N-Amino-L-proline methyl ester from an Australian fish gut fungus: Challenging the distinction between natural product and artifact.

Osama G. Mohamed,^{1,2} Zeinab G. Khalil¹ and Robert J. Capon¹

¹Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia

KEYWORDS (*N*-amino-L-proline methyl ester; prolinimines; 5-hydroxymethyfurfural; 2,5furandicarboxaldehyde; Schiff base; artifact; media component)

² current address University of Michigan Life Sciences Institute, Natural Products Discovery Core, Ann Arbor 48109, Michigan, USA

Corresponding author.

* Tel +61 7 3346 2979. Facsimile +61 7 3346 2090. Email: <u>r.capon@uq.edu.au</u>

Table of Contents

List of Figures							
Section 2	NMR data of synthetic 2,4-dinitrobenzaldehyde Schiff bases (9) and (10)	5					
Section 1	Collection and Taxonomy of <i>Evlachovaea</i> sp. CMB-F563	3					

Figure S2. Phylogenetic analysis of CMB-F563 using PhyML Maximum likelihood analysis of ITS DNA sequences using the optimal nucleotide substitution model determined by jModeltest2 using UGENE software. Phylogenetic relationship of CMB-F563 with selected strains (nucleotide collection Genbank) shown with their accession numbers indicated in Figure S3. ¹H NMR (600 MHz, methanol-*d*₄) spectrum for 2,4-dinitrobenzaldehyde Schiff base Figure S4. ¹³C NMR (150 MHz, methanol-d₄) spectrum for 2,4-dinitrobenzaldehyde Schiff Figure S5. 2D NMR ROESY (methanol- d_4) spectrum for 2,4-dinitrobenzaldehyde Schiff base Figure S6. ¹H NMR (600 MHz, methanol- d_4) spectrum for 2,4-dinitrobenzaldehyde Schiff base (10).....7 Figure S7. ¹³C NMR (150 MHz, methanol-d₄) spectrum for 2,4-dinitrobenzaldehyde Schiff base (10).....7 Figure S8. 2D NMR ROESY (methanol- d_4) spectrum for 2,4-dinitrobenzaldehyde Schiff base Figure S9. UHPLC-DAD (400 nm) chromatograms of synthetic 9 and 10 and their UV-vis (UHPLC-DAD, H₂O/MeCN plus TFA) spectrum (inset).....9

List of Tables

Table S1. 1D and 2D NMR (600 MHz, methanol- <i>d</i> ₄)	data for 2,4-dinitrobenzaldehyde Schiff
base (9)	
Table S2. 1D and 2D NMR (600 MHz, methanol- d_4)	data for 2,4-dinitrobenzaldehyde Schiff
base (10)	

Section 1 Collection and Taxonomy of *Evlachovaea* sp. CMB-F563

BLAST search (closet match)

An NCBI-BLAST database search of 18s rRNA sequence established a 99% similarity for CMB-F563 with *Evlachovaea* sp. (Figure S1. Blast search (closest match) for CMB-F563

