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Abstract: The skin health benefits of seaweeds have been known since time immemorial. They
are known as potential renewable sources of bioactive metabolites that have unique structural and
functional features compared to their terrestrial counterparts. In addition, to the consciousness
of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive
compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino
acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds
have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds
have been clinically tested and currently available in the market. In this contribution, the recent
studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds
were described and discussed.
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1. Introduction

The skin is the largest organ of the integumentary system and one of the most com-
plicated organs in the body. It has many function such as covering the internal organs,
maintaining body temperature, preventing water loss, and acting as a protective physical
barrier from the external (environment) stimulus, damaging pathogens, pollutions and
ultraviolet (UV) radiation [1]. Though UV radiation (UVR) has many beneficial effects,
the skin’s prolonged exposure to UVR could be an aggressive factor for photoaging and
mutations which cause cancer [2].

Melanocytes produce melanin as part of the skin’s self-photoprotection, and possess
biological properties (i.e., radical scavenging) [3,4]. The UVR directly and or indirectly
induced the activation of complex signaling cascade in human skin [5]. This process
begins by absorbing electromagnetic energy through cellular chromophores and then
converting it into chemical energy. Furthermore, these energized chromophores react and
produce generation of reactive oxygen species (ROS) which further leads to the activation
of a wide range of transcription factors in skin cells such as activator protein-1 (AP-1)
and nuclear factor kappa B (NF-κB) [6,7]. The AP-1 induces the upregulation of matrix
metalloproteinases (MMP) such as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), and
gelatinase A (MMP-2), which specifically degrade connective tissues such as collagen and
elastin and indirectly inhibit the collagen synthesis in the skin [8]. Furthermore, prolonged
UVR exposure is considered as a leading cause of photoaging, and its symptoms could be
characterized by wrinkles, loss of skin tone, pigmentation (hypo- or hyperpigmentation),
rough skin, dryness, sallowness, deep furrows, severe atrophy, melanoma, and many
others [9–11]. Therefore, it is important to provide adequate photoprotection to prevent
photoaging and other skin disorders due to the deleterious effects of UVR.
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Various synthetic or semi synthetic materials have been used as anti-photoaging
agents. However, these materials have limited use due to their instability and adverse
side effects such as potential toxicity and potency to interfere with certain pathways of
the multistage process of carcinogenesis [12]. In addition, consumers are conscious and
demand more natural, green, and eco-friendly products with beneficial claims for the
skin [13]. The increased demand of natural anti-photoaging products has led to a number
of research works and innovation on nature-derived anti-photoaging agents.

Bioactive compounds from marine plants including seaweeds have proven to be a
great source of novel materials for incorporating into anti-photoaging formulations [14,15].
The number, extraction, purification, and characterization of anti-photoaging compounds
from marine sources are high and competitive compared to other marine floras such as sea
grass, mangroves, and marine faunas (i.e., teripang or sea cucumber, sea star, sea urchin,
and more). Furthermore, seaweed polysaccharides including fucoidan, laminarin, and
carrageenan (Figure 1) showed potential anti-photoaging properties which were mediated
by intra-cellular ROS scavenging activity in UV irradiated cells and in vivo models [16–19].
Other seaweed-derived materials such as mycosporine like amino acids (MAAs) are well
known as the most potential natural UVA-absorbing molecules [13]. Moreover, their
extracts are also continuously reported as potential anti-photoaging agents [20].
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Therefore, bioactive compounds from seaweeds (Figures 1 and 2) have attracted
great interest and are known for promoting distinct functional activities of interest for the
development of anti-photoaging products. They exhibit great ability in targeting several
key players linked to anti-photoaging properties such as radical scavenging activity, strong
UV absorption, inhibit cell death, MMP-1, and other activities [14,21]. This review focused
on the anti-photoaging potential of seaweed-derived bioactive compounds and extracts.
The most relevant and up to date studies on anti-photoaging agents found in seaweeds and
their biological roles were further summarized and discussed. In addition, the potential
role they play in skincare and cosmetic products were also elaborated.



Mar. Drugs 2021, 19, 172 3 of 28
Mar. Drugs 2021, 19, x FOR PEER REVIEW  3 of 27 
 

 

 

Figure 2. Carotenoids, Mycosporine like amino acids and Phlorotannins from seaweeds showed potential anti‐photoaging 

properties. Fucoxanthin, 1; Shinorine, 2; Palythine, 3; Porphyra‐334, 4; Asterina‐330, 5; Mycosporine‐glycine, 6; Phloroglu‐

cinol, 7; Triphlorethol‐A, 8; Fucofuroeckol‐A, 9; and Dieckol, 10. 

2. Seaweeds Extracts as Potential Anti‐Photoaging Agents 

Seaweeds are autotrophic organisms that are widely distributed and consist of a wide 

variety of species. Based on the pigment contents they can be classified into red, green, 

and brown seaweeds [22]. Furthermore, they are found in intertidal shores to a depth of 

150 m and are highly exposed and susceptible to UVR. Therefore, to counteract and min‐

imize photodamage induced by high UVR, seaweeds synthesize photoprotective materi‐

als.   

The anti‐photoaging activities of seaweed extracts have been demonstrated in vari‐

ous in vitro and in vivo models (Table 1). The activities were mainly mediated by antiox‐

idant properties, radical scavenging activity, and UV absorbing capacity. Furthermore, 

many seaweed extracts, especially red types possess significant levels of anti‐photoaging 

activities. However, little attention has been paid towards the anti‐photoaging properties 

of green  seaweed  extracts. The  aqueous  extract of Halimeda  incrassata  and Caulerpa  sp 

showed anti‐photoaging activity  in UVC‐irradiated plasmid DNA and UVB  irradiated 

mice, respectively [23,24]. Furthermore, more than 20 seaweed species belonging to Rhod‐

ophyceae and Phaeophyceae obtained from several countries including Spain, Chile, Ire‐

land, South Africa, Argentina, and Tonga were tested [25]. Compared to others, three spe‐

cies belonging to Rhodophyceae; Macrocystis pyrifera, Porphyra columbina, Sarcothalia radula 

and Gigartina skottsbergii exhibited the highest photoprotective activity. The authors cor‐

related  this photoproetective activity with  total phenolic  contents  (TPCs). However,  it 

might also correlate with high MAA contents  in Rhodophyceae. For example, Porphyra 

yezoensis  (also  known  as  laver)  extract  showed  strong photoprotective  activity  on  the 

Figure 2. Carotenoids, Mycosporine like amino acids and Phlorotannins from seaweeds showed potential anti-photoaging
properties. Fucoxanthin, 1; Shinorine, 2; Palythine, 3; Porphyra-334, 4; Asterina-330, 5; Mycosporine-glycine, 6; Phlorogluci-
nol, 7; Triphlorethol-A, 8; Fucofuroeckol-A, 9; and Dieckol, 10.

2. Seaweeds Extracts as Potential Anti-Photoaging Agents

Seaweeds are autotrophic organisms that are widely distributed and consist of a wide
variety of species. Based on the pigment contents they can be classified into red, green, and
brown seaweeds [22]. Furthermore, they are found in intertidal shores to a depth of 150 m
and are highly exposed and susceptible to UVR. Therefore, to counteract and minimize
photodamage induced by high UVR, seaweeds synthesize photoprotective materials.

The anti-photoaging activities of seaweed extracts have been demonstrated in various
in vitro and in vivo models (Table 1). The activities were mainly mediated by antioxidant
properties, radical scavenging activity, and UV absorbing capacity. Furthermore, many
seaweed extracts, especially red types possess significant levels of anti-photoaging activ-
ities. However, little attention has been paid towards the anti-photoaging properties of
green seaweed extracts. The aqueous extract of Halimeda incrassata and Caulerpa sp showed
anti-photoaging activity in UVC-irradiated plasmid DNA and UVB irradiated mice, respec-
tively [23,24]. Furthermore, more than 20 seaweed species belonging to Rhodophyceae
and Phaeophyceae obtained from several countries including Spain, Chile, Ireland, South
Africa, Argentina, and Tonga were tested [25]. Compared to others, three species belonging
to Rhodophyceae; Macrocystis pyrifera, Porphyra columbina, Sarcothalia radula and Gigartina
skottsbergii exhibited the highest photoprotective activity. The authors correlated this pho-
toproetective activity with total phenolic contents (TPCs). However, it might also correlate
with high MAA contents in Rhodophyceae. For example, Porphyra yezoensis (also known as
laver) extract showed strong photoprotective activity on the UVB-irradiated human ker-
atinocytes (HaCaT) cells. While laver extract showed absorbance spectrum characteristics
of MAAs in red algae and contained high phenolic compounds [26], it also showed the
absorbance spectrum characteristic of major MAAs including porphyra-334 or shinorine.
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Table 1. Anti-photoaging and mechanisms of various seaweed extracts.

