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Abstract: Neurodegenerative diseases (NDs) represent a drawback in society given the ageing
population. Dementias are the most prevalent NDs, with Alzheimer’s disease (AD) representing
around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects
on the progression of the disease. Thus, research on molecules with therapeutic relevance has
become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic
prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with
feasible potential in NDs such as AD. In this review, we aimed to compile the research works
focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme
β-secretase (BACE1) as a fundamental enzyme in the generation of β-amyloid (Aβ), the inhibition of
the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter
acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena
associated with neurodegeneration mechanisms.

Keywords: cyanobacteria; Alzheimer’s disease; natural products; new therapies

1. General Introduction
1.1. Neurodegenerative Diseases and Natural Compounds

Neurodegenerative diseases (NDs) are highly debilitating conditions that involve the
progressive degeneration and/or loss of nerve cells [1]. Despite years of research in the
field, the exact cause of the neurodegenerative process is unknown, but it is assumed that
results from interrelated mechanisms that trigger neurons degeneration and death—such as
synaptic loss, misfolded proteins, reactive oxygen species (ROS), reactive nitrogen species
(RNS), and electrophysiological abnormalities [2].

Alzheimer’s Disease (AD) is a NDs and the most common dementia [3]. Cognitive
impairment derived from AD interferes with daily life activities, ultimately causing de-
pendence, disability, and even death [4]. Despite efforts to find therapies, currently, there
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are no available drugs capable of halting the disease progression but only able to mitigate
the symptoms. Thus, the search for new drugs has been unceasing, namely the search for
compounds of natural origin.

Living organisms represent a rich source of natural compounds, both with pharma-
cological potential or as lead compounds [5]. Natural products (NP) have been crucial
for the development of new drugs applied in various fields of biotechnology, with an
ever-growing relevance in the pharmaceutic industry, namely in inflammation, cancer, and
NDs [6,7].

Although plants and invertebrates, have been the major sources of NP [8] the mi-
croscopic world has also proved to be a prolific source [9]. Even compounds initially
attributed to invertebrates were later identified as being produced by symbiotic microor-
ganisms. Two well-known examples are the Brentuximab Vedotin (Adcetris®) and the
Trabectedin (Yondelis®), approved for the treatment of Hodgkin’s lymphoma and the
Trabectedin (Yondelis®) approved for the treatment of soft tissue sarcoma and ovarian
cancer, respectively [10,11]. The first was initially found to be produced by a marine
sponge and lately by a symbiotic cyanobacteria, while the second example was firstly
attributed to a tunicate and lately to a symbiotic bacterium [12]. Both examples refer to
compounds produced by marine organisms. The marine environment has, in fact, emerged
as a promising source for novel bioactive NP namely in AD drug discovery [7]. Examples
are ziconotide, an alternative for opioids extracted from the cone snail Conus magus [13];
and bryostatin-1 from Bugulaneritina [14], which has pharmacologic potential for different
diseases, including AD [14–16].

1.2. Cyanobacteria

Cyanobacteria are a morphologically and physiologically diverse group of photoau-
totrophic organisms [17]. Their early appearance in the history of life enabled them to
spread widely, including in environments with extreme conditions such as very high tem-
peratures and salinity. Cyanobacteria high rate of adaptation implies a diversity of survival
mechanisms, that include the production of secondary metabolites attractive for biotech-
nology [18]. As examples, cyanobacteria produce exopolysaccharides (EPS) in order to
survive desiccation [19]; trehalose as a mechanism against freeze stress [20]; microsporine-
like amino acids (MAAs) and scytonemin (SCY), that act as sunscreens [21,22]; and even
protective stress proteins [23]. Other interesting compounds include the phycobiliproteins
phycocyanin (PC), phycoerythrin (PE) and allophycocyanin (APC), carotenoids and phe-
nols. C-phycocyanin (C-PC) was found to induce hepatoprotective, anti-inflammatory
and inhibitory effects on cytochrome oxidase 2 [24,25]; PE was found to potentialize anti-
inflammatory activity, while carotenoids exhibit antioxidant and anti-inflammatory activity,
with the ability to lower the risk of heart disease and stimulate the immune system [26].
Considering the nervous system, NP from cyanobacteria have a wide spectrum of ac-
tion, from toxic molecules capable of neurotoxic activity, such as anatoxin-a(s) [27], to
compounds with therapeutic potential for AD such as tasiamide B, an aspartate protease
inhibitor of β-secretase, (BACE1) [28].

1.3. Objectives of the Review

The severity of the individual, familiar, and societal problems underlying AD and
the lack of treatments have driven the constant search for new therapies. NP continue to
show increasing importance in the field of pharmacology. Considering cyanobacteria as an
interesting group of microorganisms for NP with pharmacological potential, this review
aims to compile the existing research that links cyanobacteria to AD in order to contribute
to ameliorating the disease in an innovative away.

2. Alzheimer Disease

AD is a ND that results from a complex network of mechanisms and factors, including
genetics, environment, and lifestyle [29]. In AD, a gradual and progressive deterioration
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of neurons of the central nervous system (CNS) occurs [30,31], affecting cognition and
memory. As previously referred, AD is the most prevalent NDs, covering approximately
60–70% of the dementia cases. Nowadays, nearly 47.5 million (14%) people suffer from this
neurological disorder. As life expectancy continues to increase, this number is estimated
to increase about 7.7 [32], thus expected to triple to 152 million by 2050 [3]. Prevalence in
Europe shows a notable age-related increase from 65 years old, with increasing prevalence
values of 0.97%, 7.66% and 22.53% for 65–74, 74–84, and up to 85 years old, respectively [33].

