NMR data for compounds 6–8 (400 MHz for 1H and 100 MHz for 13C in CDCl3).

NO.
6 7 8

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 58.1
3.90 (1H, m,

Ha) 58.1
3.90 (1H, m,

Ha) 58.1
3.93 (1H, m,

Ha)
3.82 (1H, m,

Hb)
3.85 (1H, m,

HB)
3.85 (1H, m,

Hb)

2 41.3
2.85 (1H,

brd,18.8, Ha) 41.3
2.88 (1H, brd,

18.8, Ha) 41.2

2.89 (1H, ddd,
18.8, 6.0, 3.6,

Ha)

2.66 (1H, brd,
18.8, Hb)

2.69 (1H, brd,
18.4, Ha)

2.70 (1H, ddd,
18.8, 7.2, 4.0,

Ha)
3 215.5 215.3 215.5
4 52.6 52.6 52.7
5 43.2 1.96 (1H, m) 43.8 2.04 (1H, t, m) 43.7 2.05 (1H, m)
6 31.6 1.57 (1H, m) 30.4 1.80 (1H, m) 30.4 1.83 (1H, m)

7 39.0 1.82 (1H,
brd,12.0, Hα) 41.0 1.84 (1H, m,

Hα) 40.8 1.86 (1H, m,
Hα)

1.55 (1H, m,
Hβ)

1.58 (1H, brd,
13.6, Hβ)

1.58 (1H, m,
Hβ)

8 74.0 5.24 (1H, d,
3.2) 67.6 4.15 (1H, brs) 67.7 4.15 (1H, q,

3.2)

9 74.3 3.56 (1H, dd,
10.8, 3.2) 79.1 4.75 (1H,

d,11.2) 77.5 4.77 (1H, dd,
11.6, 2.8)

10 40.1 2.10 (1H, m) 36.3 2.46 (1H, t,
11.2) 36.3 2.50 (1H, m)

11 125.7 6.01 (1H,
brd,10.4) 125.1 5.54 (1H, d,

10.8) 125.2 5.61 (1H, m)

12 124.1 5.70 (1H,
brd,10.4) 124.6 5.69 (1H,

d,10.8) 124.6 5.68 (1H, ddd,
10.4, 4.4,2.8)

13 52.4 1.93 (1H, m) 52.5 1.94 (1H, m) 52.5 1.94 (1H, m)
14 37.3 1.10 (1H, m) 37.3 1.11 (1H, m) 37.3 1.13 (1H, m)
15 24.6 0.74 (1H, m, a) 24.5 0.74 (1H, m) 24.5 0.73 (1H, m)

1.45 (1H, m, b) 1.48 (1H, m) 1.49 (1H, m)
16 12.7 0.76 (3H, m) 12.6 0.77 (3H, t, 4.4) 12.7 0.76 (3H, t, 6.4)

17 19.4 0.92 (3H, d,
6.4) 19.3 0.92 (3H, d,

6.4) 19.3 0.91 (3H, d,
6.8)

18 22.4 0.58 (3H, d,
5.6) 22.4 0.60 (3H, d,

7.2) 22.4 0.60 (3H, d,
6.8)

19 19.5 1.23 (3H, s) 19.5 1.25 (3H, s) 19.4 1.25 (3H, s)
1′ 170.2 169.0 165.1
2′ 46.4 3.23 (2H, s) 46.3 3.27 (2H, s) 119.4 5.89 (1H, s)
3′ 153.7 153.4 152.5
4′ 119.3 5.82 (1H, s) 119.5 5.85 (1H, s) 45.7 3.19 (2H, s)
5′ 170.4 170.3 174.3
6′ 19.4 2.24(3H, s) 19.5 2.27 (3H, s) 19.5 2.28 (3H, s)
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Compound 7 was isolated as a pale-yellow oil. The HR-ESI-MS showed a quasimolec-
ular ion at m/z 451.2699 [M + H]+ (calcd. 451.2696), indicating a molecular formula of
C25H38O7 and accounting for seven degrees of unsaturation. Analyses of the 1H and 13C
NMR data aided by HSQC, 1H-1H COSY, and HMBC revealed 7 was also a new decalin
derivative containing a eujavanicol. A skeleton and a (2E)-3-methyl-2-pentenedioic acid
side chain, the same as that of 6 (Figure 2). The HMBC correlation of H-9 with C-1′ attached
the side chain at C-9 of the eujavanicol A fragment. In addition, the 13C resonance of C-6′