Class Species Origin Extracts Test Functions Mechanisms Ref

Rhodophyceae

Solieria chordalis France
MeOH extract/CPC fractionation
n-heptane/EtOAc//MeOH/dW
(19/1//19/1; v/v)

- Photoprotective UV absorption
[29]

Antioxidant DPPH radical scavenging
activity

Bryothamnion triquetrum Cuba Aqueous extract UVC-irradiated
plasmid DNA Photoprotective (↓) DNA dmage [23]

Porphyra umbilicalis France
Cosmetic formula (5% extract) with
Ginkgo biloba, vitamins UVA/B-irradiated mice

Cell renewal transepidermal water loss
(TEWL) and erythema index. [28]

Anti-apoptosis (↓) p53 and caspase-3

Porphyra yezoensis Korea
EtOH extract (80%)/Chl/MeOH/dW
(2/1/0.9) UVB irradiated HaCaT

Photoprotective Absorb UVB rays
[26]Antioxidant (↑) GSH/GSSG ratio

Gelidium amansii Korea Mix with Cirsium japonicum; MeOH
extract and fermentation

UVB-irradiated HS 68
DF& SKH-1
hairless mice

Inhibit collagen
degradation;
wrinkle formation

(↑) type I pro-collagen;
(↓) MMP-1; -2; -9; -13 [30]

Polyopes affinis Korea EtOH extract UVB irradiated HaCaT
Antioxidant

(↓) intracellular ROS; (↓)
superoxide radical
(↓) hydroxyl radical;
(↓) cellular damage [31]

Anti-apoptosis NA
Photoprotective Absorb UVB rays

Solieria chordalis France EtOAc; 2-OD and OE L-PCA extract - Photoprotective
Absorb UVB rays

[32]Protect synthetic chlorophyll sol.
from UVB

Polysiphonia morrowii Korea 80% EtOH UVB irradiated HaCaT
Antioxidant (↓) intracellular ROS;

(↑) antioxidant enzyme [33]
Anti-apoptosis (↓) TUNEL-positive cells and

DNA fragmentation

Chondracanthus tenellus Korea 80% EtOH UVB irradiated HaCaT
Antioxidant

(↓) intracellular ROS; (↓)
superoxide radical
(↓) hydroxyl radical; (↓) cellular
damage [34]

Anti-apoptosis NA
Photoprotective Absorb UVB rays

Bonnemaisonia hamifera Korea 80% EtOH UVB irradiated HaCaT
Antioxidant

(↓) intracellular ROS; (↓)
superoxide radical
(↓) hydroxyl radical [35]

Anti-apoptosis (↓) TUNEL-positive cells and
DNA fragmentation

Photoprotective Absorb UVB rays
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Table 1. Cont.

Class Species Origin Extracts Test Functions Mechanisms Ref

Lomentaria hakodatensis Korea 80% EtOH UVB irradiated HaCaT

Antioxidant (↓) superoxide radical;
(↓) hydroxyl radical

[36]
Anti-apoptosis (↓) DNA fragmentation

(↓) apoptotic bodies
Photoprotective Absorb UV rays

Macrocystis pyrifera Argentina Ace extract
UVB irradiated
zebrafish embryo Photoprotective

Survival of normal embryos
(100%)

[25]
Porphyra columbina Argentina Ace extract Survival of normal embryos

(100%)

Sarcothalia radula Spain Ace extract Survival of normal embryos
(91.7%)

Gigartina skottsbergii Argentina Ace extract Survival of normal embryos
(73.6%)

Curdiea racovitzae Antarctic MeOH, aqueous extract UVA irradiated
fibroblast

Photoprotective Absorb UVA and UVB rays

[27](↑) cell proliferations

Antioxidant (↓) DPPH radical; ROS;(↓)
superoxide radical

Iridaea cordata Antarctic MeOH, aqueous extract UVA irradiated
fibroblast

Photoprotective Absorb UVA and UVB rays
[27](↑) cell proliferations

Antioxidant (↓) DPPH radical; ROS; (↓)
superoxide radical

Chlorophyceae
Halimeda incrassata Cuba Aqueous extract UVC-irradiated plasmid

DNA Photoprotective (↓) DNA damage [23]

Caulerpa sp. Indonesia EtOH extract UVB irradiated mice Inhibit collagen
degradation (↓) MMP-1; [24]

Phaeophyceae

Sargassum muticum Korea 80% EtOH; EtOAc fraction UVB irradiated HaCaT

Antioxidant (↓) intracellular ROS;
(↑) antioxidant enzyme

[37–39]Anti-apoptosis

(↓) TUNEL-positive cells and
DNA fragmentation; regulation
of MAPK- and
caspase-dependent signaling
pathways; (↑) Bcl-2 and Mcl-1;
(↓) Bax; (↓) caspase-9 and
caspase-3

Photoprotective Absorb UVB rays
Inhibit collagen
degradation

(↓) MMP-1;
(↓) AP-1

Sargassum glaucescens Taiwan Aqueous extract UVA irradiated HaCaT Antioxidant (↓) intracellular ROS;
(↑) antioxidant enzyme [40]
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Table 1. Cont.

Class Species Origin Extracts Test Functions Mechanisms Ref

Sargassum cristafolium Indonesia EtOH extract UVA irradiated HeLa;
BALBL/c mice Photoprotective Absorb UVA rays; (↓) cellular

damage [41]

Fucus spiralis Portugal EtOH;Cyclohex; EtOAc; Et2O; aqueous
extract; UVB irradiated HaCaT

Photoprotective Absorb UVA; UVB; UVC rays
[20]

Antioxidant (↓) intracellular ROS;
(↑) antioxidant enzyme

Mazzaella laminarioides Chile Ace extract UVB irradiated
zebrafish embryo

Survival of normal embryos
(91.7%) [25]

Undaria crenata Korea 80% EtOH UVB irradiated HaCaT

Antioxidant
(↓) intracellular ROS; (↓)
superoxide radical
(↓) hydroxyl radical; [42]

Anti-apoptosis (↓) apoptotic bodies and DNA
fragmentation

Photoprotective Absorb UVB rays

Carpomitra costata Korea 80% EtOH UVB irradiated HaCaT
Antioxidant

(↓) intracellular ROS; (↓)
superoxide radical
(↓) hydroxyl radical; (↑)
antioxidant enzyme

[43]

Anti-apoptosis (↑) Bcl-2; (↓) Bax(↓) caspase-9
and caspase-3

Ecklonia stolonifera Korea 80% EtOH UVA irradiated HDF
Antioxidant (↓) intracellular ROS;

[44]Inhibit collagen
degradation (↓) MMP-1; -3

Abbreviations: Ethanol (EtOH); Methanol (MeOH); Ethyl aetate (EtOAc); Diethyl ether (Et2O); Cyclohexane (Cyhex); Centrifugal partition chromatography (CPC); Distilled water (dw); Chloroform (Chl);
Acetone (Ace); 2-octyldodecanol (2-OD); Octyldodecyl ester of l-pyrrolidone carboxylic acid (OE L-PA); Ultraviolet (UV); Human keratinocytes (HaCaT); Human foreskin fibroblast (HS 68); Human Dermal
Fibroblast (HDF); Human cervical cancer cells (HeLa); Reactive oxygen species (ROS); Glutathione (GSH); Oxidized glutathione (GSSG); Transepidermal water loss (TEWL); Activator protein 1 (AP1); Matrix
metalloproteinase (MMP); Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL); Bcl-2-associated X protein (Bax); Nuclear factor erythroid 2–related factor 2 (Nrf2); Heme oxygenase-1 (HO-1);
not available (NA); Down-regulated, decreased (↓); Up-regulated, increased (↑).
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Recently, the anti-photoaging properties of two Antarctic red seaweeds, Curdiea racov-
itzae and Iridaea cordata, have been described [27]. Both red seaweeds extract contains high
concentrations of MAAs (palythine, asterina-330, and shinorine). Meanwhile, the total
MAAs content of C. racovitzae and I. cordata are 150.17 and 60.78 (µg MAAs/mg extract),
respectively. Furthermore, when compared with I. cordata, C. racovitzaei showed better
photoprotective properties which might be correlated with higher MAAs contents. It also
showed better ROS scavenging activity than quercetin and Helioguard 365® (anti-aging
product containing MAAs Porphyra-334 and Shinorine; Mibelle Biochemistry, Switzer-
land). These red Antarctic seaweeds showed great potential for being developed as anti-
photoaging agents.