The histological hallmarks of AD include the presence, in the brain, of extracellu-
lar amyloid plaques composed by misfolded amyloid-β proteins (Aβ), and intracellular
aggregations of neurofibrillary tangles (NTFs), constituted by hyperphosphorylated tau
protein [34,35]. It is thought that Aβ plaques develop initially in basal, temporal, and
orbitofrontal neocortex regions of the brain to later spread to the neocortex, hippocampus,
amygdala, diencephalon, limbic system, and basal ganglia [36]. The structural and func-
tional degeneration seems to be focused on the neocortex and hippocampus which can also
be developed by synaptic loss [1].

2.1. Alzheimer Disease Hypothesis and Main Therapeutical Targets

Despite the extensive research focus on AD, its origin, development, and progres-
sion are still unclear. However, several hypotheses are pointed out that try to explain
its development.

2.1.1. Amyloid Cascade Hypothesis (ACH)

In ACH, the Aβ peptide plays a main role on the pathology. It is produced through the
sequential cleavage of the transmembrane amyloid precursor protein (APP) by BACE1 [28],
followed by γ-secretase. BACE1 cleaves the extracellular domain of APP, releasing the
βAPP from the cell surface and leaving the C-terminal of APP (CTF-β), resulting in Aβ
peptides. Excessive Aβ peptide suffers a chain of self-assembly steps that culminates
with the formation of insoluble Aβ aggregates, deposited extracellularly near to synapses.
Aβ aggregates trigger a downstream cascade of events—leading to synaptic and mito-
chondria dysfunction, endoplasmatic reticulum stress, oxidative stress, DNA damage,
neuroinflammation [31,37–39]—impairing cognitive function and ultimately death. Aβ
plaques-induced neuronal death is also due to alterations in the cellular membrane integrity
(formation of pores) and fluidity [29]. Aβ oligomers can also cause abnormal kinases and
phosphatases activities, leading to the hyperphosphorylation of tau protein and subsequent
NFT formation [34]. Aβ elevated levels and aggregation can alone increase Aβ produc-
tion [40]. Further contribution for both, Aβ and tau pathology, in AD is provided by the
reduced expression of the brain-derived neurotrophic factor (BDNF), which also has a role
on memory besides the neuronal growth function [41]

Based on the ACH hypothesis, therapeutic approaches have focused on the reduction
of Aβ production, aggregation, accumulation, and on enhancing Aβ clearance. A promising
approach is the inhibition of BACE1 [35]. In contrast with γ-secretase inhibitors, the BACE1
inhibitors show higher substrate specificity and fewer effects [42]. However, despite
the number of discovered BACE1 inhibitors, several phase III clinical trials have been
abandoned due to safety reasons, or because the end-points were not reached, or even due
to cognition worsening [43].

Another attractive therapy for AD targeting the Aβ pathology is anti-Aβ passive
immunotherapy with antibody administration, based on the peripheral sink hypothesis
mechanism [44]. This hypothesis suggests that Aβ peripheral immunological clearance
promotes CNS Aβ release through a concentration gradient mechanism [44,45]. To reduce
the Aβ-induced synaptotoxicity, the inhibition of the non-receptor Fyn tyrosine kinase is
a promising target, which is activated through Aβ oligomers-stimulated cellular prion
protein (PrPC), interfering with long-term potentiation. In addition, Fyn seems to correlate
with abnormally phosphorylated tau [46].
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2.1.2. Cholinergic Hypothesis (CH)

The CH is based on a deficient cholinergic system signaling by acetylcholine (ACh) [47].
Cholinergic neurons are involved in cognitive processes as memory, attention, learning
and regulation of the sleep cycle function [48]. In AD patients, the cholinergic neurons that
innervate the hippocampus and neocortex are degenerated, which leads to acetylcholine
deficiency and loss of cholinergic signaling. In the later phases of AD, butyrilcholinesterase
(BChE), which also degrades ACh, increases up to 90% [49,50]. In addition, the choline
acetyltransferase (ChAT) involved in ACh synthesis, is decreased [51]. In late stages, both
enzymes involved in the cholinergic signaling (synthesis and degradation) have abnormal
activities leading to a failure in the cholinergic system [14,52].

AD therapy strategies include the increase of the acetylcholine levels through the
inhibition of the AChE, the use of acetylcholine analogues and allosteric modulators of
acetylcholine receptors [53–59]. Among those, the inhibition of AChE has been the most
relevant strategy, which includes most of the current treatments [60].

2.1.3. Glutaminergic Hypothesis (GH)

The GH is focused on the crucial role of the inappropriate GluN2A-containing N-
methyl-D-aspartate receptors (NMDARs). This hypothesis attributes a relevant contribu-
tion of inappropriate stimulation of glutamate receptors on the deterioration of synaptic
function. Overstimulation leads to CNS complications and may be related with Aβ plaques
interaction, leading to synaptic impairment and neurodegeneration [6,27]. NMDARs are
involved in synaptic transmission and synaptic plasticity, (closely related with memory and
learning) and its hyperexcitation results in excitotoxicity mediated by increased Ca2+ influx,
which affects synaptic signaling and function ultimately leading to neuronal death [61,62].
On the other hand, Aβ plaques can overstimulate NMDA receptors with consequent
desensitization and higher Ca2+ influx [63–65].

