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Abstract: Neurodegenerative diseases are among the most widespread diseases affecting humans,
and the number of patients is only rising. Seaweed polysaccharide extracts show significant neuropro-
tective and reparative activities. Seaweed polysaccharides might provide the next big breakthrough
in neurodegenerative disease treatment. This paper reviews the applications of seaweed polysac-
charides as potential treatments of neurodegenerative diseases. The particular focus is on fucoidan,
ulvan, and their derivatives as potential agents to treat Alzheimer’s disease. This review provides a
critical update on the progress in this important research area.

Keywords: Alzheimer’s disease; polysaccharides; seaweeds; neuroprotective activity

1. Introduction

Neurodegenerative diseases are characterized by the progressive loss of cognitive
and physical function. The most common neurodegenerative diseases are Alzheimer’s
disease (AD), Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis
(ALS) [1]. There are two main types of neurodegenerative diseases: movement disorders
and degeneration/dementia disorders. AD is the most common degenerative disorder [2].

AD is an irreversible progressive neurodegenerative disease leading to memory loss
and cognitive deficit [3]. The etiology of AD is not fully understood, as many factors
impact disease progression and presentation [4]. Alois Alzheimer first discovered this
disease in 1907, which was when the two main characteristics of Alzheimer’s were first
discussed, namely, amyloid-beta plague and neurofibrillary tangles [5]. There are several
contributing factors to AD development and progression, including apoptosis, oxidative
stress, neuroinflammation, mitochondrial dysfunction, cholinic dysfunction, and abnormal
protein development [6]. An excess of D-galactose can be an early sign of Alzheimer’s
disease progression. This sugar conjugates with glucose to form lactose, and when there
is too much D-galactose vs. the amount of glucose present, metabolic dysfunction and
oxidative stress occur [7].

As medical science progresses the average human lifespan increases, leading to a
rising number of AD cases [8]. Almost 6 million people exhibited AD symptoms in 2018; of
these cases, 200,000 were early onset, occurring in people less than 65 years old [9]. The
number of AD patients is projected to increase to over 100 million by 2050 [10]. The cases
of Alzheimer’s disease in the world have been doubling every 20 years, with projections
for 2040 at around 80 million [11].

Alzheimer’s is known as a tauopathy, meaning that in Alzheimer’s patients there is a
high concentration of misfolded and insoluble tau protein. The first location where this
insoluble protein builds up is in the hippocampus [12]. This is what forms the trademark
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neurofibrillary tangles found in Alzheimer’s patients. This misfolding of protein is common
in all neurodegenerative diseases as these proteins control brain function. The concentration
of tau in the human body is determined by two systems: the autophagy-lysosome pathway
and the ubiquitin-proteasome pathway. When autophagy is suppressed in mice models
of Alzheimer’s, neurodegeneration quickly follows indicating that failure in this pathway
can contribute to the neurodegeneration found in Alzheimer’s. There is also a high
concentration of unubiquitinated tau found in models where the autophagy pathway
has been compromised, indicating these systems may be linked. When these systems
function properly, the tau protein is soluble and moves throughout the brain and body
causing no damage, but when they fail, tau becomes insoluble due to misfolding and can
build up due to the blood–brain barrier preventing the release of such insoluble particles.
Amyloid-beta is another protein commonly found in the human body; it is usually soluble
and passes through the body without causing harm. Amyloid-beta becomes neurotoxic
when it aggregates and misfolds, the most toxic species being amyloid-beta42 [5]. The true
nature of what makes hyperphosphorylated tau and aggregated amyloid-beta neurotoxic
is still not understood and requires more research. These two misfolded proteins are the
ideal targets for potential Alzheimer’s disease treatments [5].

Mitochondria are energy-producing organelles that control cell survival and neuronal
cell death [13]. Mitochondria produce the energy molecule ATP, with reactive oxygen
species as byproducts. When mitochondrial DNA is mutated, the mitochondria can
produce excess reactive oxygen species, leading to oxidative stress. This starts a vicious
cycle in the mitochondria in which mDNA mutates, leading to the overproduction of ROS,
resulting in oxidative stress and DNA mutations (Figure 1) [9]. Brain tissue is very sensitive
to oxidative stress due to its high concentration of unsaturated fatty acids and the inability
of the brain to regulate itself like other organs [13].
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Approximately 90% of the Earth’s biomass is found in the ocean, and marine or-
ganisms represent about half of the world’s known species [14]. Marine macroalgae, or
seaweed, make up a large portion of this biomass with over 10,000 species found glob-
ally [15]. Due to the ready availability of seaweed globally, it has been used in medicines
for millennia, ever since the year 3000 BC [9].