Evlachovaea sp. 126 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5,	948	948	96%	0.0	99%	EU553279.1
Evlachovaea sp. IP 304 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene	915	915	92%	0.0	99%	GU734765.1
Cordyceps sp. BCMU CN03 genes for 18S ribosomal RNA, internal transcribed spacer 1, 5.8S rib	981	981	100%	0.0	99%	AB233335.1
Hypocreales sp. NWHC 24746-01-01-02 18S ribosomal RNA gene, partial sequence; internal tran	876	876	89%	0.0	99%	KX148701.1
Fungal sp. GFI 32 5.8S rRNA gene, 28S rRNA gene (partial), ITS1 and ITS2, isolate GFI 32	957	957	98%	0.0	99%	AJ609125.1
Isaria fumosorosea strain ARSEF 1576 18S ribosomal RNA gene, partial sequence; internal transi	909	909	93%	0.0	99%	EU553296.1
Evlachovaea sp. AB-2016 18S ribosomal RNA gene, partial sequence; internal transcribed spacer	830	830	86%	0.0	99%	KU983517.1
Verticillium sp. IMI 331591R internal transcribed spacer 1, 5.8 S ribosomal RNA gene, and internal	815	815	88%	0.0	97%	EF513024.1
Cordyceps pruinosa voucher HMIGD 20930 18S ribosomal RNA gene, partial sequence; internal t	787	787	88%	0.0	96%	DQ342253.1
Cordyceps pruinosa gene for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 26S rRNA, partial and complete :	880	880	99%	0.0	96%	AB044635.1
Simplicillium sp. AMVP-2014 18S ribosomal RNA gene, partial sequence; internal transcribed spa-	848	848	98%	0.0	96%	KF937365.1
Ophiocordyceps caloceroides voucher TSJ871 18S ribosomal RNA gene, partial sequence; intern:	800	800	96%	0.0	95%	KF937319.1
Isaria fumosorosea isolate IfTS02 internal transcribed spacer 1, partial sequence; 5.8S ribosomal	782	782	97%	0.0	94%	KX057373.1
Paecilomyces sp. (in: Hypocreales) strain CICR-RSS-0089 small subunit ribosomal RNA gene, pa	780	780	98%	0.0	93%	MG976232.1
Isaria javanica voucher CHE-CNRCB 307/7 18S ribosomal RNA gene, partial sequence; internal tr	780	780	98%	0.0	93%	KM234218.1
Isaria javanica voucher CHE-CNRCB 303/2 18S ribosomal RNA gene, partial sequence; internal tr	780	780	98%	0.0	93%	KM234213.1
Akanthomyces websteri strain BCC02113 18S ribosomal RNA gene, partial sequence; internal trai	780	780	98%	0.0	93%	<u>GQ250008.1</u>
Paecilomyces sp. ZLY-2010 isolate M26 internal transcribed spacer 1, partial sequence; 5.8S ribos	780	780	98%	0.0	93%	HM595502.1
Isaria javanica voucher CHE-CNRCB 305/1 18S ribosomal RNA gene, partial sequence; internal tr	774	774	97%	0.0	93%	KM234215.1
Isaria javanica voucher CHE-CNRCB 305 18S ribosomal RNA gene, partial sequence; internal trai	773	773	97%	0.0	93%	KM234214.1
Isaria javanica voucher CHE-CNRCB 303 18S ribosomal RNA gene, partial sequence; internal tra	773	773	97%	0.0	93%	KM234212.1
Isaria javanica strain RCEF5499 18S ribosomal RNA gene, partial sequence; internal transcribed :	771	771	97%	0.0	93%	KP644424.1
Isaria javanica strain RCEF5495 18S ribosomal RNA gene, partial sequence; internal transcribed :	771	771	97%	0.0	93%	KP644423.1
Isaria javanica voucher CHE-CNRCB 307 18S ribosomal RNA gene, partial sequence; internal tra	771	771	97%	0.0	93%	KM234217.1
Isaria fumosorosea isolate NBAII Pfu-8 internal transcribed spacer 1, partial sequence; 5.8S ribos:	771	771	97%	0.0	93%	KC147667.1
Isaria javanica strain CM1 18S ribosomal RNA gene, partial sequence; internal transcribed spacer	771	771	97%	0.0	93%	EF990131.1
Isaria javanica isolate ACP small subunit ribosomal RNA gene, partial sequence; internal transcrib	793	793	100%	0.0	93%	MG837718.1
Isaria fumosorosea isolate FAFU-1 small subunit ribosomal RNA gene, partial sequence; internal t	793	793	100%	0.0	93%	MG837716.1
Isaria fumosorosea isolate SKCH-1 18S ribosomal RNA gene, partial sequence; internal transcribe	793	793	100%	0.0	93%	FJ765017.1
Isaria fumosorosea isolate NLAG 18S ribosomal RNA gene, partial sequence; internal transcribed	793	793	100%	0.0	93%	FJ765016.1

Figure S1. Blast search (closest match) for CMB-F563

Phylogenetic Tree and Microscopic image of CMB-F563

Phylogenetic tree obtained by PhyML Maximum Likelihood analysis was constructed using the top similar 18S rRNA sequences displayed after BLAST on Genbank RNA NCBI database using CMB-F563 18S rRNA as queries. The JC69 model was used to infer phylogeny sequences.¹ Sequences alignments were produced with the MUSCLE program.² Phylogenetic tree was constructed using the UGENE program using the aforementioned models and visualized using Ugene's tree view (Figure S2). Based on the paper published by Humber et al³, the morphology and the molecular taxonomy of *Evlachovaea* genus places this genus closely to *Isaria* and *Cordyceps* genera. In addition to the 18s rRNA sequence analysis, the taxonomic identification of CMB-F563 as a *Evlachovaea* sp. was supported by a microscopic examination of its conidia (i.e. fungal spores) and phialides (i.e. flask-shaped projections from the dilated part of the top of fungal conidia) (Figure S2 inset).