This glutamate-induced excitotoxicity can be addressed by blocking its NMDAR
with NMDAR inhibitors, such as galantamine or through the regulation of Ca2+ levels,
potentially achieved by NSAIDs such as diclofenac and rofecoxib, which can combat neu-
roinflammation and regulate tau phosphorylation, through the Rho-GTPases pathway [29].

2.1.4. Tau Hypothesis (TH)

In the TH, the hyperphosphorylation of microtubule-associated protein tau occurs,
followed by its aggregation in NTFs [66]. Tau protein is mainly found combined with
microtubules in neuronal axons of the brain [67]. Its role in cytoplasmatic transport en-
ables to maintain synaptic function and structure at the same time that regulates neuronal
signaling [68,69]. In AD, tau protein is present in hyperphosphorylated and abnormally
cleaved forms and conformations. As consequence, tau protein is prone to aggregation
and subsequent production of NFT [70]. Hyperphosphorylation of tau causes defective
microtubule functioning due to the loss of tubulin polymerization capacity [71,72]. Intra-
cellular NFTs produce neurotoxicity and reduce the number of synapses, deteriorating cell
functioning [73]. Moreover, tau has the capacity to spread pathological tau in a prion-like
mechanism and can have implications in neurodegeneration and cognition [74]. Addi-
tionally, the hyperphosphorylation levels of tau positively correlate with the severity of
AD [75].

In the light of this approach is the development of inhibition mechanisms for kinases
and tau aggregation, immunotherapeutic agents, and stabilizers of microtubules. Evidence
and proposal of a prion-like transmission mechanisms for tau and Aβ can be considered
valid approaches for AD treatments [42]. In order to prevent hyperphosphorylation of tau
protein, a promising approach is the inhibition of glycogen synthetase kinase-3β (GSK-3β),
whose abnormal activity leads to hyperphosphorylation and accumulation of tau protein
and even mediation for Aβ plaques production [46,76].
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2.1.5. Inflammation and Oxidative Stress Hypothesis

Unlike the rest of the body, the brain immune system is not constituted by peripherical
immune cells, instead, the immunological function is exerted by microglia. When microglia
are activated into a pro-inflammatory state, neuroinflammation is triggered [77]. The
release of cytokines and reactive oxygen species (ROS), as part of the pro-inflammatory
function can cause severe neuronal damage when it is unbalanced with the cell repair
function, leading to synaptic loss and ultimately neuronal death [77].

As early events on AD, chronic inflammation has been registered [40]. Inflammation
seems to be a result of the release of inflammatory cytokines from excessive deposition
of microglial cells [29]. In fact, when small Aβ plaques begin to form, the activation and
attraction of microglia occur [35]. The excess of Aβ plaques and the constant activation of
glial cells provokes the release of inflammatory cytokines, producing neuroinflammation
and synaptic loss. Additionally, the tau-containing tangles can also stimulate a neuronal
immunological response [77]. Furthermore, cytokines can raise the expression of the
insulin-degrading enzyme neuronal apoptosis as well [29]. Therefore, neuroinflammation
can be considered a relevant therapeutic direction [29].

Still on an anti-inflammatory approach, the inhibition of the receptor-interacting
serine/threonine-protein kinase 1 (RIPK1) has been proposed for the suppression of mi-
croglia. However, the selectivity of these inhibitors is a prior concern. With a remarkable
entrance to phase I clinical trials for AD treatment, DNL-747 can be the first in-human
utilization of RIPK1 inhibitors [44].

Oxidative stress leads to oxidative damage in biomolecules such as DNA, lipids, and
proteins. As the brain energy uptake is indeed elevated, this organ is vulnerable to a
higher ROS production. The confirmation of high levels of oxidative damage markers and
low levels of antioxidants in AD brains suggests that oxidative stress is implicated in AD
pathology [40].

Oxidative stress can trigger a cascade of events that leads to neuronal death. It can cause
glycose dysmetabolization by damaging glycolytic enzymes and enzymes involved in energy
production that results in the loss of ion gradient and calcium dyshomeostasis [78,79]. High
Ca2+ levels can (1) stimulate endonucleases, phospholipase and proteinase activities, with
consequent cell dysfunction; (2) lead to loss of microtubule assembly, which compromise
energy transport to/for synapses [80,81]; (3) induce swelling of the cell, leading to alterations
on mitochondrial permeability and release of cytochrome c and apoptosis inducing factor
1 [82]; and (4) promote synaptic dysfunction [79].

Oxidative stress can also affect directly nuclear and mitochondrial DNA, impairing all the
processes of protein synthesis, including those involved in energy production [83–85]. Then,
mitochondria dysfunction in AD ATP production and leads to the loss of ion gradient and
consequent loss of neurotransmission membrane potential and further synaptic loss [78,86,87].

2.2. Current Therapeutics

Currently, anti-AD drugs include AChE inhibitors and an NMDA receptor antagonist.
Galantamine, rivastigmine, donepezil, and memantine are the most common drugs and
with the exception of memantine, they all are AChE inhibitors [88].