Seaweed is classed into three categories based on pigmentation: green seaweed
(Chlorophyta), red seaweed (Rhodophyta), and brown seaweed (Phaeophyta). There are over
4000 species of red seaweed, over 900 species of green seaweed, and over 1500 species of
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brown seaweed worldwide. Brown seaweed can be found in temperate water, while red
and green seaweeds grow exclusively in tropical waters [4].

Polysaccharides serve as energy reserves and as structural components and are found
in all organisms. Many types of seaweed contain over 80 wt.% polysaccharides [16].
Seaweeds frequently rely on sulfated polysaccharides as cell wall material to aid in
their flexibility to prevent tidal damage [17]. Sulfated polysaccharides, such as those
found in seaweed, have been shown to exhibit high anti-inflammatory and antioxidant
activities (Table 1) as well as the ability to scavenge free radicals [16]. Oxidative stress and
inflammation are some of the leading agents in the progression of AD [3]. Nutraceuticals
protect against the formation of reactive oxygen species and subsequent tissue damage;
thus, seaweed polysaccharides may be a good source of nutraceuticals [18].

Table 1. A compilation of seaweed species used in recent Alzheimer’s disease (AD) research.

Seaweed Species Classification References Activity Presented in References

Saccharina latissima Brown [19] Anti-Inflammatory
Sargassum fusiforme Brown [20,21] Antioxidant, Antiamyloidogenic

Ecklonia cava Brown [22] Antioxidant
Sargassum fluitans Brown [22] Antioxidant

Turbinaria decurrens Brown [22] Antioxidant
Laminaria japonica Brown [23] Neuroreparative, Antioxidant
Undaria pinnatifida Brown [22] Antioxidant
Caulerpa lentillifera Green [24] Antioxidant

Ulva lactuca Green [25] Antioxidant
Gelidium pristoides Red [26] Antioxidant, Antiamyloidogenic

Sulfation has been shown to directly impact the bioactivity of polysaccharides. In
ROS-compromised cells, cell viability increased by 40% when treated with sulfated polysac-
charides and only by 10% when treated with the same non-sulfated polysaccharides.
This is probably due to the increases in free radical scavenging associated with sulfated
polysaccharides [7].

Unfractionated heparin was used as a reference for the study shown in Table 2, which
has an IC50 of 0.29 ± 0.02 µg/mL [19]. The most sulfated sample A09-SP had a degree of
sulfation (DS) value of 0.81 and had a lower IC50 value than the reference sample. The
increase in sulfation showed a significant improvement in IC50 value between fraction 2
and fraction 3. This demonstrates that increasing sulfation drastically lowers the IC50 [19].

Table 2. A comparison of sulfation content and IC50. Adapted from [19].

Polysaccharide Sample Degree of Sulfation (DS) IC50 Elastase (µg/mL)

Fraction F2 F3 F2 F3

B06-SP 0.28 0.82 1.87 ± 0.12 0.26 ± 0.02
A05-SP 0.22 0.76 2.81 ± 0.21 0.28 ± 0.01
A09-SP 0.19 0.81 3.77 ± 0.16 0.21 ± 0.01

2. Application of Polysaccharides from Brown Algae in Treating AD
2.1. Phaeophyta

The sulfated polysaccharide found in brown seaweed is fucoidan. There are many
variations in fucoidan structure depending on the species of seaweed, but their overall
general structures are quite similar. Fucoidans (Figure 2) primarily contain sulfated L-
fucose residues [22]. Some species of brown seaweed also contain a compound known as
lamaran. Lamaran consists of a β-(1-3)-glucan with β-(1-6)-linkages of 20–25 units [27].
Another main polysaccharide found in brown seaweed is alginate, found in the cell wall of
some seaweed species [28].
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2.2. Findings of Recent Studies

An in vitro study found that polysaccharide extracts from Ecklonia radiata (a brown
seaweed) prevented apoptosis and amyloid-beta toxicity, and revived compromised cells
after oxidative damage [10]. Fucoidans have been found to inhibit ROS production [22], as
well as to inhibit the formation of nitric oxide (NO) and prostaglandins [29]. In a 2018 study,
polysaccharide extracts from Sargassum muticum (a brown seaweed native to Japan) were
added to 6-OHDA comprised cells. Because it increases hydrogen peroxide concentration
leading to oxidative stress and decreased cell viability, 6-OHDA has been used to study
neurodegenerative damage. All known fucoidan extracts scavenge DPPH, ABTS, and
FRAB used in monitoring toxic free radicals [2]. Ecklonia cava polysaccharide extracts also
lowered mitochondrial-mediated protein expression and protein aggregation [13].