at δC 19.5 ppm deduced the E configuration of the double bond in the side chain [16]. The
relative configuration of 7 was also determined by the NOESY experiment. Subsequently,
alkali-hydrolysis of 7 produced 7A, which was identified to be eujavanicol A by comparing
their NMR data and optical rotation values with those reported [17]. Meanwhile, the
negative Cotton effects of the complex formed by 8,9-diol in 7A with Mo2(OAc)4 at 310 and
400 nm determined the 8R, 9S configurations of the eujavanicol A skeleton (Figure 4). Thus,
the structure of 7 was unambiguously identified with the configurations of 4S, 5S, 6R, 8R,
9S, 10R, 13S, and 14R and named Tandyukisin H.

Compound 8 was obtained as a pale-yellow oil. Its molecular formula was elucidated
as C25H38O7 based on the HR-ESI-MS (m/z 451.2697 [M + H]+, calcd. 451.2696) and 13C
NMR data, implying seven degrees of unsaturation. A comparison of the 1H and 13C NMR
data with that of 7 suggested that they had great similarity except for the side chain. The
resonance signals of an olefinic methine at C-2′ [δH 5.89 (1H, s)/δC 119.4] and xa methylene
at C-4′ [3.19 (2H, s)/δC 45.7] in 8 instead of methylene at δH 3.27 (2H, s)/δC 46.3 (C- 2′)
and an olefinic methine at δH 5.85 (1H, s)/δC 119.5 (C-4′) in 7 suggested the presence of
∆2′ double bond in 8. Meanwhile, the double bond was determined as an E configuration
by the NOESY correlation of H-2′ with H-4′ in combination with the 13C resonance of
C-6′ at δC 19.5 ppm [16]. The HMBC and 1H-1H COSY correlations confirmed the planar
structure of 8 (Figure 2). The absolute configuration of 8,9-diols in 8 was also determined
by alkali-hydrolysis followed by in situ dimolybdenum CD method. The negative Cotton
effects of the complex formed by 8A with Mo2(OAc)4 at 310 and 400 nm inferred the 8R
and 9S configurations in 8. Thus, the configurations of 8 were determined as 4S, 5S, 6R, 8R,
9S, 10R, 13S, and 14R. Finally, the structure of 8 was identified and named Tandyukisin I.

2.2. Antimicrobial Effects of Compounds 1–12

The antimicrobial effects of compounds 1–12 were evaluated by the broth microdi-
lution assay. Results showed that compounds 1 and 2 have efficient antibacterial ac-
tivities against Helicobacter pylori standard strains and clinical isolates, including three
multidrug-resistant strains, with minimal inhibition concentration (MIC) values rang-
ing from 2–8 µg/mL (Table 3). Interestingly, compound 1 also exhibited significant in-
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hibitory effects on the growth of Gram-positive pathogens, including Staphylococcus aureus,
methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE) and
Enterococcus faecalis with MIC values of 2 to 16 µg/mL (Table 3 and Figure 5). In addition,
compound 1 exerted moderate antimicrobial activity against the important fungal pathogen
Candida albicans and Aspergillus fumigatus with MIC values of 16 and 64 µg/mL, indicating
that compound 1 has broad-spectrum antimicrobial activity. Preliminary structure-activity
relationship (SAR) analysis revealed that the double bond at C-2 and C-3 of the chromone
core structure might be unfavorable for its anti-H. pylori effects based on our limited re-
sults since compound 2 showed a stronger inhibitory effect than 3. To our surprise, the
introduction of a 3-methyl-2-pentenedioic acid side chain at C-13 could not only dramat-
ically increase the anti-H. pylori activities of chromone derivatives, but also broad the
antimicrobial spectrum from Gram-negative to Gram-positive bacteria and fungi.