Galantamine, besides its AChE inhibition action, also interacts with nicotinic cholin-
ergic receptors [89], being effective to treat cognition-relative symptoms [30]. It is a com-
petitive inhibitor from a natural source [8], approved in 2001 by FDA under the name
of Reminyl [90]. It is appropriate for mild to severe AD [91]. Donepezil is also an in-
hibitor of AChE, and in addition it interferes on various aspects of glutamate-induced
excitotoxicity, reduces the early expression of inflammatory cytokines, thereby acting in
several of AD pathogenic stages [30]. It is a non-competitive reversible inhibition with
low potency against BChE, with the ability to cross the blood–brain barrier (BBB) and
provides a longer and more selective action (compared with previous AChE inhibitors)
with easier to manage side effects [27]. Approved in 1996 [92], it is adequate for mild to
severe AD [91]. Rivastigmine exerts its reversible inhibitor action on both AChE and BChE,
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based on a carbamate moiety with higher affinity to AChE than the carbamate moiety of
ACh, enabling temporal inactivation of the enzyme [30]. It is a synthetic derivate of the
natural compound physostigmine with capacity of crossing the BBB [27]. Rivastigmine
was approved in 2000 for mild to moderate AD [91,93]. Finally, memantine is a blocking
agent against NMDA receptors, revealing protective properties against NMDAR-mediated
excitotoxicity with a strong voltage-dependency. Memantine protects the memory and
learning process by allowing “the transmission of transient physiological signals” and
induces an additional neuroprotective effect through the stimulation of neurotrophic factor
release from astroglia [91]. Memantine was approved in 2003 by the FDA for moderate to
severe AD [94,95].

There has been an investment on the discovery of new AChE inhibitors from a wide
range of source and molecules, among which flavonoids can be a great target for potent
AChE inhibitors in addition to its antioxidant properties, as the flavonoid Galagin from
the rhizome Alpiniae officinarum [30]. Cyanobacteria are another potential AChE inhibitor
source further discussed on this review.

3. Cyanobacteria Potential in Alzheimer Disease

With a focus on AD, cyanobacteria have shown an increasing therapeutic potential
and a feasible source of novel active drugs. The history behind the relevance of cyanobac-
teria in neuroprotection comes from the production of neuroactive substances such as
anatoxin-a(s), microcystins, and nodularin, which exert a competitive advance in grazing
defense, by reducing palatability and avoid predation [96]. Particularly regarding the
cholinergic system, AChE inhibitors in cyanobacteria seems to be involved in inhibiting
the colonization of colonies and filaments by other organisms, since AChE inhibitors were
found to inhibit invertebrate larval settlement [97].

Examples of bioactivity against AD from cyanobacteria extracts or compounds are
listed in Table 1 and summarized in Table 2.

The Symploca sp. compound, tasiamide B (Figure 1), has been identified as a potential
BACE1 inhibitor [98,99]. Also, tasiamide F (Figure 1), an analogue of tasiamide B, isolated
from Lyngbya sp. was found to inhibit BACE 1, however with 8 fold less effectivity. This low
BACE1 inhibitory potential of tasiamide F compared with tasiamide B was attributed to
minor alteration on residues that have hydrophobic interactions with the receptors pocket,
which exert the inhibitory effect [100]. Also, series of tasiamide B derivatives were assessed
for their ability to inhibit the activity of BACE1. Results indicate that tasiamide B is a good
template for the development of selective BACE1 inhibitors [101].

The search for AChE inhibitors in cyanobacteria has also been one of the approaches
followed. Anatoxin-a(s) (Figure 2) found in several cyanobacteria, and initially extracted
from Anabaena flos-aquae, has been largely studied for AChE inhibitory potential. Results
on AChE inhibitory assays showed that anatoxin-a(s) was able to inhibit both AChE and
BChE, with more specificity towards AChE. In in vivo experiments confirmed these results
as rats treated with the toxin showed similar signs of anticholinesterase poisoning [102].

Several methanolic extracts from the São Paulo Botanical Institute Cyanobacterial
Culture Collection—Calothrix sp. CCIBt 3320, Tolypothrix sp. CCIBt 3321, Phormidium
cf. amoenum CCIBt 3412, Phormidium sp. CCIBt 3265, and Geitlerinema splendidum CCIBt
3223 exhibit reversible inhibition of AChE in in vitro studies. Furthermore, in vivo stud-
ies in mice showed systemic effects similar to those observed with anticholinesterase
treatments [103].

Nostocaroline (Figure 2) isolated from the strain Nostoc 78-12A was found to be a
potent BChE inhibitor with a IC50 value of 13.2 µM, comparable to galantamine [104].
In addition to this inhibitory activity, Nostoc strains such as Nostoc elispsoporum CCAP
1453 were studied for their antioxidant capacities on Trolox equivalents [105]. Their
hexane, ethyl, and water fractions showed high values of Trolox equivalents, varying from
2.37 +/− 1.15 to 21.09 +/− 1.83 µmol Trolox/g according to the Nostoc strain [105].
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Phycobiliproteins from cyanobacteria were found to be attractive for AD therapy and
prevention, namely PC and PE. Through molecular docking, an energetically favorable
interaction between PC from Leptolyngbya sp. and BACE1 was found using the nematode
AD-model Caenorhabditis elegans. The crystal structure and interaction of PC with BACE1
revealed a good interaction between both compounds [106]. Moreover, PE, also from
Leptolyngbya sp., was found to inhibit BACE1 in in vitro assays. The in vitro high affinity
between PE and BACE1 were further confirmed with in vivo studies with C. elegans worms,
where a reduction on Aβ deposition was registered. These results confirm PE as a potential
active principle for development of new drugs against AD [107].