Polysaccharides from brown seaweeds show many bioactive properties (Figure 3). These
properties include anti-inflammatory, antioxidant, anticholinic, and regulatory activities.
Studies suggest their potential use in the treatment of neurodegenerative disease. Mice
exhibiting signs of neurodegeneration showed improved memory and learning when treated
with fucoidan extracts [14], suggesting great promise for similar sulfated polysaccharides in
future human trials.

Another recent study details a trial in which neurologically compromised mice were
fed polysaccharide extracts from the brown seaweed Sargassum fusiforme [20]. LXRβ and
LXRα are liver X receptors (LXRs) in the brain. The activation of LXRβ improves cognition
and reduces amyloid-beta plaques in AD patients; however, activation of LXRα can lead
to hypertriglyceridemia and hepatic steatosis, making this a difficult treatment route [20].
Phytosterols found in plants/foods common to Western diets do not activate LXRs. A
series of plants used in Eastern diets were tested for their in vitro ability to activate LXRs.
Sargassum fusiforme extracts showed the best activation of LXRβ, with limited activation
of LXRα, and resulted in cell death at 5 µg/mL. This concentration was then tested on
AD mice, with a control group not receiving treatment. The mice treated with Sargassum
fusiforme polysaccharide extracts showed a significant reduction in amyloid-beta plaques,
improved memory, and improved cognition, as compared to both the baseline and the
control group [20]. A series of tests were performed on the cardiovascular systems of mice
using alginate oligosaccharides. The tests all showed that the pretreatment with alginate
oligosaccharides vastly improved the amount of myocardial infarction and cell apoptosis.
This study also looked at the ability of a pretreatment with active oxygen species (AOS)
to reduce oxidative stress in mice tissue. The generation of ROS and the expression of
protein were measured after reperfusion and myocardial infarction, events that would
normally drastically increase the levels of ROS, especially the NO, present in cardiac cells.
Pretreatment with AOS not only mitigated this reaction but lowered the overall ROS
content in the cardiac cells. This suggests a similar reaction is possible in brain tissues
suffering oxidative stress [30].
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3. Application of Polysaccharides from Green Algae in Treating AD
3.1. Chlorophyta

Green seaweed, known as Chlorophyta, has slightly fewer polysaccharides per dry
weight than brown seaweed, with 77% of its mass being polysaccharides; these polysac-
charides contain 21% sulfate [31]. The primary sulfated polysaccharide found in green
seaweed is ulvan. The sulfate content of each polysaccharide has been directly correlated
to its antioxidant and neuroprotective potential.

3.2. Findings of Recent Studies

Green seaweed has also been investigated for its nutraceutical potential. A study
was conducted to test the in vivo as well as the in vitro protective effects of sulfated
polysaccharides from green seaweed [32]. In hydrogen peroxide-compromised cells, the
cell viability and amount of apoptosis both improved after treatment with polysaccharide
extracts from green seaweed. Zebrafish were treated with high levels of hydrogen peroxide
to lead to oxidative stress in order to test the neuroreparative effects in animals. The
survival rate for the fish treated in this way was very low; when the second group of
zebrafish was treated with hydrogen peroxide and green seaweed polysaccharide extracts,
the survival rate increased due to a decreased level of ROS. This led to a recovery in some
of the zebrafish, demonstrating the potential for neurorepair in animals [32].

4. Application of Polysaccharides from Red Algae in Treating AD
4.1. Rhodophyta

Red seaweeds (Rhodophyta) provide many bioactive constituents, such as proteins,
polysaccharides, pigments, polyunsaturated fatty acids, and phenolic compounds. Polysac-
charides account for 40–50% of their dry weight. Agar and carrageenan are the two main
types of cell wall polysaccharides from red seaweed, and are important in nutritional,
medical, and industrial products [33].