Table 3. The antimicrobial effects of compounds 1–12 from the Trichoderma sp. JWM29-10-1 (MIC
values, µg/mL).

MIC (µg/mL) for:

Strain Drug Sensitivity
(Drug [s]) a 1 2 3 4 5 6 7 8 9 10 11 12

Gram-
Negative
Bacteria

Helicobacter pylori G27 S 4 8 32 >64 32 >64 >64 >64 >64 >64 >64 64

Helicobacter pylori 159 R (LVX, MTZ,
CLR) 4 8 32 >64 32 >64 >64 >64 >64 >64 >64 64

Helicobacter pylori
JIGC360 R (LVX, MTZ) 2 8 16 >64 32 >64 >64 >64 >64 >64 >64 64

Helicobacter pylori 511 R (LVX, MTZ,
CLR) 2 8 16 >64 32 >64 >64 >64 >64 >64 >64 64

Acinetobacter
baumannii ATCC

19,606
S >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Escherichia coli ATCC
25,922 S >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Pseudomonas
aeruginosa PAO1 S >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Gram-
Positive
Bacteria

Staphylococcus aureus
ATCC 25,923 S 2 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Staphylococcus aureus
NEWMAN S 4 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Staphylococcus aureus
USA300 R (MET) 4 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Staphylococcus aureus
NRS271 R (MET) 4 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Enterococcus faecium
ATCC 19,434 S 8 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Enterococcus faecium
36,235 R (VAN) 16 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Enterococcus faecium
36,711 R (VAN) 16 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Enterococcus faecalis
ATCC 29,212 S 8 32 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Fungus

Candida albicans
SC5314 S 16 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

Candida albicans C5 R (VOR, ITRA) 16 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64
Aspergillus fumigatus

Af293 S 64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

a S, drug sensitive; R, drug resistant; LVX, levofloxacin; MTZ, metronidazole; CLR, clarithromycin; MET, methi-
cillin; VAN, vancomycin; VOR, voriconazole; ITRA, itraconazole.
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Figure 5. Growth of seven bacterial strains exposed to compounds 1 and 2 at various concentrations
after 72 h for H. pylori strains and after 24 h for other bacterial strains. OD600, optical density at
600 nm. (A), Growth of H. pylori G27. (B), Growth of H. pylori JIGC360. (C), Growth of S. aureus
ATCC 25923. (D), Growth of S. aureus USA300. (E), Growth of E. faecium ATCC 19434. (F), Growth of
E. faecium 36235. (G), Growth of E. faecalis ATCC 29212.

3. Conclusions and Discussion

Marine fungal secondary metabolites have played a tremendous role in the discovery
of anti-infectious drugs in the last 50 years [20–22]. In this study, five chromone derivatives
(1–5) and seven decalin derivatives (6–12), including five new compounds (1, 2, and 6–8),
were isolated from the culture of Trichoderma sp. JWM29-10-1. Chromone derivatives with
4-oxo-4H-1-benzopyran core scaffold represent a class of polyketides that were widely
distributed in Trichoderma sp. and were reported with antifungal and cytotoxic effects.
However, the systemic antimicrobial effect evaluation against bacteria and fungi and SAR
were not performed up to now. Here compounds 1–2 exhibited potent antimicrobial effects
with MIC values ranging from 2–16 µg/mL. Interestingly, compound 1 exhibited broad
antimicrobial effects, especially for killing multidrug-resistant H. pylori. In addition, our
study revealed that compound 1 showed significant inhibitory effects on the growth of
MRSA and VRE, two of the major causes of community-acquired and hospital-acquired
infections that threaten human health.