The cyanobacteria genus Spirulina has been one of the most studied concerning anti-
AD treatments, mainly regarding its antioxidant, anti-inflammatory, and neuroprotective
effects. C-Phycocyanin (C-PC) from Spirulina sp. showed antioxidant, anti-inflammatory,
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and neuroprotective activities. C-PC was found to inhibit Aβ40/42 fibril formation [108].
When male Wistar rats exposed to the neurotoxic agent Tributyltin chloride (TBTC) were
treated with C-PC, a remarkably reduction on ROS generation was registered [109]. On
brain homogenates, the protein carbonylation and the lipid peroxidation increased by
TBTC were efficiently restored to control values; the enzymatic activities related with the
antioxidant response altered by TBTC were also restored to control levels [109]. Apart from
its antioxidant effect, C-PC also showed an effect on inflammatory molecules by combating
the TBTC induced NF-kB p65 upregulation and caspase-12 activation [109]. The same
study also revealed the efficacy of C-PC at reverting the nefast effects of TBTC in microglia,
oligodendroglial, and astroglia populations [109].

From Spirulina platensis, a water extract rich in C-PC, administered in the dietary sup-
plementation of transgenic SAMP8 mice, enhanced the results of passive and active avoid-
ance behavioral tests, to similar values of those of the external control group SAMR mice,
suggesting that S. plantesis inclusion into the diet can improve emotional memory [110].
Through the analysis of molecular markers, the effects on memory could be explained
by the lower brain and hippocampal Aβ accumulation, and by the enhanced brain redox
status (lipid peroxidation, CAT, SOD, and GSHx activities) observed on supplemented
mice compared with control groups [110]. Similarly, S. plantesis daily administration by oral
intubation during 24 days on male SW mice, induced neuroprotectant effects against the
neuronal damage induced by kainic acid (KA) administration [111]. Although S. plantesis
did not protect against KA-induced seizures, it reduced KA-mortality by 40%, partially
protected against neuronal cell death and reduced the number of atrophic neurons in CA3
hippocampal region [111].

Concerning PE, this compound isolated from Phormidium sp. A09DM presented
neuroprotective effects on C. elegans and Drosophila melanogaster due to its antioxidant
effect. In fact, PE reduced ROS levels in C. elegans induced with oxidative stress and
reduced oxidative stress by 14.5% in the AD phenotype C. elegans CL4176. In addition, on
D. melanogaster under oxidative stress, PE improved locomotion, and enhanced antioxidant
enzymes activities [112]. Also, from Phormidium sp. A09DM the phycobiliprotein APC
increased stress tolerance in C. elegans CL4176 by showing higher ROS scavenging activity,
attenuated Aβ aggregation and increased the lifespan of the worms [113].

Miranda et al. (1998) [114] studied, in vivo, the effects of a 5 g daily dose of Spirulina
maxima extract on Wistar rats, in plasma and in the liver. While liver antioxidant capacity
was similar after the S. maxima treatment, the plasma antioxidant capacity increased up
to 71% after 7 weeks of treatment. The same study defined, on an in vitro experiment, a
S. maxima extract IC50 value of 0.18 mg/mL for the reduction of oxidation [114]. Other
studies showed the ability of a S. maxima ethanolic extract to increase the concentration of
brain-derived neurotrophic factor (BNDF) during Aβ1-42-induced neurotoxicity in PC12
cells, preventing Aβ-induced neuronal death [115]. The growth of S. maxima on Zarrouk’s
medium NaNO3 and/or combined with phenylalanine (L-PA) had positive effects on the
production of total phenolics and flavonoids, which in turn resulted in the DPPH radical
scavenging activity and antioxidant effects towards CCI4-induced lipid peroxidation in
liver homogenate [116]. Also from a review on S. maxima phycocyanobilin, it was suggested
that this compound could modulate the microglia cytotoxicity and neuronal function and
survival through its NADPH oxidase inhibitory activity [117].
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Table 1. Compilation of cyanobacterial bioactivity against AD pathology.

Genera/Specie Compound/Extract Mechanism/Effect In Vitro Assays In Vivo Assays Reference

Symploca sp. Tasiamide B BACE1 inhibition

BACE1 inhibition assay
H4 cells:

HPLAP-APP Reporter Assay; CTF analysis; BBB
PAMPA;

CHO 2B7 cells:
Secreted Aβ Assay.

CF-1 Mice:
plasma and brain Aβ levels by anti-Aβ
antibody; plasma and brain compounds

stability monitoring by HPLC

[98,99]

Leptolyngbya sp.

Phycocyanin BACE1 inhibition In silico assay of molecular docking Transgenic Caenorhabditis elegans AD-model [106]

Phycoerythrin BACE1 inhibition

Thermodynamics of binding using surface plasmon
resonance (SPR);

isothermal titration calorimetry (ITC);
enzyme activity by kinetic parameters.

Caenorhabditis elegans CL4176 transgenic AD
model worm: Aβ reduction by Thioflavin-T

staining assay
[107]

Calothrix sp.

Methanolic extract AChE inhibition AChE inhibitory assay [103]

Tolypothrix sp.

Phormidium cf. amoenum

Phormidium sp.

