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Abstract: Marine microalgae, diatoms, are considered a source of a wide range of high-value com-
pounds, and numerous studies indicate their biotechnological potential in the food and feed industry,
cosmetic industry, nanotechnology, pharmaceutical industry, biodiesel production, fertilizers, and
wastewater treatment. The aim of this study was to compare the growth, chemical profiles, and
antioxidant activity of the diatom Skeletonema grevillei cultivated in a bioreactor and an incubation-
shaking cabinet at different growth phases (after 192 and 312 h). Growth was monitored by evaluating
cell density with the Sedgewick Rafter chamber, and the collected biomass was extracted with 70%
ethanol assisted by ultrasound. Extracts were evaporated to dryness and compounds were identi-
fied in derivatized form by gas chromatography and mass spectrometry (GC-MS) analysis, while
antioxidant capacity was evaluated by DPPH and ORAC. Significantly faster growth was observed
in the bioreactor than in the incubation-shaking cabinet. Oleamide, palmitelaidic acid, glycerol
monostearate, myristic acid, cholesterol, eicosapentaenoic acid, 1-monopalmitin, and 24-methylene
cholesterol were identified as the major compounds in both systems. Among them, oleamide was the
dominant compound in both systems. It is also shown that prolonging the cultivation period had
a direct effect on increasing the extract yield. The highest DPPH inhibition (11.4 ± 1%) and ORAC
values (93.3 ± 8.4 mM TE) were obtained for the S. grevillei extract recovered from the bioreactor after
312 h. The obtained results contribute to the possibility of using S. grevillei for various biotechnological
applications in the future.

Keywords: diatom; bioreactor; incubation-shaking cabinet; derivatized compounds; antioxidant activity

1. Introduction

Market demand is changing rapidly, directing research toward finding new ways to
use marine resources as a renewable and sustainable source of compounds that can be
used in a variety of industries. Among the great biodiversity found in the oceans and seas,
marine microalgae are recognized as microorganisms with exceptional biotechnological
potential, especially in industries directed to production of pharmaceuticals, functional
food ingredients, and food products [1]. Although the application of microalgae is mainly
related to the food industry, many species have potential for wastewater treatment, biodiesel
production, and nutraceuticals [2]. Despite their great potential, the wider application of
a larger number of species is still not economically viable due to numerous challenges,
mainly related to technological barriers.

Diatoms are photosynthesizing microalgae with cell walls of transparent opaline silica
containing compounds such as pigments, sterols, and fatty acids [3]. Currently, the most
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commercially important diatom species is Dunaliella salina. As the biotechnological potential
of diatoms is constantly being discovered, the number of studies on different species is
increasing. Diatoms have shown promising features that make them ideal candidates for
this form of production, as their intracellular content can be used for the production of
biodiesel and valuable food components, and the silicate shell can be used as a material for
nanotechnology [4]. In terms of commercial use, the genus Skeletonema is an unconventional
group of microalgae, but since it is non-toxic, it is suitable for use in the food industry [5]. In
fact, the Food and Drug Administration considers Skeletonema sp. as generally recognized as
safe (GRAS) [6]. Some species such as S. marinoii have been described in the literature [7,8];
however, there are no reports on S. grevillei. Nevertheless, the cultivation of microalgae for
wider use slowed down due to technological obstacles, mainly related to the optimization
of growth, harvesting, and extraction efficiency of targeted compounds [9]. In addition to
the removing of technological barriers, cultivation should be directed toward the utilization
of all production components (bio-based refinery), which would increase the economic
profitability and environmental sustainability of the commercial use of diatoms.

Diatoms are among the most flexible and productive eukaryotic microalgae character-
ized by exceptional adaptability to changing environmental conditions (e.g., temperature
and light). Mechanisms such as extracellular polysaccharide layers, cell wall thickness, and
morphologically distinct resting stages minimize the potential damage caused by stress
conditions [10–12]. On the other hand, their abundance in cultivation under laboratory
conditions is much lower than in the natural environment. Therefore, optimization of
cultivation and selection of suitable initiators for higher production of metabolites is of ut-
most importance. Increased production of primary and secondary metabolites is associated
with stressful cultivation conditions (e.g., nutrient deficiency, non-optimal temperature,
different light sources), while chemical characterization of the intracellular content (primary
and secondary metabolites) is quite complex. Promoting metabolite production through
nutrient deprivation and introducing other stress growth conditions often result in lower
biomass yield, which is a common problem in microalgae production. The main challenges
are obtaining a sufficient amount of biomass for biotechnological tests, problems related
to the effects of nutrients and environmental changes on biosynthesis, and impurities [4].
Conventional cultivation in incubators typically produces little biomass, and the cost of the
production effort exceeds the biomass yield and profitability. In 1997, Fukami et al. [13]
developed the first bioreactor to promote biomass production of the diatom Nitzschia sp. In
general, cultivation in bioreactors achieves greater homogeneity so that all cells have the
same availability of key factors for successful growth, such as nutrients and light. While the
production of higher amounts of primary metabolites is associated with optimal growth
conditions, the accumulation of secondary metabolites is usually associated with stressful
conditions [14]. Microalgae are known to produce high-value bioactive compounds such
as polyunsaturated fatty acids (PUFA), carotenoids, phenolic compounds, sterols, and
sulfated polysaccharides with many health and therapeutic benefits [6,15]. Nevertheless,
there is little information on the cultivation potential and chemical profile of the genus
Skeletonema. Some species such as S. marinoii, S. dohrnii and S. costatum have been previously
studied [7,16–18]; however, there are no reports on S. gravileii. In a nutrient-deprived envi-
ronment, Skeletonema species are able to increase lipid production [10], and even produce
higher amounts of omega-3 eicosapentaenoic acid (EPA) [19]. Under light and temperature
stress, these microorganisms produce components that exhibit antioxidant activity, while
the selection of a suitable cultivation system can significantly increase biomass yields, i.e.,
extract yields [20,21]. In addition, metabolic processes in diatoms are extremely fast, and
the production of various molecules may also depend on the growth phases [8].