The UV filters could be used in skincare and cosmetic products to protect the skin
from harmful effects of UVR. Currently, many commercial UV filter products not only
contain synthetic or semi synthetic UV filters, but they are also complemented with extracts
and bioactive compounds from natural resources. In addition, products complemented
with natural anti-photoaging agents are more effective in overcoming the undesirable
effects of UVR. For example, the combination of Porphyra umbilicalis extracts, vitamins and
Ginkgo biloba were able to improve the photoprotective performance of sunscreens, thereby
preventing UVR-induced photodamage [28]. Therefore, seaweed extract could be added
to anti-photoaging and sunscreen formulations in order to prevent oxidative stress and
improve the absorption spectra of UV filters.

3. Seaweed Compounds as Potential Sources of Anti-Photoaging Agents

Seaweeds are heavily loaded with potential reservoirs of bioactive compounds such
as polysaccharides, MAAs, natural pigments, phenolic compounds, proteins, peptides,
and others. Previous studies have also investigated the anti-photoaging properties of
bioactive compounds from seaweeds. In addition, further research has been carried out
on the most studied seaweed-derived bioactive compounds and extracts as potential
anti-photoaging agents.

3.1. Polysaccharides Rich Extract

The photoprotective activity of polysaccharides rich extract from brown seaweeds
(Hizikia fusiforme, Sargassum fusiforme, Sargassum vachellianum, and Ecklonia maxima) was
investigated and monosaccharide analysis showed that most of its rich extract contains
sulfate group and a high amount of fucose (43.20 to 53.53 %) (Table 2). In addition, it
was found that fucose-containing sulfated polysaccharides possessed various bioactivities
and most of the polysaccharides rich extract were able to inhibit ROS production and
down regulated MMP expression (especially MMP-1) [21,45–49]. This suggests that the
anti-photoaging activity of polysaccharides rich extract from brown seaweeds was mainly
mediated through antioxidant and MMP inhibitory activity.

The anti-photoaging properties of two fucoidan-rich seaweed extracts from Undaria
pinnatifida and Fucus vesiculosus have been demonstrated. Both brown seaweeds extracts
showed inhibitory activity against enzymes related to skin aging process. Clinical testing
showed that both extracts were able to protect skin from UVR and wrinkle depth reduction.
In addition, F. vesiculosus extract which contain polysaccharides and high polyphenol
demonstrated additional efficacy in antioxidant and skin brightening benefits [50]. In
addition, the mixture of fucose and rhamnose in skincare formulation has been claimed to
inhibit skin ageing process [51].

Polysaccharides rich extracts from brown seaweeds are potentially developed as anti-
photoaging agents in skincare or cosmetic products. Furthermore, when added in skincare
or cosmetic products formulations, they improved the efficacy and maintained the skin
in good condition especially due to their moisturizing properties. It is believed that some
polysaccharides might also improve the stability and sensorial properties of cosmetic and
skincare products.
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Table 2. Composition of seaweed rich polysaccharides extract showing anti-photoaging activity.

Algae Source Hizikia fusiforme Sargassum fusiforme Sargassum vachellianum Ecklonia maxima

Carbohydrate (%) NA 58.10 53.51 69.37
Sulfated
polysaccharide (%) 63.56 NA NA NA

Sulfated group (%) NA 13.18 12.32 10.51
Xylose (%) 17.37 5.90 3.5 NA
Galactose (%) 23.15 18.40 9.3 NA
Glucose (%) NA 1.50 2.20 NA
Fucose (%) 53.53 43.20 49.5 NA
Rhamnose (%) NA 3.50 NA NA
Fructose (%) NA 18.50 NA NA
Mannose (%) NA 9 11.2 NA
Glucuronic acid (%) NA 15.35 1.01 NA

[46,47] [48] [21] [49]

3.2. Fucoidans

Fucoidans, sulfated polysaccharides, have been isolated from different brown sea-
weeds species. These compounds have attracted great interest in the food and cosmetic
industries [16]. Furthermore, there are many studies that focused on the isolation, character-
ization, and medicinal values of fucoidans and the anti-photoaging properties of fucoidan.

The antioxidant activity of fucoidan has been determined by several radical scaveng-
ing methods and the most common are 1,1-diphenyl-2-picryl hydrazil (DPPH), superoxide
anion, and hydroxyl radical scavenging assays. Fucoidan have exhibited both primary
(chain-breaking antioxidants) and secondary (radical scavengers) antioxidants. The pri-
mary antioxidant potential of fucoidan is characterized by its ability to react directly with
free radicals and convert them to more stable non-radical products [52–54]. Furthermore,
the strong secondary antioxidant potential of fucoidan extracted from Sargassum binderi,
Sargassum spp, and Undaria pinnatifida has been reported [55–57]. Its antioxidant activi-
ties are strongly related with sulfate content and molecular weight (MW). However, low
molecular weight (LMW) fucoidan has shown more antioxidant potentials compared to
synthetics antioxidant (Butylated hydroxyanisole; BHA) and higher MW fucoidan. Koh
et al. (2019) suggested that the sulfate groups in the LMW fucoidan are more accessible
compared to the ones with high molecular weight (HMW), thereby resulting in remarkably
higher secondary antioxidant activity.

The photoprotective activity of fucoidan has been studied using UVB irradiated Ha-
CaT and human foreskin fibroblast (HS 68) cells, zebrafish, and in vivo models [19,58–67].
The earliest study on the photoprotective activity of fucoidan was carried out by Kim et al.
in 2008. They demonstrated its photoprotective activity in UVB-irradiated HS 68 cells via
MMP-1 inhibition and ERK pathways [58,60]. Furthermore, the photoprotective activity
of fucoidan from Hizikia fusiforme was observed in UVB-induced photodamage in human
dermal fibroblasts (HDF) cells and zebrafish models. Its treatment significantly inhibited
collagenase and decreased the intracellular ROS levels. Furthermore, it significantly in-
hibited intracellular collagenase, reduced the expression of MMP, and improved collagen
synthesis in UVB-irradiated HDF [68]. The summary of the potential photoprotective
activity of fucoidan is shown in Figure 3. Fucoidan is extensively explored for its photopro-
tective properties and being isolated from several brown seaweed species such as Costaria
costata, Fucus evanescens, Sargassum hemiphyllum, Sargassum horneri, Sargassum siliquastrum,
Ecklonia cava, Saccharina japonica, and Hizikia fusiforme. The biological activities are affected
by many factors such as seaweed species, MW, purity, sugar composition, sulfation degree,
co-extracted impurities, glycosidic linkage, and branching site [69]. In addition, it was
found that the bioecology and harvesting months/seasons also influenced the composition
and biological activities [70]. Mak et al. (2013) studied the monthly variations of fucoidan
content in U. pinnatifida and it was found that the sporophyll part of U. pinnatifida consis-
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tently contained the highest amount compared to the frond part. Furthermore, it was found
that the sporophyll maturation of U. pinnatifida strongly affected the fucoidan content and
composition [70].
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Figure 3. Photoprotective activity of fucoidan. Abbreviations: B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra-large
(Bcl-xL), Bcl-2-associated X protein (Bax), Reactive oxygen species (ROS), Mitogen-activated protein kinases (MAPK), c-JUN
N-terminal kinase (JNK), Extracellular signal-regulated kinase (ERK); Activator protein 1 (AP1), interleukin-1β (IL-1β),
Matrix metalloproteinase (MMP); Nuclear factor erythroid 2–related factor 2 (Nrf2), Kelch Like ECH Associated Protein
1 (Keap1), Heme oxygenase-1 (HO-1);Superoxide dismutase 1 (SOD-1); Down-regulated, decreased (↓); up-regulated,
increased (↑).