Geitlerinema splendidum

Spirulina sp. C-phycocyanin (CPC)

Inhibition of Aβ40/42 fibril
formation EM imaging [108]

Antioxidant;
anti-inflammatory

Wistar rats:
bioavailability of C-PC in cortical tissue
homogenates; DCFH-DA for ROS levels;

Cayman’s protein carbonyl assay; TBARS for
lipid peroxidation damage; GPx, GR; GST;
SOD; CAT assays; Caspase-12 activation

assay; Calpain activation assay; Western Blot
for Cox-2-, Nk-kB, IL-6, GAPH, GFAP, NF,

MBP, IBA1, CD11b, Nrf2, MT, PGP, Occludin,
Claudin, ZO-1, Connexin43, b-actin;

Immunohistochemistry for GFAP and DAPI.
TUNEL staining

[109]
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Table 1. Cont.

Genera/Specie Compound/Extract Mechanism/Effect In Vitro Assays In Vivo Assays Reference

Spirulina sp. PUFAs:

Reversion of age-related
impairments in LTP; spatial

learning and
depolarization-induced

glutamate release; decrease
in age-related microglial
activation and associated

oxidative stress; inhibition of
the Aβ-induced LTP;

inhibition by EPA

Glia cells:
ELISA for IL-1β and IFNΥ analysis; IL-1βmRNA

analysis on agarose gel

Male Wistar rats:
assessment of glutamate release by

synaptosomal tissue optical density; ROS
quantification of hippocampal homogenate

(fluorescence); LTP induction and
measurement of excitatory postsynaptic

potential (EPSP);
Young and aged Wistar rats:

morris water maze; analysis of LTP;
sphyngomielinase; ELISA for 8-hydroxy-2′

deoxyguanosine; immunohistochemical
analysis; analysis of fatty acids;

Young, middle-aged and aged male Wistar
rats: induction of LTPD in performant

path-granule cells synapse with electrode;
SDS-PAGE for expression of RAGE, CD40,

pJNK and PPARΥ on hippocampal
homogenate

[118–121]

Spirulina sp. Water extract Antioxidant ABTS assay
DPPH assay [122]

Spirulina platensis

C-phycocyanin Antioxidant DPPH assay [123]

Water extract (SP)

Improve memory function,
prevention of Aβ

accumulation, reduction of
oxidative stress, enhanced

catalase activity.

SAMP8 mice:
shuttle box: single trial passive avoidance test.
Active (shuttle) avoidance test; ambulatory
activity in cubic boxes; measurement of Aβ

deposition: Immunostaining of sections of the
brain with anti-Aβ antibody;

redox status: hippocampus, striatum and
cortex homogenates separately; lipid

peroxidase, SOD, CAT, and GSH-Px activity
assays; lipid peroxidation levels by

spectrophotometry

[110]

Oral administration
Reduction of KA-neuronal
death in C3 hippocampal

cells; antioxidant

Male SW mice treated with kainic acid (KA):
determination of the atrophic and nucleolated

pyramidal neurons number and volume of
observed in the hippocampal region

[111]
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Table 1. Cont.

Genera/Specie Compound/Extract Mechanism/Effect In Vitro Assays In Vivo Assays Reference

Spirulina maxima

Methanolic extract Antioxidant
Brain homogenate incubated with and without

extract antioxidant activity by inhibition of
peroxidation

Wistar rats: antioxidant activity by lipid
peroxidation of liver, plasma, and brain

homogenate
[41,114]

70% ethanolic extract

Suppression of the
Aβ-induced toxicity in PC12
cells by decrease oxidative

stress, cell death; increase the
brain-derived neuro- trophic
factor (BDNF) and decrease

BACE1

MTT assay; LDH assay; intracellular glutathione;
western blot [115]

Polyphenolic extracts Antioxidant DPPH assay Male Wistar rats: lipid peroxidation in liver
homogenate [41,116]

Phycocyanobilin
Neuroprotection by

inhibition of NADPH
oxidase

[117]

Nostoc 78-12A Nostocarboline BChE inhibition AChE inhibitory assay [104]

Nostoc ellipsosporum
Hexane, ethyl acetate and

water extract Antioxidant
Trolox equivalent (TEAC) assay by ABTS radical

decolorisation method; Folin Ciocalteu method for
total phenolic content

[105]Synechococcus
sp.

Lyngbya sp. Ethanolic fraction
Antioxidant; advanced
glycation end-products

(AGEs) inhibition

DPPH assay; phosphomolybdenum assay; BSA
glycation inhibition assay; nitric oxide inhibition

assay for anti-inflammatory activity

C. elegans (N2, Bristol) glucose-induced
hyperglycemia:

HCS analysis for AGE accumulation in live
animals; quantitative analysis of AGE

accumulation by spectrofluorimetry; DNSA
method for glucose analysis;

semi-quantitative RT-PCR analysis for stress
responses genes (glod-4, daf-16, daf-2.)

C. elegans TJ356:
daf16: GFP:HCS of the localization of daf-16

tagged GFP

[124]

Tasiamide F BACE1 inhibition Antiproteolytic activity [100]
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Table 1. Cont.