Biotechnological improvements are possible by selecting suitable microalgal strains
capable of producing large amounts of various bioactive compounds under optimal con-
ditions. Such a form of microalgae cultivation would make commercialization faster and
more profitable. Therefore, the aim of this study was to determine and compare the growth
of S. grevillei in a standard F/2 medium using two cultivation systems (bioreactor and
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incubation-shaking cabinet). In addition, ethanolic extracts were prepared for each system
at two growth stages and their chemical profiles (dominant compounds) and antioxidant
potential were determined.

2. Results and Discussion
2.1. Comparison of Growth Curves in BRC and EIS

Considering that extending the duration of the cultivation period beyond the station-
ary phase would result in the decay of diatom cells, the end of cultivation in this study
was defined as the time at which one of the systems reached maximum growth. This was
considered the beginning of the stationary phase and in the bioreactor system (BRC) it was
reached after 312 h.

The results of growth in a BRC and the incubation-shaking cabinet (EIS) system during
the cultivation period are shown in Figure 1. First, the growth rate in each system over
time was examined. After 144 h of cultivation, a statistically significant (p < 0.05) change
(onset of exponential growth) was observed in the EIS system, while in the BRC system this
was observed one day earlier. During the first 144 h, there was no statistically significant
difference (p > 0.05) in cell number between the EIS and BRC systems. A statistically
significant (p < 0.05) difference between the systems was first observed after 168 h and
persisted until the end of cultivation. The total mass of dry extracts collected in the
exponential and at the beginning of the stationary growth phase is shown in Figure 2. The
weight of the dry extract was higher in the BRC system at both collection times. The results
indicate that the higher homogeneity in the BRC system provided by the impeller and
airflow was crucial for the uniform availability of light and nutrients, which consequently
led to faster growth of diatoms in this system.
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Figure 1. Growth curves for Skeletonema grevillei in a bioreactor and incubation-shaking cabinet
during cultivation period of 312 h.
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Figure 2. The average mass of dry Skeletonema grevillei extracts from bioreactor and incubation-
shaking cabinet obtained from total diatom biomass after cultivation periods of 192 and 312 h.

Since the early days of diatom cultivation in bioreactors, it has been known that cell
homogeneity allows maximum utilization of limiting nutrients [13]. Although the lack of
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nutrients often stimulates the metabolism to produce secondary metabolites, these condi-
tions cause disturbances in the growth of diatom cultures. Deficiencies in nutrients such
as N and Si negatively affect growth, motility, and often cell morphology, but they are
found to be important in stimulating diatom metabolism to produce more valuable metabo-
lites [22–25]. Ramirez et al. [26] compared the growth of two diatoms, N. epithemioides and
Nitzschia sp. at different temperatures, light intensities and silicate levels. The addition
of silicate was found to be more suitable to stimulate growth than modification of light
and temperature. Raniello et al. [20] recorded greater biomass production of the diatom
Cocconeis neothumensis under different light and nutrient conditions in a bioreactor than in
a batch culture in Petri dishes. Significantly higher extract yield (24 ± 5 mg of dry extract)
was obtained in the bioreactor compared to batch cultures (17 ± 3 mg of dry extract), which
is comparable to the results of extract yield between BRC and EIS systems in this study [20].

2.2. Identification of Compounds by GC-MS

The compounds identified in a BRC, and EIS are listed in Tables 1 and 2 along with their
retention index, percentage of similarity, proportion, and molecular weight. The retention
times and MS m/z of the compounds is given in the Supplementary Material (Table S1).
The chromatograms obtained are shown in Figure 3. Since the method is not quantitative,
the proportions of the compounds refer only to the injected sample. The amount of each
compound in the injected sample volume is expressed as a percentage calculated based
on the areas obtained. In Tables 1 and 2, for the compounds identified in derivatized or
non-derivatized form, only those with ≥85% similarity spectra and matching RI were
considered. In addition, all compounds with similarity less than 90% were confirmed in
non-derivatized form. All listed compounds were confirmed according to previous studies
on the chemical profiling of disatoms [7,27,28].

Table 1. List of tentatively identified compounds from Skeletonema grevillei extracts by GC-MS in
bioreactor after 192 and 312 h.