4.2. Findings Findings of Recent Studies

Sulfated polysaccharides from the red alga Gelidium pristoides incubated with Aβ1–
42 showed disappearance of Aβ1–42 fibrils, suggesting the activity of disaggregation
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and inhibition of aggregation of the fibrils [26]. к-carrageenan oligosaccharides were re-
ported to exhibit immunomodulatory function by acting on LPS-activated microglial cells,
resulting in their biological activity for preventing inflammation-related neurodegener-
ative diseases [34]. Another study showed that к-carrageenan-derived pentasaccharide
can attenuate Aβ 25–35-induced apoptosis through the JNK pathway [35]. The scaveng-
ing activity of the polysaccharide carrageenan was determined. IC50 values of 36.6 and
32.8 mg/mL were measured for naturally extracted carrageenan and commercially avail-
able carrageenan, respectively [36]. This suggests a similar scavenging activity for car-
rageenans from different sources [35].

5. The Mechanism of Polysaccharides from Seaweeds for the Treatment of AD

Fucoidan has been shown to increase GPX levels and prevent ROS production [37].
High levels of acetylcholinesterase cause cholinergic dysfunction, which leads to memory
loss in AD patients. Seaweed polysaccharide extracts inhibit both acetylcholinesterase and
butyl cholinesterase, and this could improve cholinergic deficit in patients [31]. Fucoidan
extracts inhibit the production of ROS, inhibit the aggregation of amyloid-beta leading to
toxicity, and significantly improve hydrogen peroxide toxicity in mice models. Apoptosis
due to oxidative damage is also decreased [10]. The body’s natural defense against ox-
idative stress is antioxidants; sulfated polysaccharides from brown seaweed show more
antioxidant activity than any other known compound, perhaps due to their high content of
sulfation [38]. Seaweed polysaccharides reduce ROS production and scavenge O2

− and
OH, leading to increased cell viability and decreased apoptosis, and improving memory
and learning function [39]. By increasing SOD1 and SOD2, oxidative stress can be avoided
or reduced in cells treated with seaweed polysaccharide extracts [40]. Lamaran has also
been found to inhibit the production of hydrogen peroxide, the most damaging ROS [29].

Neuroinflammation is a controlling factor for both damage and repair of brain tis-
sue [37]. Inflammatory responses are present around amyloid-beta plaques in AD [41].
Seaweed polysaccharides decreased lipid peroxidation and erythrocyte hemolysis, leading
to decreased inflammation of cells [39].

BACE-1 is a protease that regulates the production of amyloid-beta, and fucoidan
extracts inhibit BACE-1, leading to decreased production of amyloid-beta. By limiting the
aggregation of amyloid-beta, seaweed polysaccharide extracts decrease the cytotoxicity
of amyloid-beta [31]. Fucoidan can ameliorate spatial learning or memory defects by
preventing the formation of amyloid-beta plaques [37].

In summary (Figure 4), the possible mechanisms for the treatment of Alzheimer’s
disease using seaweed extracts (poly/oligo saccharides) include: (i) anti-inflammatory
and antioxidant activities; (ii) scavenging free radicals; (iii) inhibition of ROS production
and inhibition of the formation of nitric oxide (NO) and prostaglandins; (iv) lowering
mitochondrial-mediated protein expression and protein aggregation; (v) directly interact-
ing with the aggregated peptide, preventing oligomerization and fibrillation of Aβ; (vi)
attenuation of Aβ-induced apoptosis through the JNK pathway; and (vii) impacting gut
microbial processing and subsequent neuroinflammation.
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6. Challenges and Opportunities

China has a long history of using herbal medicine to treat a variety of illnesses
including dementia. In 2017, a retroactive cohort study was conducted to see if the addition
of herbal medicine to conventional treatment options for AD could improve the cognitive
ability of the patients or even slow the progression of the deterioration. Patients showed an
improvement in their mini-mental state examination (MMSE) scores compared to the initial
baseline and the expected untreated progression of AD (Figure 5). The normal decline in
MMSE scores was significantly delayed when treated with both conventional treatments
and herbal treatments [42].
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Seaweed is not the only source of natural compounds being explored as an option
in the treatment of AD. A Korean group looked at the impact that long-term treatment
with red ginseng extracts could have on Alzheimer’s patients. This study was 24 weeks
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long, with 61 patients undergoing treatment. During the 24-week trial, the patients’ AD
assessment scale score improved markedly when compared with the control group. More
important than the initial 12-week and 24-week scores were the scores that were seen over
the next two years: these scores showed no deterioration once treatment ceased [11,43].