Figure S2. Phylogenetic analysis of CMB-F563 using PhyML Maximum likelihood analysis of ITS DNA sequences using the optimal nucleotide substitution model determined by jModeltest2² using UGENE software [2]. Phylogenetic relationship of CMB-F563 with selected strains (nucleotide collection Genbank) shown with their accession numbers indicated in brackets, highlighted in blue. Microscopic image for CMB-F563 (inset).

Figure S3. ¹H NMR (600 MHz, methanol- d_4) spectrum for 2,4-dinitrobenzaldehyde Schiff base (9). * Residual methanol solvent

Figure S4. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum for 2,4-dinitrobenzaldehyde Schiff base (9)

Figure S5. 2D NMR ROESY (methanol- d_4) spectrum for 2,4-dinitrobenzaldehyde Schiff base (9) **Table S1.** 1D and 2D NMR (600 MHz, methanol- d_4) data for 2,4-dinitrobenzaldehyde Schiff base (9)

Pos.	$\delta_{\rm H}, {\rm m} (J {\rm Hz})$	$\delta_{ m C}$	COSY	HMBC	ROESY
1	7.61, s	124.7		2, 3, 7	5′a, 5′b
2		138.8			
3		146.7			
4	8.75, d (2.2)	122.0	6	2, 3, 5, 6	
5		146.4			
6	8.32, dd (9.1, 2.2)	127.7	4, 7	2, 4, 5	
7	8.25, d (9.1)	128.5	6	1, 3, 5	
1'		174.7			
2'	4.51, dd (8.7, 3.0)	66.3	3'a, 3'b	1', 3', 4', 5'	
3'	a 2.16, m	29.6	2', 3'b, 4'	1', 2', 4'	
	b 2.36, m		2', 3'a, 4'		
4'	2.16, m	23.7	3'a, 3'b, 5'a, 5'b	2', 3', 5'	
5'	a 3.49, dd (17.8, 7.4)	50.0	4'	2', 3', 4'	1
	b 3.60, m		4'		1
1'-O <u>Me</u>	3.77, s	53.0		1'	

Figure S6. ¹H NMR (600 MHz, methanol-*d*₄) spectrum for 2,4-dinitrobenzaldehyde Schiff base (10)

Figure S7. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum for 2,4-dinitrobenzaldehyde Schiff base (10)

Figure S8. 2D NMR ROESY (methanol-*d*₄) spectrum for 2,4-dinitrobenzaldehyde Schiff base (10)

Table S2. 1D and 2D NMR (600 MHz, methanol-d₄) data for 2,4-dinitrobenzaldehyde Schiff base (10)

Pos.	$\delta_{\rm H}, { m m}(J{ m Hz})$	$\delta_{ m C}$	COSY	НМВС	ROESY
1	7.60, s	124.2		2, 3, 7	2', 5'a, 5'
2		138.9			
3		146.5			
4	8.72, dd (2.2, 0.3)	122.0	6	2, 3, 5, 6	
5		146.2			
6	8.29, ddd (9.0, 2.2, 0.3)	127.6	4, 7	2, 4, 5	
7	8.26, d (9.0)	128.4	6	1, 3, 5	
1'		176.1			
2'	4.45, dd (8.7, 3.3)	66.4	3'a, 3'b	1', 3', 4', 5'	1
3'	a 2.15, m	29.8	2', 3'b, 4'	1', 2', 4'	
	b 2.3, m		2', 3'a, 4'		
4'	2.16, m	23.7	3'a, 3'b, 5'a, 5'b	2', 3', 5'	
5'	a 3.47, m	50.0	4'	2', 3', 4'	1
	b 3.60, m		4'		1

Figure S9. UHPLC-DAD (400 nm) chromatograms of synthetic 9 and 10 and their UV-vis (UHPLC-DAD, $H_2O/MeCN$ plus TFA) spectrum (inset)

References:

- 1. Darriba, D.; Taboada, G. L.; Doallo, R.; Posada, D. Nat. Methods 2012, 9(8), 772-772.
- 2. Okonechnikov, K.; Golosova, O.; Fursov, M.; UGENE team. *Bioinformatics* 2012, 28(8), 1166–1167.
- 3. Humber, R.; Rocha, L.; Inglis, P.; Kipnis, A.; Luz, C. Fungal Biology 2013, 117(1), 1-12.