No.
Retention Index Similarty (%) Proportion (%)

Identified Compound Molar Weight
BRC192 BRC312 BRC192 BRC312 BRC192 BRC312

1 1242 n.d. 96 n.d. 0.05 n.d. Benzoic acid, TMS derivative 194
2 1253 n.d. 86 n.d. 0.02 n.d. Octanoic acid, TMS derivative 216
3 1269 1265 94 92 0.13 0.21 Glycerol, 3TMS derivative 308
4 1348 1345 95 92 0.08 0.05 Nonanoic acid, TMS derivative 230
5 1451 1450 95 91 0.02 0.02 Decanoic acid, TMS derivative 244
6 n.d. 1499 n.d. 94 n.d. 0.13 Malic acid, 3TMS derivative 350
7 1534 n.d. 91 n.d. 0.01 n.d. 1-Dodecanethiol 202
8 1653 1499 97 93 0.05 0.03 Dodecanoic acid, TMS derivative 272
9 1691 n.d. 85 n.d. 0.03 n.d. Tetradecanenitrile 326

10 1753 1752 94 94 0.10 0.14 Tridecanoic acid, TMS derivative 286
11 1767 n.d. 91 n.d. 0.01 n.d. 1-Tetradecanol, TMS derivative 286
12 1788 1787 93 93 0.06 0.17 Loliolide, TMS 268
13 1853 1852 95 96 2.55 6.50 Myristic acid, TMS derivative 300

14 n.d. 1877 n.d. 90 n.d. 0.28 (Z)-3-Hexenyl β -glucopyranoside,
4TMS derivative 550

15 1879 n.d. 94 n.d. 0.11 n.d. Palmitoleonitrile 235

16 1930 n.d. 86 n.d. 0.05 n.d. (E)-13-Methyltetradec-9-enoic acid,
TMS derivative 312

17 1952 1951 94 85 0.17 0.49 Pentadecanoic acid, TMS derivative 314
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Table 1. Cont.

No.
Retention Index Similarty (%) Proportion (%)

Identified Compound Molar Weight
BRC192 BRC312 BRC192 BRC312 BRC192 BRC312

18 2009 2008 89 88 0.97 0.63 Eicosapentaenoic acid, TMS
derivative 374

19 2031 2030 96 97 7.37 12.15 Palmitelaidic acid, TMS 326
20 2053 2052 96 95 2.31 2.73 Palmitic acid, TMS derivative 328
21 2076 n.d. 89 n.d. 0.43 n.d. 9-Octadecynenitrile 261
22 2083 2082 97 97 2.96 0.38 (Z)-9-Octadecenenitrile 263

23 2151 2094 92 83 0.04 0.03 Heptadecanoic acid, TMS
derivative 342

24 n.d. 2157 n.d. 93 n.d. 0.04 Palmitoleamide 253
25 n.d. 2163 n.d. 87 n.d. 0.01 1-Octadecanol, TMS derivative 342
26 n.d. 2178 n.d. 85 n.d. 0.03 Octadecanamide 319
27 2184 2184 92 97 1.48 2.09 Phytol, TMS derivative 368
28 2216 2215 88 92 0.47 0.44 Linoleic acid, TMS derivate 352
29 2230 2229 94 94 2.36 0.90 (Z)-Oleic acid, TMS derivative 354
30 2251 2250 97 95 0.88 0.65 Stearic acid, TMS derivative 356

31 n.d. 2256 n.d. 86 n.d. 0.05 11-Methyloctadec-12-enoic acid,
TMS derivative 368

32 n.d. 2331 n.d. 90 n.d. 0.16
(all-Z)-5,8,11,14,17-

Eicosapentaenoic acid, methyl
ester

330

33 2337 n.d. 92 n.d. 0.10 n.d. (Z)-10-Nonadecenoic acid, TMS 368
34 2365 2362 95 96 2.30 2.50 9-Octadecenamide 281

35 n.d. 2373 n.d. 90 n.d. 0.68 (Z)-5,8,11-Eicosatrienoic acid, TMS
derivative 378

36 2381 2380 94 96 3.29 6.00 Eicosapentaenoic acid, TMS
derivative 374

37 2430 2422 83 82 49.84 33.65 Oleamide, TMS derivative 353
38 2450 2448 95 95 1.24 0.70 Steramide, TMS derivative 355
39 2564 2564 97 89 0.54 0.19 Doconexent, TMS derivative 400

40 2578 2578 93 87 1.39 1.09 2-Palmitoylglycerol, 2TMS
derivative 474

41 2610 2610 96 96 2.91 2.89 1-Monopalmitin, 2TMS derivative 474
42 2771 2770 90 90 1.46 1.59 2-Monostearin, 2TMS derivative 502

43 2787 2787 93 90 0.34 0.10 1-Monooleoylglycerol, 2TMS
derivative 500

44 2805 2804 97 96 5.92 9.30 Glycerol monostearate, 2TMS
derivative 502

45 2826 2825 88 81 0.57 0.10 (Z)-Docos-13-enamide, TMS 409

46 n.d. 2997 n.d. 89 n.d. 0.15 Eicosanoic acid, 2,3-bis-(OTMS)
propyl ester 530

47 2998 n.d. 93 n.d. 0.09 n.d. 2,3-Dihydroxypropyl icosanoate,
2TMS derivative 530