Genera/Specie Compound/Extract Mechanism/Effect In Vitro Assays In Vivo Assays Reference

Lyngbya majuscula

Hydroalcoholic extract Antioxidant and
neuroprotective

PC12 cells:
MTT assay; DPPH assay; Caspase 3 activity; DNA

ladder assay; DAPI staining
[125]

Kalkitoxin
Blocking agent to

Voltage-gated Sodium
channels (VGSC)

Cerebellar granule neurons:
LDH activity assay

Intracellular Ca2+ analysis
whole cell binding assay

[126]

Anabaena-flos-aquae

Anatoxin-a(s) AChE and BChE inibithion AChE inhibitory assay Sprague-Dawley male rats for blood cells:
in vitro cholinesterase assays [102]

Aquose extract
(Klamin®)

Anti-inflammatory;
protective role against Aβ

aggregation

Oxygen Radical Absorvance Capacity (ORAC) assay
Folin-ciocalteu Assay

LAN5 cells: MTS assay; ROS Generation and
Mitochondrial; transmembrane

Potential modification through DCFH-DA assay and
MitoProbe JC-1 assay kit and MitoSOX Red Reagent;

LAN5 cells treated with Aβ oligomers:
DCFH-DA assay; MTS assay; Immunostaining for

NFkB and Hoescht 33258; ELISA for IL-6 and IL-1β;
thioflavin T for Aβ kinetics studies and for the

formation and mean size of Aβ aggregates

[41,127]

Inhibition of H2O2- induced
cytotoxicity and ROS

generation;
neuroprotection towards Aβ

oligomers and Aβ
oligomer-induced oxidative

stress

Oxygen radical absorbance; Folin-Ciocalteu assay
for penolic contents; ABTS assay

A549 cells:
MTS assay in after no treatment and after H2O2
exposure; DCFH-DA assay after H2O2 exposure;

LAN5 cells:
MTS assay after Aβ treatment oligomers and

observation of morphology; DCFH-DA assay after
H2O2 or Aβ oligomers exposure

[128]
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Table 1. Cont.

Genera/Specie Compound/Extract Mechanism/Effect In Vitro Assays In Vivo Assays Reference

Phormidium sp. A09DM

Phycoerythrin Antioxidant
Fibroblast (3T3-L1) cell line:

MTT assay; DCFH-DA staining on H2O2 induced
oxidative stress

Caenorhabditis elegans N2:
DCFH-DA stain:

C. elegans CL4176 transgenic model of AD:
DCFH-DA stain; Heat-induced Paralysis

assay.
Drosophila melanogaster:

climbing assay; SOD and CAT assays

[112]

Allophycocyanin

Improve lifespan, improve
rate of survival against

oxidative stress and thermal
stress; moderate expression

of human Aβ1-42 and
associated Aβ-induced

paralysis

C. elegans N2 Bristol (wild type):
lifespan study; Stress tolerance assay

(H2O2-induced oxidative stress and thermal
stress by increasing temperature from 20 ◦C to
35 ◦C); DCHF DA staining; study of lifespan

on knockdown skn-1 and daf-16 worms;
C. elegans TJ356:

DAF 16:GFP nuclear localization: evaluating
the existence of GFP agglomeration in the

nuclei after induce heat shock;
C. elegans CL4176:

paralysis assay after inducement of Aβ1-42
production; Aβ staining by thioflavin T.

[113]

Trifolium pratense Biochanin A

Attenuation of the cytotoxic
effect of the Aβ25–35 protein
by decreasing viability loss,
LDH release, and caspase

activity in cells; reduction of
cytochrome c and Puma;

restoration of Bcl-2/Bax and
Bcl-xL/Bax ratio preventing
mitochondrial dysfunction

PC12 cells:
MTT reduction assay after Aβ exposure; LDH

activity; annexin V–FITC and PI; Hoechst 33342;
caspase-8 caspase-9 and caspase-3 activity assay;
rhodamine 123 fluorescent dye (Rh123); Western
blot to Bcl-2, Bcl-xL, Bax, Puma and cytochrome c

[129,130]

Microcystis, Anabaena Microcystin-LR Inhibition of Ser/Thr Protein
Phosphatases (PPP) Measurement of phosphatases activities [131,132]Nodularia Nodularin
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The cyanobacteria genus Lyngbya has been extensively studied regarding its an-
tioxidant and anti-inflammatory potential. Ethanolic extract from strains of this genus
demonstrated an antioxidant activity that exceeded the one from the standard ascorbic
acid and a lower IC50 value than the standard phloroglucinol (16.42 ± 0.28 µg/mL vs.
52.57 ± 0 µg/mL, respectively), in vitro [124]. These in vitro results were then confirmed
in a hyperglycemic C. elegans model with live cell imaging by HCS and by the fluorescent
quantification of advanced glycation end products (AGEs). AGEs formation in nema-
todes treated with the ethanolic extract showed a prominent decrease comparing with the
non-treated [124]. In addition to the antioxidant studies, the anti-inflammatory activity
was also studied through the nitric oxide (NO) radical scavenging assay and by exposing
C. elegans TJ356 daf16 to Pseudomonas aeruginosa [124]. Results revealed a noticeable NO
scavenging activity and prevention of the induced inflammatory response of the C. elegans
treated with the ethanolic extract. The fluorescence intensity of DAF-16 GFP expression
was higher in worms treated with the ethanolic extract than in the no-treated worms [124].
Later, the daf-16 gene expression analysis evidenced that the ethanolic extract induces the
daf-16 expression in inflammatory worms, which inhibits NF-kB activity and regulates the
immune “T helper cells” activation [124].