Generally, this polysaccharides contains sulfate, fucose as the main sugar, uronic
acids, acetyl groups, protein, and other monosaccharides (such as mannose, glucose,
galactose, xylose, and rhamnose) [71,72]. The structures and monosaccharide compositions
of fucoidans from different brown algae sources vary from different species. Recently, Ponce
et al., (2020) provided a comprehensive study on the compositional data of fucoidans from
different brown seaweeds species. Its monosaccharide composition is strongly related with
taxonomic classification and an example includes polysaccharides extracted from the genus
Fucus which are classified as being rich in fucose (>70% of monosaccharides). Meanwhile,
in order Laminariales, the presence of sulfated galactofucans with high galactose content is
almost equal to the fucose content [72]. The composition and sulfation degree of fucoidan
is strongly affected by extraction and purification methods. Therefore, there is a need to
develop suitable extraction techniques to maintain its composition and sulfation pattern in
order to obtain the desired bioactivity [73,74].

Lower molecular weight has been reported to enhanced the biological activity of fu-
coidan [16]. Therefore, in order to obtain LMW and stronger bioactivities; chemical, radical,
acidic, and enzymatic hydrolysis are generally used. Previous studies have shown that
treatment with LMW fucoidan shows stronger photoprotective activity than HMW [62–64].
Hwang et al. (2017) provided detailed a extraction process and characterization of pho-
toprotective activity of HMW, LMW, desulfated, and acetylated fucoidan isolated from
S. hemyphyllum (Table 3) [62]. Furthermore, LMW fucoidan showed stronger protection
against UVB-induced HS 68 cells. These results suggest that its fucose content, sulfation,
and MW play an important role in photoprotective activity. Supporting these results, Kim
et al. (2018) stated that LMW fucoidan treatment inhibits photoaging by enhance antiox-
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idant and anti-inflammatory activities and inhibiting extracellular matrix degradation
in UVB-irradiated HR-1 (hairless) mice. It is mostly absorbed prior to UVB irradiation.
Therefore, it is assumed that LMW fucoidan may involve in photoprotective effects rather
than UV filtering. The LMW fucoidan extracted from S. horneri showed a stronger photo-
protective activity compared to HMW in UVB-irradiated HaCaT cells [64].

Table 3. Sulfate, fucose, and average molecular weight of fucoidan showing photoprotective activity.

Algae Source S. hemiphyllum S. hemiphyllum E. cava S. horneri

Fucose 208.2 ± 2.3 (µmol/g) 210.9 ± 3.3 (µmol/g) NA 37.43%
Sulfate (%) 40.1 ± 0.9 38.9 ± 0.4 NA 28.01 ± 0.50%

Average MW (kDa) 270 0.8 ~8 60
Ref [62] [62] [63] [64]

Abbreviations: Molecular Weight (MW); Kilodalton (kDa).

Pozharitskaya et al. (2019) investigated the pharmacokinetics of fucoidan after topical
application in rats. It was found that ointment contains 15% fucoidan are distributed
into the skin, striated muscle, and plasma with area under concentration-time curve for
topical dose (AUC)0–48 = 0.94 µg·h/g, 2.22 µg·h/g, and 1.92 µg·h/mL, respectively [75].
The longest half-life for fucoidan was observed in plasma, striated muscle and skin. In
addition, its accumulation in plasma was not observed after repeated topical applications
of 100 mg/kg for five days. Collectively, it may be assumed that topical treatment with
cream containing fucoidan have efficacy and safety benefits with little concern of accu-
mulation and toxicity. In addition, these results suggest the potential of fucoidan as an
anti-photoaging agent in skincare and cosmetic industries.

3.3. Carrageenans

Carrageenans are natural polysaccharides extracted mainly from red seaweeds (i.e.,
Eucheuma spp, Chondrus crispus (Irish moss), and Gigartina stellate). They are joined by α-1, 3
and β-1,4 glycosidic linkage by alternate units of d-galactose and 3,6-anhydrogalactose [76].
Twenty percent of carrageenan production are used in pharmacy, skin care, and cosmetics
products, and this is due to their unique physical functional properties (i.e., thickening,
gelling, emulsifying, and stabilizing properties) [77]. The tree main types of commercially
available carrageenan include kappa (κ; forms strong, rigid gels in the presence of potas-
sium ions), iota (ι; forms soft, clear, and elastic gels in the presence of calcium ions) and
lambda (λ; does not form gel and normally used to thicken dairy products) [17].

In addition to their thickening and gelling properties, carrageenans have also shown
potential antioxidant activities. De Souza et al. (2007) tested the antioxidant activity
of κ, ι and λ carrageenan and based on radical scavenging assay, λ carrageenan had
better results [78,79]. Furthermore, it was found that the degradation into carrageenan
oligosaccharides enhanced its antioxidant activity [80]. Previous studies have shown
that polysaccharides with LMW had stronger antioxidant activity compared to HMW
polysaccharides. These activities may be related to the ability of LMW polysaccharides to
have more reductive hydroxyl group terminals which further affect the ability to accept
and eliminate free radicals. In addition Sun et al. (2015) reported that the antioxidant
activities of carrageenan oligosaccharides could be related to the sulfate group, the degree
of polymerization, the reduction of sugar, and the structure of reducing terminus [81].

Thevanayagam et. al. (2013) stated that the photoprotective effects of κ-, ι- and λ-
carrageenan in UVB-irradiated HaCaT cells [82]. All carrageenan types tested in their
study showed significant protection against detrimental effects of UVB-induced apoptosis
in HaCaT cells and scavenge free radicals. In addition, many studies have investigated the
antioxidant activities of carrageenans [80,81,83,84].

In addition, the anti-photoaging activity of carrageenan also correlates with the modu-
lations of inflammatory responses. These polysaccharides are able to induce the activation
of proinflammatory mediators such as of tumor necrosis factor (TNF)-α, interleukin (IL)-6,
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IL-1β, inducible nitric oxyde synthase (iNOS), and cyclooxygenase-2 (COX-2) [85]. Further-
more, Tripp et al. (2003) found that COX-2 expression is an important factor for keratinocyte
survival and proliferation after acute UV irradiation. The inhibition of COX-2 expression
has been demonstrated to reduce epidermal keratinocytes proliferation [86]. Therefore, it
is believed that the modulation of inflammatory responses and antioxidant activities of
carrageenan may play an important role in their anti-photoaging activity. Purwaningsih
et al. (2015) formulated a sunscreen cream with carrageenan and black mangrove fruit
(Rhizopora mucronata). It was found that a sunscreen formula containing 0.5% carrageenan
and 1% R. mucronata extract showed high photoprotective properties compared to other
formulas tested in their study [87].

The photoprotective activities of carrageenan reported in previous study might reflect
its new potential in skin care and cosmetic industries rather than just being used as an
excipient. There are numerous advantages of these polysaccharides over other bioactive
substances, including relatively low production costs, safety, non-toxic properties, wide
acceptability, suggesting carrageenan as a promising anti-photoaging candidate in the near
future; however, further studies such as formulations in order to obtain the most optimum
anti-photoaging properties are required.

3.4. Laminarins

Laminarins are storage polysaccharides extracted from brown seaweeds and com-
posed of (1–3)-β-d-glucan with β-(1–6) branching with different reducing endings ei-
ther mannitol or glucose residues. Laminarin has been extracted from several brown
algae species such as Eisenia bicyclis, Saccharina longicruris, Laminaria digitata, Laminaria
hyperborean, Laminaria japonica, Sargassum mcclurei, Cystoseira barbata, and Durvillaea potato-
rum [88–91].