48 3066 3066 89 88 0.09 0.10 2-Arachidonoylglycerol, 2TMS
derivative 522

49 3163 3162 96 96 3.97 6.21 Cholesterol, TMS derivative 458
50 n.d. 3201 n.d. 90 n.d. 0.40 Desmosterol, TMS derivative 456
51 3261 3260 90 * 88 * 3.03 5.09 24-Methylene cholesterol * 398 *
52 3380 3380 88 81 0.15 0.20 Isofucosterol, TMS 484
53 3672 3672 90 92 0.06 0.80 Oleanolic acid 2TMS 600

* A compound identified in non-derivatized form and its molecular weight (other data for this compound, RI, and
proportion, were obtained for the derivatized form) as well as with literature data comparison for its derivatized
form.; n.d.—not detected. BRC192—after 192 h in a bioreactor; BRC312—after 312 h in a bioreactor.
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Table 2. List of tentatively identified compounds by GC-MS in incubation-shaking cabinet after 192
and 312 h.

No.
Retention Index Similarity (%) Proportion(%)

Identified Compound Molar Weight
EIS192 EIS312 EIS192 EIS312 EIS192 EIS312

1 1335 n.d. 95 n.d. 0.10 n.d. Nonanoic acid, TMS derivative 230
2 1444 1379 94 92 0.03 0.03 Decanoic acid, TMS derivative 244
3 n.d. 1448 n.d. 75 n.d. 0.01 Butanedioic acid, TMS derivate 350
4 1650 1630 93 95 0.04 0.05 Dodecanoic acid, TMS derivative 272
5 1691 n.d. 93 n.d. 0.02 n.d. Tetradecanenitrile 209
6 1751 1739 88 93 0.03 0.13 Tridecanoic acid, TMS derivative 286
7 1787 1773 86 92 0.01 0.22 Loliolide, TMS 268
8 1805 1796 88 80 0.05 0.02 Azelaic acid, 2TMS derivative 332
9 n.d. 1831 n.d. 86 n.d. 0.06 Myristoleic acid, trimethylsilyl ester 298

10 1852 1845 95 96 1.59 5.12 Myristic acid, TMS derivative 300
11 1877 n.d. 94 n.d. 0.08 n.d. Palmitoleonitrile 235
12 1898 n.d. 96 n.d. 0.19 n.d. Heptadecanenitrile 251
13 n.d. 1956 n.d. 82 n.d. 0.03 Hexadecanenitrile 251
14 1951 1947 93 94 0.10 0.23 Pentadecanoic acid, TMS derivative 314
15 n.d. 1960 n.d. 93 n.d. 0.05 1-Hexadecanol, TMS derivative 314
16 1968 1964 96 95 0.66 0.25 Tetradecanamide 227
17 2031 2026 88 96 1.63 7.89 Palmitelaidic acid, TMS 326
18 2052 2049 96 96 1.65 2.07 Palmitic acid, TMS derivative 328
19 2076 n.d. 89 n.d. 0.43 n.d. 9-Octadecynenitrile 261
20 2082 2078 97 97 6.10 0.37 (Z)-9-Octadecenenitrile 263

21 2151 2149 91 80 0.04 0.02 Heptadecanoic acid, trimethylsilyl
ester 342

22 2158 2155 97 96 0.97 0.36 Palmitoleamide 253
23 n.d. 2161 n.d. 86 n.d. 0.05 1-Octadecanol, TMS derivative 342
24 2178 2176 98 97 1.93 0.52 Hexadecanamide 255
25 2184 2183 93 97 0.20 2.06 Phytol, TMS derivative 368
26 n.d. 2213 n.d. 88 n.d. 0.24 Linoleic, TMS derivative 352
27 2251 2250 95 95 0.75 0.53 Stearic acid, TMS derivative 356
28 n.d. 2364 n.d. 96 n.d. 13,97 9-Octadecenamide 281

29 n.d. 2380 n.d. 96 n.d. 3.78 Eicosapentaenoic acid, TMS
derivative 374

30 2427 2422 84 82 73.31 35,53 Oleamide, TMS derivative 353
31 2449 2419 95 95 1.37 0.75 Octadecanamide, N-TMS derivate 355
32 2571 n.d. 93 n.d. 0.81 n.d. 13-Docosenamide, (Z)- 337
33 2578 2577 93 94 0.32 1.88 2-Palmitoylglycerol, 2TMS derivative 474
34 2610 2610 94 96 0.47 6.92 1-Monopalmitin, 2TMS derivative 474
35 2771 2771 89 91 1.28 2.20 2-Monostearin, 2TMS derivative 502