The rapid spread of multidrug-resistant (MDR) bacteria is a major concern for global
public health. This threat is aggravated by an increasingly depleted antibiotic pipeline [23,24],
with alarmingly few new classes of antibiotics introduced into clinical use over the past
decades. In 2017, the World Health Organization (WHO) released a list of antibiotic-
resistant “priority pathogens”—a catalogue of 12 bacterial species in urgent need of new
antibiotics [25]. In this list, clarithromycin-resistant H. pylori, MRSA and VRE were ranked
as ‘high” priority pathogens. In this study, compound 1 displayed a potent killing activity
against these three important bacterial pathogens. To sum up, our studies shed light on
the discovery of novel broad-spectrum antimicrobial agents and provide insight for future
medicinal chemistry research.
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4. Materials and Methods
4.1. General Experimental Procedure

Optical rotations were taken on a P-1020 digital polarimeter (JASCO International
Co. Ltd., Tokyo, Japan). The IR spectra were measured on a JASCO FT/IR-480 plus spec-
trometer (JASCO, Tokyo, Japan), and UV/VIS spectra were recorded using a JASCO V-550
UV/VIS spectrometer (JASCO, Tokyo, Japan). Mass spectra were acquired with a Synapt
G2 mass spectrometer (Waters, Wilmslow, UK). NMR data were taken by a Bruker AV 400
(Bruker Co., Ltd., Bremen, Germany) with signals of CD3OD (δH 3.31/δC 49.0) and CDCl3
(δH 7.26/δC 77.2) as internal references. A Chirascan plus (Applied Photo Physics Ltd.,
Leatherhead, UK) was used to acquire the CD spectra. The analytical and semi-preparative
HPLC was carried out on a Shimadzu LC-20AB and LC-20AT Liquid Chromatography,
respectively, with SPD-20A UV/VIS detector (Shimadzu, Tokyo, Japan). Columns for ana-
lytical and preparative HPLC were YMC-Triart C18 column (5 µm, φ 4.6 mm × 250 mm)
and YMC Pack ODS-A column (5 µm, φ 10 mm × 250 mm), respectively. Silica gel for
column chromatography (CC) was the product of Qingdao Marine Chemical Ltd. (Qingdao,
China). ODS for CC were purchased from YMC Ltd. (YMC, Kyoto, Japan). MeOH and
CH3CN with HPLC grade were purchased from Thermo Fisher (Waltham, MA, USA).
Molybdenum acetate [Mo2(OAc)4] was purchased from Shanghai Yuanye Biological Co.,
Ltd. (Shanghai, China).

The microorganism test strains were: Gram-negative bacteria (H. pylori strains G27, 159,
JIGC360, and 511, A. baumannii ATCC 19,606, E. coli ATCC 25,922, and P. aeruginosa PAO1);
Gram-positive bacteria (S. aureus ATCC 25,923, USA300, Newman, and NRS271, E. faecium
ATCC 19,434, 36,235 and 36,711, E. faecalis ATCC 29,212); Fungus (C. albicans strains SC5314
and C5, A. fumigatus Af293). All were provided by the Department of Pathogen Biology &
Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China.

4.2. Fungal Material

The fungal strain JWM29-10-1 was collected and separated from hydrothermal vent
sediments of Kueishantao, Taiwan, China and identified as Trichoderma sp. according to
the morphological characteristics and the 18s rDNA sequence (OP501833), which is 99.9%
similar to that of Trichoderma reesei (CBS999.97). The strain was preserved in Ocean College,
Zhejiang University, Zhejiang, China.

4.3. Fermentation and Extraction

Strain Trichoderma sp. JWM29-10-1 was inoculated on a PDA agar plate, which con-
sisted of 200 g potatoes, 20 g glucose, and 20 g agar in 1 L ddH2O. The spores from the
agar plate were transferred into a triangular flask containing 100 mL PDA liquid medium
and put in a constant temperature shaking incubator for 5 days (28 ◦C, 180 rpm/min) to
obtain 1000 mL of seed culture solution (100 mL × 10). Then 20 mL of seed culture solution
was inoculated to a solid rice medium composed of 100 g rice in 150 mL ddH2O. A total
of 2.5 kg of large-scale fermentation was executed in a solid rice medium and cultured at
room temperature for 45 days. The fermentation broth was extracted with EtOAc, and the
filtrate was concentrated to dryness under reduced pressure to get crude extracts (30.0 g).