In vivo studies have shown the anti-photoaging potential of laminarin and an exam-
ple is the study conducted by Li and colleagues (2013) which was based on the effect of
laminarin on the activity of MMP-1 of photoaging skin in mice models. The laminarin
treatment significantly increased the thickness of dermis, tissue inhibitor MMP-1 (TIMP-1)
level, and decreased the expression and release of MMP-1 [92]. It also protected mouse
dorsal skin from UVB induced photodamage [93]. Furthermore, it significantly increased
collagen fibers in the dermis of the UVB treated ICR mice. Laminarin pretreatment pro-
vided photoprotection by decreasing oxidative stress and increasing antioxidant enzymes
including superoxide dismutase (SOD)-1, SOD-2, glutathione peroxidase (GPx), and cata-
lase (CAT). In addition, it also showed photoprotective properties in UVA-irradiated HDF,
HaCaT and normal human epidermal keratinocytes (NHEK) cells [89]. Treatment with
laminarin attenuates pro-inflammatory cytokines (IL-6) levels and basal ROS levels in HDF
and NHEK cells at concentration of 1 and 10 µg/mL.

Many studies have reported the enhanced antioxidant activity of LMW
laminarin [18,90,94–98]. This encouraged Choi et al. (2011) to prepare LMW laminarin
by gamma irradiation and the formation of carbonyl groups by gamma irradiation was
observed. Carbonyl groups were mainly attributed to the enhanced antioxidative activity
of laminarin [95,96]. However, Rajauria et al. (2021) found that the purification of lami-
narin which involve solvents and molecular weight cut-off (MWCO) filters reduced the
antioxidant activity compared to the crude laminarin extract [94]. In addition, chemical
modifications (i.e., sulfation, carboxymethylation, acetylation, phosphorylation, and ben-
zoylation) have affected the antioxidant activity of polysaccharides to some extent. The
chemical modifications of laminarin via carboxylation using dielectric barrier discharge,
conjugation with gallic acid, and sulfation have also been reported. Analyses of the chemi-
cal composition of carboxylated laminarin (LMC), gallic acid-conjugated laminarin (LMG),
and sulphated laminarin (LMS) yielded 11.7% carboxyl groups, 1.5% gallic acid, and 1.4%
sulfate content, respectively. This chemically modified laminarin was tested against several
antioxidant assays including total antioxidant, hydroxyl radical scavenging, superoxide
radical scavenging, iron chelating, reducing power and copper chelating assays. It was
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reported that LMG showed better antioxidant activities compared to other chemically
modified laminarin [98].

Interestingly, Sellimi et al. (2018) showed that the topical application of laminarin-
based creams improved the wound healing process in rats by accelerating the collagen
deposition and re-epithelization and protected the skin cells from oxidative stress [91]. It
appears to be a promising skincare and cosmetic ingredients for anti-photoaging agents.
However, treatments with laminarin at high concentration have decreased the metabolic
activity in dermal fibroblasts and keratinocytes cells [89]. Therefore, in order to be ap-
plied in skincare and cosmetics, further study on laminarin solubility, efficacy evaluation,
penetration capacity, half-life time in blood, and bioavailability of laminarin needs to be
carried out.

3.5. Phlorotannins

Polyphenolic compounds are a class of secondary metabolites which are categorized
into several classes according to the number of phenol rings and structural elements
that bind them together [43]. Phlorotannins are class of polyphenol compounds found
exclusively in brown seaweeds and synthesized via acetate–malonate pathway (also known
as the polyketide pathway) [99]. Furthermore, they are also known as seaweeds-chemical
defense agents. These bioactive compounds protect seaweeds against grazers, important
components of seaweeds cell wall and are responsible for the absorption of UVR [100].

Phlorotannins have been extracted from different brown seaweed resources such as
Ecklonia cava, Ecklonia stolonifera, Sargassum thunbergii, Hizikia fusiforme, Endarachne
binghamiae, Laminaria sp., and Sargassum piluliferum (Table 4). Out of the total brown
seaweed species, E. cava was found to contain more total phenol contents [101]. Compared
to other phlorotannins isolated from E. cava, phlorogucinol showed stronger cytoprotec-
tive effects in UVB-irradiated HaCaT cells. Currently, the anti-photoaging properties of
phloroglucinol are far more explored compared to other phlorotannins. Phloroglucinol
showed strong antioxidant activities by inhibiting hydroxyl radical, superoxide radical,
and intracellular ROS, and induced the expression of antioxidant enzymes by activating
the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) sig-
naling. Milanovic and colleagues (2020) studied the antioxidant activity of phloroglucinol
and 2,4,6-Trihydroxypyridine towards HO· radicals. The study showed that phloroglucinol
is a more powerful antioxidant compared to 2,4,6-Trihydroxypyridine [102]. Furthermore,
it was found that the electron-withdrawing effect of nitrogen was stronger than the electron
donating effect of the OH groups in the molecule of 2,4,6-Trihydroxypyridine. The structure
difference of 2,4,6-Trihydroxypyridine with phloroglucinol is the substitution of nitrogen
atom in the aromatic ring of phloroglucinol. Therefore, chemical modifications may affect
the scavenging capacity of phloroglucinol. In addition, many studies have showed that the
anti-photoaging activity of phlorotannins is strongly related to their radical scavenging
activity. The hydroxyl (–OH) group bound to the aromatic ring donates electron and
give it to a free radical or other reactive species. This underlies the inhibition of ROS
and ROS-mediated damage on macromolecules, which in turn contributes to inhibiting
the activation of the signal transduction pathways such as the NF-κB, mitogen-activated
protein kinase (MAPK) signaling pathway.

Phlorotannins represent great potency as active anti-photoaging substances by pro-
viding multiple actions such as antioxidant, anti-inflammatory, MMP-inhibition, and
down-regulation of pro-apoptotic factors. Based on to a certain level of concentration, they
do not exert any toxic effect, anticipating its potential use as safe anti-photoaging agents in
skin care and cosmetic products. The other biological activity such as anti-microbial activity
of phlorotannins shows potency of phlorotannins as natural preservatives in skincare and
cosmetic products. Therefore, besides functioning as anti-photoaging agents, they also
show great potential to be used as skincare and cosmetic agents with other potential skin
benefit effects.
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Table 4. Phlorotannin extracted from brown seaweed with potential anti-photoaging activity.

Phlorotannins Seaweeds Origin Anti-Photoaging Ref

Eckol Ecklonia stolonifera;
Ecklonia cava Korea

Inhibit NF-κB, AP-1,
MMP-1 expression
Protect UVB-induced cell damage;
(↓) Pro-inflammatory mediators

[101,103,104]

Dieckol Ecklonia stolonifera Korea

Inhibit NF-κB, AP-1,
MMP-1 expression
Protect UVB-induced cell damage;
(↓) Pro-inflammatory mediators

[103–106]

Phloroglucinol Ecklonia cava Korea

(↓) hydroxyl and superoxide
radical,
intracellular ROS; (↑) SOD, GSH;
Activate Nrf2/HO-1
Inhibit NF-κB, MAPK;
MMP-1 expression
(↓) Bax; Caspase-3
(↓) Pro-inflammatory mediators

[101,107–111]

Triphlorethol-A Ecklonia cava Korea

Protect UVB-induced cell damage;
(↓) intracellular ROS;
Inhibit MAPK; MMP-1 expression
(↓) Caspase-3 and -9
Strong absorption in UVB spectra

[101,112,113]

Eckstolonol Ecklonia cava Korea Protect UVB-induced cell damage [101]

Diphlorethohydroxycarmalol Ishige okamurae Korea

Inhibit MAPK; MMP-1; -2; -9
expression
(↓) Pro-inflammatory mediators
(↓) cellular damage

[114–116]

Fucodiphlorethol G Ecklonia cava Korea
(↓) DPPH, intracellular ROS;
caspase-9
UVB absorption

[117,118]

Abbreviations: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); Activator protein 1 (AP1); matrix metalloproteinase
(MMP); Ultraviolet B (UVB); Reactive oxygen species (ROS); Bcl-2-associated X protein(Bax) [119], Nuclear factor erythroid 2–related factor
2 (Nrf2); Heme oxygenase-1 (HO-1); superoxide dismutase 1 (SOD-1); Glutathione (GSH); Mitogen activated protein kinases (MAPK);
Down-regulated, decreased (↓); Up-regulated, increased (↑).