36 2804 2804 95 96 3.52 10,64 Glycerol monostearate, 2TMS
derivative 502

37 2998 2997 87 80 0.04 0.10 2,3-Dihydroxypropyl icosanoate,
2TMS derivative 530

38 3162 3160 96 96 1.21 1.97 Cholesterol, TMS derivative 458
39 3260 3529 88 * 89 * 1.05 1.59 24-Methylene cholesterol * 398 *
40 n.d. 3379 n.d. 88 n.d. 0.13 Isofucosterol, O-TMS 484
41 n.d. 3672 n.d. 90 n.d. 0.22 Oleanolic acid 2TMS 600

* A compound identified in non-derivatized form and its molecular weight (other data for this compound,
RI, and proportion, were obtained for the derivatized form) as well as with literature data comparison for its
derivatized form.; n.d.—not detected. EIS192—after 192 h in an incubation-shaking cabinet; EIS312—after 312 h
in an incubation-shaking cabinet.
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Figure 3. The chromatograms of derivatized dominant compounds in Skeletonema grevillei ex-
tracts tentatively identified by GC-MS in: (A,C) bioreactor, (B,D) incubation-shaking cabinet
(1—myristic acid, 2—palmitelaidic acid, 3—eicosapentaeonic acid, 4—oleamide or 9- octadecenamide,
5—1-monopalmitin, 6—glycerol monostearate, 7—cholesterol, 8—24-methylene cholesterol).

The difference in the number of compounds identified in the BRC system after 192
and 312 h of cultivation was 44 and 42 compounds, respectively. Compared to BRC, a
lower number of compounds were identified in both phases of the EIS system, 33 after
192 h and 34 after 312 h of cultivation. Oleamide (also known as 9-octadecenamide or
(Z)-9-octadecenamide) was dominant in both cultivation systems and at both phases. After
192 h, the percentage of oleamide in BRC and EIS was 49.84% and 73.31%, respectively. In
both systems, there was a significant decrease with the extension of the cultivation period,
by 16.19% in BRC and 37.78% in EIS.

Compounds with a proportion higher than 5% were palmitelaidic acid, glycerol
monostearate, cholesterol, 24-methylenecholesterol, myristic acid, and EPA acid in BRC
and glycerol monostearate, palmitelaidic acid, myristic acid, and 1-monopalmitin in EIS.
The second most abundant compound in BRC was palmitelaidic acid, while in EIS it was
glycerol monostearate. Between the two samplings, the proportion of palmitelaidic acid
increased from 7.37% to 12.15% in BRC and from 1.63% to 7.89% in EIS. On the other hand,
the proportion of glycerol monostearate increased 3-fold in EIS (from 3.52% to 10.64%)
while the increase was lower in BRC at the end of the cultivation period (from 5.92% to
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9.30%). To our knowledge, this is the first time it has been identified in marine diatoms. In
both systems, myristic acid increased by 3.95% in EIS and 3.53% in BRC, with an additional
culture period of 120 h. After 312 h of cultivation, EPA was identified in both systems but
the proportion in BRC was higher than in EIS, 6.40% and 3.78%, respectively. In addition,
after 192 h, EPA was not detected in the EIS, while in BRC, it was recorded in proportion of
3.29%. The proportion of 1-monopalmitin in BRC remained almost unchanged (from 2.91%
to 2.89%), and the same compound showed a sharp increase in EIS (from 0.47% to 6.92%)
with the extension of cultivation.

In addition, an increase in tridecanoic acid, loliolide, pentadecanoic acid, palmitic acid,
phytol, 2-monostearin, and loliolide was observed in both systems over cultivation time,
while the proportion of decanoic acid remained unchanged. At the end of the cultivation
period, some newly identified compounds in a proportion of less than 1%, were malic acid,
(Z)-3-hexenyl-β-glucopyranoside, palmitoleamide, 1-octadecanol, desmosterol in BRC and
butanedioic acid, hexadecanenitrile, 1-hexadecanol in EIS.

There were eight compounds that were predominant in both systems. These are
listed in Table 3, with chemical formula and structure and biological activity reported in
recent studies.

Oleamide is an amide derived from oleic acid. It is found in green algae such as
Chromochloris zofingiensis and in few terrestrial plants. There are numerous biological
activities related to this compound [29–31]. In general, oleamide from green algae is used
in the treatment/prevention of arthritis, atherosclerosis, thrombosis, and cancer [32]. It
was reported that oleamide from terrestrial plants (Ipomoea and Dillenia species) excretes
anti-inflammatory properties [29]. Furthermore, oleamide from the fungus Colletotrichum
gloeosporioides has confirmed antimicrobial activity against Staphylococcus aureus (zone of
inhibition = 25 mm) [33]. The extract of Diaporthe schini, in which oleamide was a dominant
metabolite, also showed antimicrobial activity against S. aureus (MIC = 125 uL/mL) [34].
Furthermore, antifungal, and antimicrobial activity of oleamide from cinnamon bark was
recorded against Aspergillus flavus and Klebsiella pneumonia [35]. It is also recognized as a
potential algicide in the control of cyanobacterial blooms, especially against Microcystis
aeruginosa NIES -843, a toxin-producing cyanobacterium [30]. Oleamide was found to be
the main metabolite among the various bioactive compounds found in the green microalgae
Tetraselmis tetrathela when cultivated at a salinity of 30 ppm [36].