4.4. Compound Isolation

The crude extracts were chromatographed by silica gel CC (φ 8.0× 50.0 cm, 200–300 mu,
400 g) eluted with gradient Petroleum ether-EtOAc (100:0, 98:2, 95:5, 9:1, 8:2, 7:3, 6:4, and
0:100) and EtOAc-MeOH (9:1) to obtain 6 fractions (Fr.1–6) based on TLC analyses.

The Fr.2 (1.25 g, Petroleum ether-EtOAc 80:20) was subjected to an ODS CC eluted
with gradient MeOH–H2O (25–100%) to get 13 subfractions (Fr.2–1 to Fr.2–13). Fr.2–5
(39.2 mg, 45% MeOH–H2O) was purified by semi-preparative RP HPLC with an eluent
of 60% MeOH–H2O (0.1% HCOOH) to get compound 2 (2.8 mg). Fr.2–6 (19.1 mg, 55%
MeOH–H2O) was applied to semi-preparative RP HPLC eluted with 65% MeOH–H2O
(0.1% HCOOH) to obtain compound 5 (6.5 mg). Fr.3 (2.06 g, Petroleum ether-EtOAc 70:30)
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was subjected to an ODS CC with stepwise gradient elution of 25%–100% MeOH–H2O to
get 16 subfractions (Fr. 3–1–Fr. 3–16). Fr.3–7 (124.4 mg, 55% MeOH–H2O) was isolated by
semi-preparative RP HPLC with an eluent of 65% MeOH–H2O (0.1%HCOOH) to yield
compounds 3 (7.9 mg) and 4 (37.9 mg). Fr. 3–11 (74.1 mg, 65% MeOH-H2O) was applied to
semi-preparative RP HPLC (70% MeOH-H2O with 0.1% HCOOH) to produce compounds
1 (3.4 mg), 11 (9.1 mg), and 12 (29.4 mg). Fr.4 (3.08 g, Petroleum ether-EtOAc 60:40) was
applied to an ODS CC with gradient elution of 25–100% MeOH–H2O to get 13 subfractions
(Fr. 4–1–Fr. 4–13). Fr.4–9 (224.4 mg, 65% MeOH–H2O) was purified by semi-preparative
RP HPLC with an eluent of 35% CH3CN–H2O (0.1% HCOOH) to produce compounds 6
(28.4 mg), 7 (14.2 mg), 8 (22.7 mg), 9 (45.7 mg), and 10 (37.9 mg).

4.5. Spectroscopic Data of New Compounds

(2E)-1-[(5-hydroxy-7-methoxy-2-methyl-4-oxo-4H-1-benzopyran-3-yl)methyl]3-methyl-2-
pentenedioate (1): White solid powder; UV (MeOH) λmax (log ε): 208 (4.1), 230 (4.1), 250
(4.0), 257 (3.8), and 292 (3.5) nm; IR (KBr) νmax: 3437, 3263, 2953, 2930, 1677, 1625, 1545,
1475, 1453, 1387, and 1212 cm−1; HR-ESI-MS: m/z 363.1084 [M + H]+ (calcd for C18H19O8,
m/z 363.1080); 1H and 13C NMR spectral data (Table 1).

(2S,3S)-5-hydroxy-3-hydroxymethyl-7-methoxy-2-methyl-4-chromanone (2): White
solid powder; [α]25

D −26.8 (c 0.5, in MeOH); UV (MeOH) λmax (log ε): 215 (3.9), 229 (3.7),
287 (3.8) nm; IR (KBr) νmax: 3439, 2984, 2950, 1727, 1668, 1572, 1433, 1374, 1173, 1068, 927,
and 854 cm−1; CD (MeOH) λmax (∆ε): 218 (−2.4), 286 (1.1), 310 (−0.4); HR-ESI-MS: m/z
239.0925 [M + H]+ (calcd for C12H15O5, m/z 239.0919); 1H and 13C NMR spectral data
(Table 1).

Tandyukisin G (6): Pale yellow oil; [α]25
D +19.6 (c 0.5, in MeOH); UV (MeOH) λmax

(log ε): 215 (3.9) nm; IR (KBr) νmax: 3449, 2939, 1711, 1623, 1415, 1383, 1215, 1078, 988, and
926 cm−1; HR-ESI-MS: m/z 451.2707 [M + H]+ (calcd for m/z C25H39O7, 451.2696); 1H and
13C NMR spectral data (Table 2).