Some species of seaweed have a large quantity of non-sulfated polysaccharides along
with their sulfated polysaccharides; this is true for other medicinal plants as well. Non-
sulfated polysaccharides that had undergone chemical sulfation, in place of their naturally
sulfated counterparts, were also shown to reduce oxidative stress [7]. This addition of sul-
fate groups onto polysaccharides extracted from Rhodiola sachalinensis using chlorosulfonic
acid-pyridine suggests the same practice could be applied to other seaweed polysaccharides
to increase their level of sulfation.

Seaweed is currently widely available globally but because of climate change, the
availability of seaweed could change. A study was conducted to see if polysaccharides from
seaweed grown in bacterial hosts could be sulfated, affording sulfated polysaccharides
with the same bioactivity as naturally occurring sulfated polysaccharides [44]. This study
found that in cells pretreated with the synthetic sulfated polysaccharides, the level of
hydrogen peroxide required to induce oxidative stress was decreased. The survival rate
of cells treated with only hydrogen peroxide was less than 60%, while the cells that were
pretreated with 0.5 µg/mL sulfated polysaccharides showed a survival rate of nearly 100%.
The highest concentration, 2.0 µg/mL, was the least effective concentration to ameliorate
the oxidative damage; this concentration still resulted in a cell survival rate of nearly
90%. This demonstrates that chemical modification is a useful method for mass-producing
sulfated polysaccharides that could provide a potential solution to oxidative stress injury
and subsequent apoptosis in neuronal cells [44].

One of the main challenges in AD treatment is a therapeutic’s ability to navigate the
blood–brain barrier. One solution to overcome the blood–brain barrier may be to attach
these molecules to nanoparticles, relying on nanotechnology to overcome this obstacle [45].
A nanotechnological approach demonstrated that curcumin attached to nanoparticles
could cross the blood–brain barrier. Curcumin has also been proposed as a possible
treatment for AD due to its ability to bind to amyloid-beta, preventing aggregation [46].
This study found that a relatively low dose of nanoparticles (23 mg/week) when delivered
across the blood–brain barrier showed improvements in memory and cognition in mice
with AD symptoms [46]. A similar study using seaweed polysaccharides immobilized to
nanoparticles could represent a new approach for patients suffering from AD.

Currently, the only treatment options for AD are cholinesterase inhibitory medications.
These medications cause liver damage and do not block AD progression and, in some cases,
they even exacerbate this progression [47]. Current research suggests that polysaccharide
extracts from brown seaweed show low cytotoxicity, relatively high bioavailability, and low
production costs and, thus, might offer alternative therapeutics [48]. These polysaccharides
may represent ideal candidates for drug research and discovery. As of this publication,
there have been no positive results in human trials to confirm the utility of seaweed
polysaccharides in treating AD [45]. As with any possible treatment, the difficulties in
undertaking human trials still represent a large barrier to success.

China has particularly high rates of AD, with nearly one third of the population over
90 being affected. China has issued conditional approval for a new AD drug, GV-971,
to address this growing problem [49]. GV-971 stems from a study performed to test the
impact of sodium oligomannate on gut microbial processing and subsequent neuroinflam-
mation [50]. The 5XFAD transgenic mouse model, a standard mouse model commonly
used in AD studies, mimics amyloid-beta formation as well as cognitive deficits. After one
month of receiving oral GV-971, the affected mice showed a different gut microbiome as
well as improved cognition [50].

This breakthrough suggests the possible use of seaweed polysaccharide extracts in
treatment options for AD. Testing the efficacy of seaweed polysaccharides will require
careful monitoring and data tracking to confirm the utility of such treatments in humans.
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In conclusion, polysaccharides from seaweed could very well be an effective treatment
for AD and other neurodegenerative diseases. The current data are very positive and show
great potential, but additional research is required to establish efficacy, low toxicity, and
beneficial human responses, as well as to examine other possible interactions that could
undermine the neuroprotective capability of these polysaccharides. Additional studies on a
wider variety of seaweeds, as well as human efficacy trials, are required. Finally, additional
studies on the mechanism of seaweed polysaccharides in relation to AD symptoms and
progression are needed to further the understanding of the effects of these polysaccharides.
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