Fatty acids are known for their antimicrobial and antibiofilm activity. Monounsatu-
rated palmitelaidic acid showed antibiofilm activity against Escherichia coli, inhibiting 25%
of biofilm formation at 256 µg/mL, while inhibition of S. aureus was 21% at a concentration
of 16 µg/mL [37]. In general, diatoms are known producers of long-chain fatty acids
such as omega-3 EPA [38]. EPA is known for its health-beneficial effects, so it is used in
dietary supplements and nutraceuticals. During the stationary growth phase of diatoms,
the limited amount of nutrients from the culturing media is promoting the production
of EPA in the cells [39]. In our study, we reported a higher accumulation of EPA in a
BRC during the stationary growth phase, which was likely caused by nutrient deficiency.
Moreover, myristic acid was identified as the most abundant fatty acid in S. grevillei for
both cultivation systems. Marzec et al. [27] also found the myristic acid to be the most
abundant fatty acid in the diatom Halamphora cf. salinicola (strain SZCZM1454A). Myristic
acid has been described for a variety of biological activities, including antifungal, antiviral,
anticancer, and antiparasitic activities [40].
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Table 3. The most dominant compounds identified from bioreactor and incubation-shaking cabinet
in Skeletonema grevillei extracts.

No. Compounds Molecular formula Structure Properties

1. Oleamide C18H35NO
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A wide range of biological activities such as anticancer, anticardiac, an-

ti-inflammatory, antimicrobial, anti-psychotic, and antioxidative have been reported for 

cholesterol [42]. In addition, Cutignano et al. [48] reported the anticancer activity of 

24-methylene cholesterol against breast and lung cancer. 

Anticancer [48]

An important cellular metabolite in triacylglycerol (TAG) biosynthesis is 1-monopalmitin.
When TAGs are synthesized more intensively, a decrease in the content of 1-monopalmitin
can be observed [49]. In S. grevillei we observed the decrease of 1-monopalmitin, probably
due to the synthesis of fatty acids such as eicosaonic, EPA, and 5,8,11-eicosatrienoic acids.

Glycerol monostearate is known as the glycerol ester of stearic acid. There is no
available literature on this compound from diatoms. So far it has been extracted from plant
Dichapetalum filicaule and reported for antihelminthic activity against hookworms [41]. In
general, glycerol monostearate from terrestrial plants is widely used to extend shelf-life
and as an emulsifier in the food industry.

One of the most interesting pieces of information about the metabolic system of di-
atoms is their ability to synthesize animal and plant sterols [15]. In this study, the results
showed a three-fold higher production of sterols in the BRC (12.70%) system compared to
the EIS (3.69%) at the end of the cultivation period. The same ratios in sterol production
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between BRC and EIS can also be seen after 192 h of cultivation. The most abundant animal
sterol in diatoms is cholesterol, which has a wide range of biological activities [42,50]. We
identified three sterol compounds in derivatized extracts of S. grevillea, cholesterol, desmos-
terol, and isofucosterol. In addition to cholesterol, 24-methylene cholesterol was found
among the dominant compounds. The proportion of 24-methylene cholesterol in BRC was
3.44% higher than in EIS at the end of the cultivation period. The mass spectra of the fourth
sterol compound, 24-methylenecholesterol in derivatized form (Figure 4) was identified at
a retention index of 3259. Since it was not available from the commercial libraries, the com-
pound was confirmed in its non-derivatized form and in alignment with the literature data.
Yang et al. [28] have provided the GC-MS spectrum for BSTFA derivatized 24-methylene
cholesterol, which is in accordance with our results, while Brooks et al. [51] provided RI for
the BSTFA derivatized 24-methylene cholesterol, which is also in alignment with our data.
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grevillei extracts.

A wide range of biological activities such as anticancer, anticardiac, anti-inflammatory,
antimicrobial, anti-psychotic, and antioxidative have been reported for cholesterol [42]. In
addition, Cutignano et al. [48] reported the anticancer activity of 24-methylene cholesterol
against breast and lung cancer.

These results are consistent with previous studies that characterized the genus Skele-
tonema by a high content of sterols. Sterols with chemotypes of animals (cholesterol and
desmosterol), plants (24-methylene cholesterol) and alga (fucosterol) were previously iden-
tified in the diatom species S. marinoi [7]. Cultivation conditions, especially a decrease in the
amount of available nutrients, cause stress to microalgal cells that stimulates the metabolic
production of sterols [52]. The modification of the cultivation conditions significantly affects
the sterol profile [15]. A similar impact was observed in this study, at the beginning of the
stationary phase in BRC when the amount of nutrients was limited higher sterol content
was observed. Based on the sterol profile, it was originally hypothesized that diatoms
could synthesize sterols by cyclization of lanosterol and cycloartneoids [7,50,53]. However,
Gallo et al. [7] confirmed that the S. marinoi strain does not possess genes for lanosterol syn-
thetase, but that desmosterol and cholesterol are produced via cycloartenoid pathways [15].
Since S. marinoi belongs to the same order as S. grevillei, it can be hypothesized that the
biosynthesis of sterols occurs in a similar manner.