An hydroalcoholic extract from Lyngbya majuscula was studied in the PC12 cell line,
and through the activity of the caspase enzyme an inhibition of apoptosis was regis-
tered [125]. Also, from a DPPH free radical scavenging activity, it was observed an in-
creased antioxidant potential when compared to ascorbic acid as standard. Also, from
Lyngbya majuscula, the compound kalkitoxin (Figure 3) was studied for its ability to in-
hibit tetrodotoxin-sensitive voltage-sensitive sodium channels and it was registered a
concentration-dependent inhibition of veratridine-induced elevation of [Ca2+]. Through
a LDH assay, it was observed that kalkitoxin decreased the veratridine-induced acute
neurotoxicity in a concentration-dependent manner [126].
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Interesting extracts were also studied for their neuroprotective activity using the
neurodegenerative cell model LAN5, treated with Aβ oligomers. According to the cell
proliferation MTS assay, the Aphanizomenon flos-aquae extract Klamin® supplementation
decreased the amyloid-induced toxicity [128]. On these cells Klamin® was not cytotoxic,
and it was able to inhibit the TBH-induced toxicity (ROS generation), to counteract TBH
induced mitochondrial depolarization and mitochondrial ROS generation, thus, having a
highly antioxidant potential. Regarding Aβ toxicity, Klamin® reduced Aβ-induced toxicity
and oxidative stress, neuroinflammation (estimated by NF-kB localization) reducing the
expression of proinflammatory cytokines. Finally, Klamin® interfered with Aβ aggregation
kinetics inducing formation of smaller aggregates [127].

Poly-unsaturated fatty acids (PUFAs) were found to be important for neurological pro-
cesses, with beneficial effects on memory and learning function, thus, their implementation
on dietary could constitute a good therapeutic or preventive approach for AD [118–121,133].
PUFAs have a limited human endogenous synthesis; however, they have been found to
be produced by some cyanobacteria such as Spirulina plantesis [134] which highlights the
potential of this genus in AD treatment or prevention and opens doors to its study in other
genera aimed at this end.

Another interesting compound that might be directed to AD is biochanin (Figure 4).
This known phytoestrogen has been identified in cyanobacterial blooms [129]. The pre-
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treatment with this compound was found to reverse the loss of toxicity induced by Aβ
proteins in PC12 cell lines. When PC12 cells were exposed to this peptide, a decrease in
caspase activity, LDH release, restoration of Bcl-2/Bax and Bcl-xL/Bax ratio, and reduced
expression of cytochrome c and Puma occurred. On this study, the ability to prevent
mitochondrial dysfunction was considered as the main reason for increase on cell viability
and decrease on apoptosis [130].
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Finally, the cyanotoxin microcystin-LR, found in several cyanobacterial genera such as
Anabaena and Microcystis; and nodularin, found on the genus Nodularia have the potential
to inhibit several ser/thr protein phosphatases (PPP)-family, with a pronounced inhibitory
activity on protein phosphatase-2B [131]. These phosphatases have been suggested to play
a role in AD tau pathogenic mechanisms towards tau phosphorylation, thus their inhibition
through cyanobacterial toxins could be a promising therapeutic [132,135].

As a general overview we present in Table 2 a summary of the main compounds
isolated from cyanobacteria and activity that can be directed to AD therapies.

Table 2. Summary of the main compounds isolated from cyanobacteria and activity that can be
directed to AD therapies.

Compound Action Reference

Anatoxin a(s) AChE and BChE inhibition [102]
Biochanin Prevent mitochondria dysfunction [130]
Kalkitoxin Inhibition of voltage-gated sodium channels [126]
Microcystis Inhibition of Ser/Thr protein phosphatases [131]
Nodularin Inhibition of Ser/Thr protein phosphatases [131]

Nostocarboline BChE inhibition [104]
Phycocyanin BACE1 inhibition; antioxidant [106]

Phycoerythrin BACE1 inhibition; antioxidant [107]
Tasiamide B/F BACE1 inhibition [98,100]

4. Conclusions

Disease modifying targets to AD are currently attractive, and include targets involved
on the Aβ-plaques and NFT’s production, such as the inhibition of BACE1; increase
synaptic signaling through the inhibition of AChE; reduction or prevention of oxidative
stress and neuroinflammation.

Analyzing current literature on the use of cyanobacteria in AD, cyanobacterial activity
is not restricted to specific and isolated compounds; instead, they have shown therapeutic
activity in the form of extracts and through diverse routes of administration.

The pigment PC is present in several species of cyanobacteria and several modes of
action, including antioxidant and anti-inflammatory activity, inhibition of Aβ40/42 fibril
formation, and even BACE1 inhibition were described. Another compound present in
more than one genus is PE with both BACE1 inhibition and antioxidant activity.

As referred above, the genus Spirulina has relevant antioxidant properties as well
as diversity of anti-AD mechanisms, becoming the most studied cyanobacteria genus,
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which is followed by Lyngbya genus. Other cyanobacteria genera require further studies
for detection and/or identification of compounds with potential for AD therapies.

There has been some prevalence on the screening for BACE1 and AChE inhibitors
despite BACE1 inhibitors failures in clinical and preclinical trials, or AChE inefficiency
towards neuroprotection. Antioxidants also occupy a privileged position in terms of
investigation, since cyanobacteria have a wide range of antioxidant molecules. BNDF
and LTP targeting agents are also being studied among cyanobacteria making additional
research essential for the development of this approaches.

Research on the potential of cyanobacteria regarding other promising targets namely
in respect to neuroinflammation and to tau-related approaches is lacking and needs to
be further explored. Finally, the long-recognized potential of cyanobacteria for AD is
still a growing field that requires attention and investment to discover new potential
therapeutic agents.

Given the multifactorial nature of AD, further studies with multitargeting approaches
combining these new approaches and molecules are logical for developing effective therapies.
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