3.6. Mycosporine Like Amino Acids

Mycosporine-like amino acids are LMW, water-soluble molecules that strongly ab-
sorb UVA and UVB; generally MW of MAAs are (<400 ~Da) [120]. These colorless LMW
molecules are widely distributed in natures and could be found in many organisms such
as phytoplankton, terrestrial lichens, cyanobacteria, coral, cnidarians, sponges, shrimp,
sea urchins, starfish, clams, ascidians, and seaweeds [121]. Differing with photosynthetic
pigments, MAAs is invoked to function as a passive shielding substances by dissipating the
absorbed radiation energy in the form of harmless heat without generating photochemical
reactions [122]. Their absorption maxima are around 310 to 360 nm depending on the molec-
ular structure [13,123]. Based on the structural view, MAAs consists of cyclohexenimine
ring conjugated with two amino acid, amino alcohol or amino group substituents [124].

Mycosporine-like amino acids are demonstrated as one of the strongest naturally
occurring UVA-absorbing molecules [13]. Currently, they have been identified from more
than 500 seaweed species [125,126]. Furthermore, when compared to other seaweed classes,
the red category is an excellent source of MAAs. Sun et al. (2020) stated that in seaweeds,
they are mainly distributed in orders Bangiales, Ceramiales, Gigartinales, and Gracilariales.
In Table 5, information is provided on several MAAs present in seaweeds. Furthermore,
during the last five years, a growing number of papers focusing on anti-photoaging
properties of MAAs from seaweeds have been observed.
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Table 5. Mycosporine like amino acid extracted from different seaweed species.

Species Origin PI AS SH PR Myc-gly Usu+PI PL CL Total Ref

Ahnfeltiopsis devoniensis
(mg/g) Spain NA NA 0.55 NA NA NA NA NA NA [127]

Curdiea racovitzae
(µg/mg) Antarctic 111.49 36.51 2.17 NA NA NA NA NA 150.17 [27]

Catenella repens (mg/g) France NA NA NA NA NA NA NA 1.76 NA [128]
Catenella caespitosa

(mg/g)
Puerto

Rico NA NA NA NA NA NA NA 1.06 NA [128]

Gelidium corneum (mg/g) Spain 0.13 0.47 0.1 NA NA NA NA NA NA [127]
Gracilariopsis longissima

(mg/g) NA NA NA NA NA NA NA NA NA 1.6 [129]

Gracilaria birdiae (mg/100
g) Brazil 14.67 NA 52.70 178.39 NA NA NA NA 245.77 [130]

Gracilaria caudate
(mg/100g) Brazil 34.55 NA 32.20 48.15 NA NA NA NA 114.90 [130]

Gracilaria domingensis
(mg/g) Brazil 10.41 1.25 7.56 28.82 NA NA 1.54 NA 49.59 [130]

Hydropuntia cornea
(mg/g) NA NA NA NA NA NA NA NA NA 0.8 [129]

Iridaea cordata (µg/mg) Antarctic 49.45 7.58 3.75 NA NA NA NA NA 60.78 [27]
Palmaria palmata

(µmol/g) Japan 2.964 0.078 0.155 1.900 0.276 0.276 NA NA 5.372 [131]

Palmaria palmata (mg/g) UK 9.94 0.08 0.63 0.56 NA NA 0.11 NA NA [128]
Porphyra rosengurttii

(mg/g) Spain 0.17 0.14 0.38 3.84 NA NA NA NA NA [127]

Abbreviations: Palythine (PI); Asterina-330 (AS); Shinorine (SH); Porphyra-334 (PR); Mycosporine-glycine (Myc-Gly); Usujirene (Usu);
Palithynol (PL); Catenelline (CL); not available (NA).

The anti-photoaging activities of MAAs are not only mediated by their photopro-
tective activity by absorbing UVR, but also by strong antioxidant, radical scavenging,
macromolecule damage-protection, anti-inflammatory, MMP inhibitor, and other poten-
tial anti-photoaging activities. Furthermore, the antioxidant activity of seaweeds de-
rived MAAs such as porphyra-334, shinorine, asterina-330, palythine and mycosporine
-glycine (Myc-Gly) have been tested in various assays. These include 2,2′-Azinobis-(3-
Ethylbenzothiazoline-6-Sulfonic Acid Assay (ABTS+) radical scavenging, β-carotene/
linoleate bleaching method, scavenging capacity of superoxide radicals, Oxygen Radical
Absorbance Capacity (ORAC-fluorescein) Assay, ROS scavenging [127,132,133]. In general,
MAAs showed strong antioxidant activities. However, the exact mechanisms are still
unknown and further investigations need to be carried out on the antioxidant mechanisms
of MAAs.

In addition, MAAs derived from seaweed also showed photoprotective activity in
HaCaT cells by protecting DNA damage from UVB radiation [134]. Recently, it was
demonstrated that Porphyra-334 and shinorine treatment activated Nrf2/Kelch-like ECH-
associated protein 1 (Keap1) pathway. Porphyra-334 and shinorine first dissociated Nrf2
from Keap1. Increased mRNA expression of Nrf2 targeted genes encoding oxidative
stress defense proteins prior and post UVR exposure were observed [135]. Treatment
of shinorine and Porphyra-334 in UV irradiated mice was found to increase the expres-
sion of endogenous antioxidant (SOD, GSH-Px, CAT), and decrease malondialdehyde
expression [136]. Seaweed-derived MAAs showed antioxidant properties through several
functions which include strong UV absorption, protecting macromolecules damage, and
antioxidant capacity.

Seaweeds-derived MAAs have also been tested for their anti-inflammatory prop-
erties in UV-irradiated HaCaT cells [137]. Porphyra-334 treatments suppressed COX-2
expression and one of the main cytotoxic mediators participating in the innate response
in mammals [138]. In addition, Shinorine and Porphyra-334 treatment in LPS-stimulated
macrophages cells showed potential anti-inflammatory properties. While MAAs treatment
significantly suppressed the release of pro-inflammatory mediators which were mediated
through NF-κB signaling pathway [139]. Supporting these results, Poprhyra-334 treat-
ment in UV-irradiated mice also inhibited the activation of NF-κB and MAPK signaling
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pathways [140]. Furthermore, many intracellular signaling pathways are involved in
inflammatory responses. However, NF-κB and MAPK are amongst the most important
signaling molecules involved in inflammatory responses [141]. Collectively, these reports
have showed MAAs as potential anti-inflammatory agents stimulated by UV-irradiation.

Collagen is the major structural protein of the extracellular matrix (ECM) that provides
supportive framework to the cell and is responsible for strength, elasticity, and hydration
of the skin. [142] Therefore, collagen and ECM play an important role in skin health, beauty,
and aging. Porphyra-334 showed potential anti-photoaging properties by inhibiting MMP-
1 and MMP-3 levels. Treatment of Porphyra-334 in human dermal fibroblast cells increase
ECM components, such as procollagen, type I collagen, elastin [132,143]. Porphyra-334
also showed an inhibition of advanced glycation end products (AGEs) [143]. The results
indicated that treatment with Porphyra-334 maintains the structural integrity of collagen
fibers by absorbing ultraviolet radiation. Therefore, Porphyra-334 showed great potential
function in preventing skin photoaging.

Among other seaweed-derived MAAs, Porphyra-334 is the most studied MAAs.
They have also been reported to down regulate caspase-3 protein expression in UV ir-
radiated HaCaT, suggesting another anti-photoaging properties were also mediated by
the down-regulation of pro-apoptotic factors [134]. Suh et al. (2017) studied the expres-
sion profiling of Porphyra-334 modulated genes or microRNA (miRNAs) in response to
UV-exposure and their functional networks. It was found that Porphyra-334 regulated
Wnt (Wingless/integrase-1; related to UV-repressed genes) and Notch signaling pathways.
Furthermore, it is assumed that Porphyra-334 protects cells from UV-induced photoag-
ing through the comprehensive modulation of expression patterns of genes involved in
UV-mediated biological processes [144].

Sunscreen cream containing 0.005% MAAs extracted from P. umbilicalis (nori) was
found to neutralize photodamage caused by UVA radiation as efficiently as cream con-
taining 1% synthetic UVA and 4% UVB filters [145]. Furthermore, the formulation of
Porphyra-334 increased the photoprotective activity of sunscreen formula [146]. MAAs
protects the skin cells by their ability to disperse harmful UV into heat that dissipates into
the surroundings without forming reactive photoproducts. The treatment with MAAs was
able to inhibit skin wrinkle depth, roughness, and elasticity. This suggests that MAAs
are effective and potential anti-photoaging agents. In a recent article, it was found that
sunscreen formulated with MAAs showed the same Sun Protecting Factor (SPF) and UVB-
Biological Effective Protection Factors (BEPFs) as reference sunscreens but slightly lower
UVA-BEPFs [147].