Tandyukisin H (7): Pale yellow oil; [α]25
D +16.8 (c 0.5, in MeOH); UV (MeOH) λmax

(log ε): 214 (3.9) nm; IR (KBr) νmax: 3449, 2939, 1711, 1623, 1415, 1383, 1215, 1078, 988, and
926 cm−1; HR-ESI-MS: m/z 451.2699 [M + H]+ (calcd for C25H39O7, m/z 451.2696); 1H and
13C NMR spectral data (Table 2).

Tandyukisin I (8): Pale yellow oil; [α]25
D −11.0 (c 0.5, in MeOH); UV (MeOH) λmax

(log ε): 220 (3.9) nm; IR (KBr) νmax: 3449, 2939, 1711, 1623, 1415, 1383, 1215, 1078, 988, and
926 cm−1; HR-ESI-MS: m/z 451.2697 [M + H]+ (calcd for C25H39O7, m/z 451.2696); 1H and
13C NMR spectral data (Table 2).

4.6. Absolute Configuration Determination of Compounds 6–8

To a solution of compound 6 (16 mg) in 2.5 mL, MeOH was added, 2 mL of aqueous
NaOH (1.0 M). Subsequently, the mixture was reacted at room temperature for 24 h. Then,
the reaction mixture was extracted with MeOH thrice, and the organic layer was dried
under reduced pressure to afford 6A (11.5 mg). Following the same procedure, 7 (4.1 mg)
and 8 (4.9 mg) were hydrolyzed with 0.3 M NaOH (aq.) to produce 7A (2.9 mg) and 8A
(3.5 mg), respectively. Then, a mixture of 6A, 7A, or 8A with dimolybdenum tetraacetate
[Mo2(OAc)4] (1:1.2) in DMSO solution was kept to react for 30 min to form the chiral
complexes. Then, the CD spectra of the complexes were measured.

4.7. Antimicrobial Assays

Antimicrobial assays were assessed by the broth microdilution assay following the
previous literature [26–28] according to CLSI guidelines. Firstly, H. pylori strains were
cultured in Brain Heart Infusion (BHI) medium containing 10% fetal calf serum (FCS)
under microaerophilic conditions (85% N2, 10% CO2, 5% O2, and 90% relative humidity)
using a double-gas CO2 incubator (Binder, model CB160; Tuttlingen, Germany), while
other bacterial pathogens were aerobically cultured in Mueller-Hinton (MH) broth. Candida
albicans and Aspergillus fumigatus strains were cultivated in Roswell Park Memorial Institute
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(RPMI) 1640 medium (Sigma, Kawasaki, Japan) containing L-glutamine and buffered with
165 mM MOPS at pH 7.0 (denoted as RPMI medium). Subsequently, a single colony was
picked and continuously incubated in BHI/MH/RPMI broth to reach a logarithmic growth
phase. Then, the test compounds were dissolved in DMSO and serially diluted two-fold to
different concentrations on a 96-well plate. An aliquot (10 µL) of microbial suspension was
added to each well, and cell concentration was adjusted to approximately 5 × 105 cells/mL
for H. pylori, 5 × 104 cells/mL for other bacterial pathogens and 1 × 103 cells/mL for
fungi. The concentration range tested for each of the compounds was 64–0.125 µg/mL,
and each compound was tested in triplicate. The negative control group was treated with
sterile water. Metronidazole, methicillin, vancomycin, and amphotericin B were used as
the positive control for H. pylori, S. aureus, and other bacteria and fungi, respectively. After
incubating H. pylori at 37 ◦C for 72 h and other bacteria or fungi for 24 h, the plates were
examined, and the MIC was defined as the lowest concentration of the compounds with no
visible growth. Growth of seven bacterial strains exposed to compounds 1 and 2 at various
concentrations after 72 h for H. pylori strains and after 24 h for other bacterial strains was
examined at 600 nm for optical density, and the OD600 was recorded. Experiments were
performed with three biological replicates.
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