2.3. Antioxidation Activity Assays

The results of antioxidant activity (DPPH and ORAC) of diatom extracts are shown in
Figure 5. At the tested concentration (10 mg dry extract/mL), the DPPH radical inhibition
of the extracts from both systems was low. The highest DPPH inhibition (11.4 ± 1%) was
observed for the extract from BRC after 312 h. Extracts from the stationary phase showed
higher inhibition results for both systems.
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In addition to the DPPH method, the ORAC method was chosen because it best
simulates in vivo conditions and provides results for antioxidant levels equivalent to those
in biological systems [54]. For the ORAC assay, the diatom extracts were diluted 10-fold.
The highest ORAC value of 93.3 ± 8.4 mM TE was obtained for the extract from BRC after
312 h. Similar to DPPH inhibition results, ORAC values increased over cultivation period.

Fatty acids and sterols are recognized as compounds with strong antioxidant activ-
ity [42,55]. The increase in EPA and cholesterol over the cultivation period might be the
reason why the antioxidant activity of S. grevillei extracts also increased. A statistically
significant difference (p < 0.05) in antioxidant activity was detected between cultivation
systems at the same growth stage for ORAC, but not for DPPH.

Antioxidant activity of aqueous and ethanolic extracts of marine microalgae Tetraselmis
sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp. was evaluated using the methods ferric
ion reducing antioxidant power (FRAP), DPPH, and 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) [56]. The highest antioxidant activity was found with the ABTS
method, reaching a reduction of more than 80% in aqueous extracts of Skeletonema sp. while
the results of ethanolic extracts obtained with the DPPH method were comparable to those
obtained in the present study.

3. Materials and Methods
3.1. Chemicals

LiCrosolv Ethanol (gradient grade), Sigma Aldrich (St. Louis, MO, USA) was used
for extraction. In GC/MS analysis NO-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) from
Sigma-Aldrich (St. Louis, USA) was used as a derivatization reagent while dichlormethane
(Gram-mol, Croatia) was used as a solvent for the non-derivatized sample.

3.2. Experimental Design

The strain of S. grevillei (CIM876), isolated from the northern Adriatic Sea, was do-
nated from the culture collection of the Center for Marine Research of the Rud̄er Bošković
Institute (Rovinj, Croatia). The diatom was cultured in F/2 medium in two parallel systems:
(i) in a bioreactor (BRC) (BiostatB Twin, Sartorius, Goettingen, Germany), (ii) in a 5-L
Erlenmeyer flask set in an incubation-shaking cabinet (EIS) (Certomar T plus, Sartorius,
Goettingen, Germany). Two replicas were used for each system, each containing 2 L of
F/2 medium inoculated with 50 mL of S. gravillei (9 × 104 cells/mL). The medium was
prepared according to the previously described recipe [57].

In both systems, diatoms were cultured at 18 ◦C with a light–dark photoperiod set
to 12 h. The light intensity was 7500 lux in both cultivation systems. In BRC, a LED light
(Led GNC Minu Deep AM140, Sicce, Pozzoleone, Italy) was used (a combination of cool
white and blue), and fluorescent lamps (Fluora T8, Osram, Garching, Germany) were used
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in EIS. In BRC, the diatoms were stirred with an impeller at 70 rpm and the air flow rate set
at 1 L/min, while in EIS they were shaken at a low speed (50 rpm) to avoid spillage.

3.3. The Growth Curve Determination

To compare the growth rate in BRC and EIS systems, 5 mL of the cultures were
collected every 24 h of the cultivation period under sterile conditions. The growth curve was
determined by counting the cells in a Sedgewick Rafter chamber using a light microscope
(Sundew MCXI600, Micros, St. Veit/Glan, Austria) at 200xX magnification [58].

3.4. Collection and Extraction of Diatom Biomass

The biomass was collected at the exponential and at the beginning of stationary growth
phases. These were determined at 192 and 312 h of culturing. Using the filtration glass
microfiber filters (Grade GF/F Whatman) at 3.12 psi pressure the biomass was collected
and transferred to falcon tubes and re-suspended in 10 mL of 70% ethanol. Extraction was
performed in duplicate by ultrasound-assisted extraction (UAE) using an ultrasound probe
(Sonoplus HD 3200, Bandalin, Berlin, Germany) set at 20 kHz ± 500 Hz. The extraction was
performed for 5 min, at an amplitude of 30% and treatments of 20 s. The break between
treatments was 40 s. The samples were centrifuged (Lynx 4000 centrifuge, Thermo Scientific,
Waltham, MA, USA) at 29,097× g, at 4 ◦C for 30 min to separate the silicate frustule. The
collected supernatant was filtered through a sterile CA filter with a pore diameter of 0.2 µm
(LGG, Meckenheim, Germany) and evaporated in a centrifugal evaporator (RC10-22, Jouan,
Herblain, France) until completely dry. The mass of the dry extract was recorded.