3.7. Carotenoids

Carotenoids are essential natural pigments along with chlorophylls in photosynthetic
organisms, bacteria, and fungi. Furthermore, these tetraterpene pigments are involved
in photosynthesis and photoprotection. Carotenoids can be classified into two broad
groups, namely carotenes (contain no oxygen) and xanthophylls (oxygenated derivatives
of carotenes) [148]. In 2018, around 850 carotenoids were been found, and the number is
still increasing [149]. Among carotenoids isolated from seaweeds, fucoxanthin is a major
xanthophyll with diverse biological functions. These carotenoids represent more than 10%
of total carotenoids.

The anti-photoaging function of fucoxanthin has been investigated by many studies
(Figure 4). As a consequence of UVB irradiation, cells face an intense oxidative reaction
that gives rise to photodamage and photoaging. Furthermore, fucoxanthin isolated from
Korean brown seaweeds Sargassum siliquastrum showed photoprotective properties in
UVB-irradiated human fibroblast. A 24 h pretreatment with fucoxanthin (50–250 µM)
were able to reduce oxidative stress via ROS scavenging activity and counteract UVB-
induced cell damage in dose-dependent manner [150]. Furthermore, fucoxanthin also
showed remarkable ROS scavenging activity in UVB-irradiated mice and HaCaT and HDF
cells [151–153]. It showed strong antioxidant activity due to its singlet oxygen quenching
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(1O2) and ROS scavenging effects. From the structural view, fucoxanthin has a unique
unusual allenic bond and 5,6-monoepoxide in its molecule which plays an important role
in ROS scavenging activity [22]. In addition, functional groups in the terminal ring of
fucoxanthin also have an effect in their antioxidant activity. The electron-rich status of
fucoxanthin makes this carotenoid an effective radical scavenger [154].
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Inflammatory stimuli could trigger MMP which leads to photoaging, and when
UVB reaches our body, keratinocytes which represent the first target act as sentinels,
initiate the signaling cascade. These events address the stress and the production of
pro-inflammatory factors such as NO, PGE2, IL-6, IL-1β and TNF-α. Furthermore, Luna
et al., (2018) showed that pretreatment of HaCaT cells with fucoxanthin at 50 µM reduced
the downstream inflammatory cytokines (TNF-α and IL-6) [155]. In addition, the synergy
effects of fucoxanthin and rosmarinic acid (phenolic ester isolated from Rosmarinus officinalis
L) on UVB-exposed HaCaT have been demonstrated [156]. A combination of fucoxanthin
(5 µM) and rosmarinic acid (5 µM) improved the antioxidant and anti-inflammatory profiles
compared to individual compounds. The photo-protective effects of fucoxanthin and
rosmarinic acid were mediated by down-regulation of NLR family pyrin domain containing
3 (NRLP3)-inflammasome and upregulation of Nrf2 signaling pathway which further
increased the antioxidant gene expression (HO-1).

The levels of structural proteins for the epidermal permeability barrier, including
filaggrin (filament aggregating protein) markedly decline in aged skin. UVR has been asso-
ciated with the level of filaggrin, based on in vitro and in vivo experimental models [157].
Following UV exposure, filaggrin gene expression was down regulated. Furthermore,
treatment with 0.5% fucoxanthin (4 days until day 8) stimulates filaggrin promoter activity
and upregulates filaggrin gene expression [158]. This upregulation of the skin barrier
formation by fucoxanthin may contribute to the photoprotective porperties of fucoxan-
thin. In addition, its treatment protects HaCaT cells from hydrogen peroxide-induced cell
death. Fucoxanthin protective actions were mediated by the down-regulation of apoptosis
promoting mediators (Bcl-2-associated X protein (Bax), caspase-9, and caspase-3) and the
up-regulation of apoptosis inhibitor (B-cell lymphoma-2 Bcl-2) [152].

Continuous exposure to UV irradiation induces skin angiogenesis and wrinkle for-
mation [159]. Furthermore, the topical administration of fucoxanthin (0.001%) prior to
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UVB radiation in hairless mice showed potential anti-angiogenic effects. It also diminishes
epidermal hypertrophy, MMP-13 expression in the epidermis and thiobarbituric acid re-
active substances (TBARS) in the skin [151]. Other studies also showed that fucoxanthin
treatment ameliorated UVB irradiation-induced corneal damage and down-regulating
Vascular endothelial growth factor (VEGF) expression [160].

The possibility of administering fucoxanthin topically faces several drawbacks because
of the issue of lipophilicity and HMW. Anti-photoaging agents need to diffuse across the
stratum corneum and tight junctions to achieve effective permeation. Several vehicle such
as hydrogel, cream, and ointment have been tested to achieve the best permeation results
with cream showed the most favorable vehicle for fucoxanthin topical administration [155].
Furthermore, a cream containing fucoxanthin was applied in UVB-irradiated erythema
model in hairless mice. It showed photoprotective properties through the down-regulation
of COX-2 and iNOS and the up-regulation of HO-1 protein via Nrf-2 pathway. In addition,
the effects of fucoxanthin (0.5% in alkyl benzoate or in EtOH) in reconstructed human
skin have also been investigated and it was found that its topical applications were safe.
Fucoxanthin treatment upon UVB irradiation in reconstructed human skin ameliorated pro-
inflammatory mediators (IL-6 and IL-8) [161]. Collectively, it is believed that fucoxanthin
could be a natural adjuvant for preventing photoaging.

4. Potential of Seaweeds in Anti-photoaging Products
4.1. Seaweed Diversity Opens Untapped Potential for Anti-Photoaging Products

Currently, more than 30,000 species of algae have been reported with about 15,000 species
belonging to macroalgae (including terrestrial and seaweeds) [162]. These huge numbers
of algal diversity offer great potential to be applied in the food, pharmacy, cosmetic and
skincare industries. However, many seaweed species are still considered to be underex-
ploited resources. An example is in Indonesia, where 1000 seaweed species have been
reported. These marine organisms play an important ecologic and socioeconomic role in
coastal communities and drive economic growth. However, only a few species have been
commercialized (i.e., Kappaphycus alvarezii; previously known as Eucheuma cottonii,
Eucheuma spinosum and Gracilaria sp) [15]. All commercialized seaweeds are commonly
used in the hydrocolloid industry to produce agar and carrageenan. Hundreds of seaweed
species are still categorized as under-explored, and these conditions also happen in many
countries. The anti-photoaging properties of many seaweeds species remain unexplored
and these renewable marine resources have an untapped potential to be developed in
skincare and cosmetics industries.

4.2. Development of Sustainable Aquaculture to Support Seaweeds Potential in Skincare and
Cosmetic Industries

Twenty three percent of the world’s aquaculture production is from seaweeds, how-
ever, ‘marine agronomy’ is still in its infancy and seaweed potentials are still categorized
as under-exploited (far from being fully exploited) [163]. With more seaweeds being used
because of their anti-photoaging and other potential skin benefit effects, the demand for
the use of seaweeds in cosmetic and skincare industries will grow globally. Therefore,
the development of sustainable production of seaweed species through aquaculture is
required [164]. To enhance seaweed production, it is important to understand and modify
the main parameters that affect their cultivation. The parameters include water current and
movement, water temperature, irradiance and photoperiod, nutrients dispersion and water
quality, and the relationships of these factors and the intrinsic physiological responses [165].

The development of seaweed co-culture with other marine commodities can be easily
carried out. Co-culture of seaweed with other marine flora or fauna could be carried
out through a system called Integrated Multi-Trophic Aquaculture (IMTA). The IMTA
system provide advantages environmentally, particularly in sustainability aquaculture,
and social economic aspect [166]. Furthermore, it has also been useful in desired bioactive
compound optimizations.
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Seaweed’s reproduction and the synthesis of anti-photoaging compounds may oc-
cur after some stress stimulus. For example, IMTA of Rhodymenia pseudopalmata with
commercial marine fish (common snook; Centropomus undecimalis) under exposure to
high solar radiation has also been investigated. While that of R. pseudopalmata increased
anti-photoaging compounds such as MAAs (Porphyra-334, shinorine, palythine, paly-
thinol, palythene usujirene, and asterina-330), radical scavenging activities, phenol, and
natural pigment contents [167]. The culture of Gracilaria vermiculophylla in outdoor tanks
in seawater with the addition of fishpond effluents in an IMTA system has also been
demonstrated [168]. The highest MAAs content was observed in April and four MAAs
were identified (Porphyra-334, Shinorine, Palythine and Asterina-330). Furthermore, the
IMTA development of seaweed with other marine commodities could be used to optimize
anti-photoaging compounds and provide another economic benefit for seaweed farmers.