3.5. Identification of Compounds by GC/MS

The identification of compounds was done according to Torras-Claveria et al. with
minor modifications [59]. Briefly, derivatizing agent (BSTFA) (50 µL) was added to the dry
extracts. The identification of the compounds was determined using gas chromatography
(GC, Nexis GC-2030, Shimadzu, Kyoto, Japan), coupled with a mass spectrometry (MS)
detector (Shimadzu QP2020 NX), equipped with a split/splitless injection port. The analy-
ses were performed using a fused silica capillary column (length 30 m × inside diameter
0.25 mm i.d., film thickness 0.25 m) (SH-5MS, Shimazu, Japan). Ultra-pure helium was
used as carrier gas with a 1 mL/min flow rate. Analyses were performed with MS full scan
(35–750 m/z). A perfluorotributylamine was used for calibration of the mass spectrometer,
at an electron impact ionization energy of 70 eV. The column temperature program was
oven equilibration time of 3 min; initial temperature 120 ◦C for 3 min, increased to 292 ◦C at
a rate of 5 ◦C /min, then increased to 320 ◦C at a rate of 30 ◦C/min and held isothermal for
17 min. Identification of the compounds in derivatized extracts was performed by compar-
ing their trimethylsilyl (TMS) derivative mass spectra and GC retention times with Wiley
12 & NIST 2020 databases [60,61]. All samples were injected and analyzed in duplicate.

Since commercial libraries did not offer adequate mass spectra for the identification
of compounds in derivatized forms, the same samples were analyzed in non-derivatized
form as well. The analyses were performed according to the same protocol, but 50 µL
dichloromethane was used instead of the derivatizing agent. The derivatized and non-
derivatized compounds were identified by their retention index and mass spectra using
the Wiley 12 & NIST 2020 database.

3.6. Antioxidant Activity of Diatom Extracts

Prior to analyses, dried extracts were dissolved in 70% ethanol at a concentration of
10 mg/mL. Two assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and oxy-
gen radical absorbance capacity (ORAC) were used to determine the antioxidant potential
of the extracts.

DPPH radical scavenging ability of diatom extracts was measured in 96-well mi-
croplates, following the method previously reported by Čagalj et al. [62]. Briefly, DPPH
radical solution (290 µL) and prepared sample (10 µL) were pipetted in microplate wells.
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The absorbance was measured at 517 nm and the initial absorbance of the DPPH solution
was set at 1.2. After 1 h, the decrease in the absorbance was measured using the plate
reader (Synergy HTX Multi-Mode Reader, BioTek Instruments, Inc., Winooski, VT, USA).
The antioxidant activity of extracts was expressed as DPPH radical inhibition percentages
(% inhibition). ORAC method was performed using previously published protocols [63,64].
The samples were diluted in a 1:10 ratio and 25 µL of the prepared sample and 150 µL of
fluorescein were added to each well of the microtiter plate. For 30 min, the plates were
thermostated at 37 ◦C followed by the addition of 25 µL of AAPH. The measurements were
recorded every minute over 80 min, at excitation and emission wavelengths of 485 and
520 nm. Results are expressed as µM Trolox equivalents (mM TE). Both assays were done
in triplicate.

3.7. Statistical Analyses

Cell density data, collected and recorded using the Sedgewick Rafter method, were
used for the analysis. The analyses of variance (one-way ANOVA followed by Fisher’s
least significant difference test) was used to determine the significant changes (p < 0.05)
in the growth rate in each system over time and the difference between the EIS and BRC
systems, as well as antioxidant activities [65]. Analyses were performed using Statgraphics
Centurion-Ver.16.1.11 (StatPoint Technologies, Inc., Warrenton, VA, USA).

4. Conclusions

This study confirms that bioreactor cultivation is a successful system for the cultiva-
tion of diatoms. Optimal growth conditions in bioreactors allowed faster entry into the
exponential and stationary growth phases. It could be hypothesized that prolongation of
cultivation would result in slightly higher biomass in the bioreactor; however, the prolon-
gation would also result in the death of diatom cells. The results of the chemical profiles
revealed that oleamide was most abundant compound in the BRC and EIS systems, and
that palmitelaidic acid, glycerol monostearate, myristic acid, cholesterol, eicosapentaenoic
acid, 1-monopalmitin and 24-methylene cholesterol were also abundant. All of the men-
tioned compounds have been previously characterized for their biological activities, which
is why some of them are already used in industry, while the other compounds have the
potential for biotechnological applications. Moreover, in this study, tentative identification
of derivatized 24-methylene cholesterol was obtained, which was not previously found in
its derivatized form in the commercial libraries but is known from the literature. For precise
identification techniques such HR-MS or NMR should be used. In addition, ethanolic
extracts of S. grevillei showed low antioxidant activity at the tested concentration, so further
studies should focus on the biological activity at higher concentrations and quantitative
determination of the biologically active compounds. It should also be emphasized that, in
addition to the extracts, silicate diatom frustules are also used in nanotechnology, which
will certainly affect the profitability of the production of these microalgae in the future.
Future research should focus on finding conditions under which it is possible to maximize
the production of metabolites that have the potential for biotechnological applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20110697/s1. Additional information of identified compound
such as, retention time and m/z, available in Supplementary Table S1 List of identified compounds
from Skeletonema grevillei extracts by GC-MS in incubation-shaking cabinet after 312 h.
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