4.3. Sustainable and Environmentally Friendly Extraction

Multiple solvent extractions have been used with other common methods to obtain
anti-photoaging compounds from seaweeds. The extraction process involves a combination
of various solvent such as methanol, n-hexane, dichloromethane, chloroform, and acetone.
However, most of the solvent used in the extraction process are of safety concerns due
to the hazardous, toxicity and impact to the environment. Many research groups have
developed sustainable extraction technologies to obtain anti-photoaging compounds from
seaweeds. These includes microwave assisted extraction (MAE), ultrasound assisted
extraction (UAE), supercritical fluid extraction (SFE) and pressurized liquid extraction
(PLE) [169]. These green technologies were able to extract anti-photoaging compounds
from seaweed effectively.

Many studies have extracted one of the anti-photoaging compounds (fucoxanthin)
from U. pinnatifida with various methods from solvent extraction to SFE, MAE and UAE
(Table 6). U. pinnatifida, is one of the most studied brown seaweed species by many research
groups in Japan, Korea, and China. Based on the extraction yield of fucoxanthin, SFE may
be considered as the best non-conventional extraction technique. One of the advantages
of this system is the use of CO2 as a solvent, an easy-available compound which is non-
toxic [170]. The SFE systems could be an efficient and respectful option for the production
of fucoxanthin for cosmetic and skincare industries. However, these extraction processes
have some weakness which includes cost of the installations and special manpower to
operate it. In addition to extraction processes, sample pre-treatment could be another factor
used in optimizing the extraction yield of anti-photoaging compounds from seaweeds.

Through the use of an environmentally friendly technology PLE, Saravana et al. (2018)
optimized the extraction of fucoidan from Saccharina japonica. These processes involve
solvent pressurized at certain temperature and pressure under critical level conditions (sub-
critical region). Under this condition, seaweed–solvent matrix is treated to a pressurized
temperature from 100 to 374 ◦C with a pressure that is up to 22 MPa, and the solvent is
maintained in the liquid state by operating with a constant pressure higher than that of the
vapor. Furthermore, the subcritical condition facilitates an increase in dielectric constant
and decrease in density which cause hydrocarbons to become more soluble, allowing
complex reactions like decomposition and depolymerization to occur [171]. It was found
that the most optimal conditions in PLE process for fucoidan extraction were extraction at
127.01 ◦C, 80 bar, S/L ratio of 0.04 g/mL, agitation speed of 300 rpm for 11.98 min [172].
The PLE process produced a high yield of fucoidan (13.56%) with good functional activity.
Therefore, PLE might be the favored method for the extraction of fucoidan in the skincare
and cosmetic industries.
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Table 6. Fucoxanthin extraction from Undaria pinnatifida using different extraction techniques.

Extraction
Method

Solvent
Extraction

Solvent
Extraction SFE SFE UAE MAE

Solvent MeOH (1:50 w/v) MeOH (1:50 w/v) CO2 and EtOH
(3%, v/v) CO2

Deionized H2O
(1:100 w/v)

EtOH (15:1
w/v)

Pretreatment
Wash, salted,
boiled,
blanched, cured

Avoid sunlight Freeze dry

Milling and
microwave
assisted cell
disruption

NA NA

Extraction
condition 1 h, RT 1 h, RT 50 bar, 200 ◦C,

1 h
40 bar, 400 ◦C,
3 h

800 W, 80%
amplitude, 20
kHz, 30 ◦C, 3 h.

ratios, 60 ◦C,
10 min, 300 W

Yield 2.08 ± 0.04 mg/g 4.96 ± 0.4 mg/g 0.00753 µg/g 38.5 mg/g 0.031 mg/g 2.12 mg/100 g

Notes Processed Fresh
Pressure and
temperature
affect yield

MW
pretreatment
increased fucox-
anthin yield

Sporophyll;
small pilot scale

No effect on
microwave
power

Ref [173] [173] [174] [175] [176] [177]

Abbreviations: Microwave assisted extraction (MAE); Ultrasound assisted extraction (UAE); Supercritical fluid extraction (SFE); Methanol (MeOH);
Ethanol (EtOH); Carbon dioxide (CO2;, Molecular weight (MW); Weight/volume (w/v), Volume/volume (v/v); Room Temperature (RT).

Collectively, many anti-photoaging substances could be extracted using environmen-
tally friendly technologies. Selecting an extraction process is a key factor in achieving
optimum extraction yields, desired biological activity and reduce production costs. In
addition, the use of environmentally friendly extraction may increase the commercial value
of the final cosmetic or skincare product. This is because there is usually a high demand
for more natural, non-toxic, and ecofriendly products.

4.4. Potential of Seaweeds-Derived Anti-Photoaging Products in the Market

The skincare and cosmetic industries have become two of the fastest growing and
prosperous industry sectors [178]. The demand for new and innovative anti-photoaging
products are continuously growing. Seaweeds anti-photoaging products have been devel-
oped and are commercially available in the market. Undaria pinnatifida extracts (containing
85% fucoidan) and Fucus vesiculosus extracts (containing 60% fucoidan and 30% polyphe-
nol) have been tested in clinical studies. Both seaweed extracts increased the expression
of sirtuin 1 (SIRT1), a protein known for its longevity-boosting and anti-ageing activity.
Furthermore, clinical testing established the efficacy of the extracts in a range of tested
applications, relative to placebo. The anti-photoaging properties of U. pinnatifida extract is
modulation of skin immunity, soothing and protection, while Fucus vesiculosus extract signif-
icantly affected age spot reduction and increased brightness, soothing, and protection [50].
These brown seaweed extracts are currently available in the market under Marinova’s
(Biotech Company from Autralia). In addition, other anti-photoaging extracts contain-
ing MAAs are also available on the market (Table 7). Seaweed derived anti-photoaging
compounds need to be explored and are highly recommended as an active ingredient in
sunscreen, anti-photoaging cream, moisturizers in skincare and cosmetics. In addition,
environmentally friendly technology need be developed so the eco-friendly cosmetic and
skincare could be more available in the market.
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Table 7. Anti-aging and photoproctive ingredients from seaweeds available in the market.

Algae Species Trade Name Company Active
Ingredients Anti-Photoaging Ref

Poprphyra
umbilicalis Helionori® Gelyma, French MAAs

Photoprotective (UV-A)
DNA protection
Prevention of sunburn

[179]

Poprphyra
umbilicalis Helioguard365

Mibelle
Biochemistry,
Switzerland

Porphyra-334 and
Shinorine Photoprotective (UV-A) [180]

Poprphyra
umbilicalis

Algae gorria; Alga
marris

Laboratoires de
biarritz, French NA Photoprotective (UV-A) [181]

Undaria pinnatifida Fucorich Marinova,
Australia Fucoidan Anti-aging [182]

Fucus vesiculosus Maritech reverse Marinova,
Australia Fucoidan Anti-aging; antioxidant;

anti-inflammation [182]

Fucus vesiculosus Maritech synergy Marinova,
Australia

Fucoidan and
polyphenol
complex

Anti-aging; antioxidant;
anti-inflammation [182]

Abbreviations: Mycosporine like amino acids (MAAs); Ultraviolet (UV).

5. Conclusions

There are still large opportunities to explore seaweed-derived bioactive compounds as
anti-photoaging agents in the skincare and cosmetic industries. Furthermore, more studies
need to be carried out on the sustainable culture of seaweeds and their optimization in
order to obtain optimal bioactive compounds. There are still challenges involving the
use of environmentally friendly technology for industrial applications. Therefore, the
development of seaweeds in skincare and cosmetic industries is important but poses a
challenge for scientists, engineers, seaweed farmers, skincare and cosmetic formulators,
and product developers.
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