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Abstract: Scalarane sesterterpenoids emerged as interesting bioactive natural products which were
isolated extensively from marine sponges and shell-less mollusks. Some representatives were also re-
ported recently from superior plants. Many scalarane sesterterpenoids displayed a wide spectrum of
valuable properties, such as antifeedant, antimicrobial, antifungal, antitubercular, antitumor, anti-HIV
properties, cytotoxicity and stimulation of nerve growth factor synthesis, as well as anti-inflammatory
activity. Due to their important biological properties, many efforts have been undertaken towards
the chemical synthesis of natural scalaranes. The main synthetic challenges are connected to their
complex polycyclic framework, chiral centers and different functional groups, in particular the
oxygenated functional groups at the C-12 position, which are prerequisites of the biological activity
of many investigated scalaranes. The current work addresses this problem and the synthesis of
17-oxo-20-norscalaran-12α,19-O-lactone is described. It was performed via the 12α-hydroxy-ent-
isocopal-13(14)-en-15-al obtained from (-)-sclareol as an accessible starting material. The tetracyclic
lactone framework was built following an addition strategy, which includes the intramolecular
Michael addition of a diterpenic acetoacetic ester and an intramolecular aldol condensation reaction
as key synthetic steps. The structure and stereochemistry of the target compound have been proven
by X-Ray diffraction method.

Keywords: scalarane sesterterpenoids; synthesis; natural terpenoids; X-ray analysis

1. Introduction

Scalaranic sesterterpenoids are natural products with a tetracyclic carbon skeleton
1 (Figure 1). The first representatives of this terpenoids subclass were isolated in the
beginning of the 1970s. In particular, scalarine (2) was isolated by Ernesto Fattorusso and
collaborators from the see sponges Cacospongia scalaris [1], collected in the Mediteranian
Sea. Soon after, Guido Cimino and collaborators identified the bioactive sesterterpenoid
(-)-scalaradial (3) in the extract of another sea sponge, Cacospongia mollior [2].
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Figure 1. Representatives of the scalaranic sesterterpenoids.

Marine organisms such as sponges or mollusks represent the main source for the
scalaranic sesterterpenoids’ isolation [3–6]. Some recent works report their isolation also
from terrestrial plants [7] and fungi [8], thus keeping the focus and the scientific interest
towards such compounds. The last 5 years witnessed more than 30 high impact publica-
tions connected to scalaranes [9]. This is mainly due to the wide range of their biological
activities, including antifeedant, antimicrobial, antifungal, anti-HIV properties, cytotoxicity
and anti-inflammatory activity, etc. [3,8]. However, a broader investigation of scalaranes in
medicinal chemistry studies is still hampered by their relative scarcity in natural sources
and a lot of efforts have been put on the elaboration of pathways for their target syn-
thesis [10]. The structural complexity of the scalarane architecture is connected to their
polycyclic backbone, stereochemical issues and specific oxygenations. While the first two
challenges have been addressed successfully in several synthetic strategies, the introduc-
tion of oxygenated functional groups, especially in the C-12 position of the tetracyclic
system still represents a relevant synthetic hurdle. Only few works on the synthesis of cycle
B- [11] and C-functionalized [12–16] scalaranes have been reported since 2004. In particular,
previous successful reports on the synthesis of C-12—functionalized scalaranes make use
of ent-isocopalic compounds and assemble the D-cycle via a Diels-Alder cycloaddition ap-
proach [12–15] or employing an intramolecular Heck reaction of tricyclic cheilanthanes [16].
The most successful example [15] demonstrates the synthesis of the C-12 functionalized
scalaranic framework over 18 synthetic steps with an 4.5% overall yield. We present in the
current paper an alternative synthetic rout towards the scalaranes functionalized at the
C-12 position.

2. Results and Discussion

In order to elaborate an alternative strategic approach for the synthesis of a C-12-
functionalized tetracyclic framework, we addressed a synthetic pathway basing on the
readily available methyl ent-isocopalate (4) as a convenient chiral building block which can
be prepared easily from the commercial (-)-sclareol (5). It can be further oxygenated at the
C-12 position and homologated with a C-4 fragment in the form of the acetoacetate ester 6
as a pre-requisite of an intramolecular sequence of a Michael–aldol reactions, leading to
the closure of the D-cycle in lactone 7 with the required trans-stereochemistry (Scheme 1).

Scheme 1. The retrosynthetic scheme towards C-12–functionalized scalaranic framework.

The lactone 7 is a valuable intermediate to access highly functionalized scalaranes
on flexible manipulation of its functional groups. In our hands, the hydrogenation of the
double bond delivered the 17-oxo-20-norscalaran-12α,19-O-lactone (8).

Implementation of the planned synthetic strategy was straightforward (Scheme 2).
The isocopalic hydroxyaldehyde (9) obtained by a known sequence of transformations
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from 5 via 4 [14,17] was esterified with diketene under mild conditions in dichloromethane,
according to the method [18].

Scheme 2. Reagents and conditions: (a) Diketene, CH2Cl2, Et3N, 0 ◦C, 2 h; (b) Cs2CO3, MeCN, reflux,
2 h, ~61% over 2 steps; (c) p-TsOH, PhH, reflux, 3 h; (d) H2, 10% Pd/C, EtOAc, 4 h.

The ester 6 resulted in a good yield, and due to its instability was submitted to the
next step without purification. The Michael reaction was initiated on immediate treatment
of crude ester 6 with caesium carbonate in acetonitrile [19]. The desired lactone 10 was
obtained with a good yield (~61% over two steps) and its structure was demonstrated
basing on spectral data.

The IR spectrum of compound 10 shows the presence of the aliphatic C-H bonds
(2922 cm−1) and carbonyl groups (1774, 1711 cm−1). The 13C spectrum shows peaks of
24 carbons: 6 methyl and 6 methine carbons, 6 methylenic carbons, an oxymethine (δC 84.4),
aldehyde (δC 204.6) and 6 quaternary carbons, including two carbonyls (δC 172.8, 203.2).
Attribution of 13C peaks and assignment of all protons chemical shifts was performed on
the basis of 2D HSQC, HMBC and 1H-1H COSY correlations. In particular, 1H and 13C
NMR signals of six methyl groups at δH 0.86 (3H-21)/δC 33.2 (C-21), 0.82 (3H-22)/21.3
(C-22), 0.86 (3H-23)/15.9 (C-23), 1.21 (3H-24)/19.0 (C-24), 1.22 (3H-25)/15.5 (C-25) have
been attributed basing on HMBC correlations, along with the methyl adjacent to the keto
group found at δH 2.34 (H-16)/δC 33.3 (C-16) (Figure 2). The triplet of the oxymethine
proton is detected at δH 4.63 (t, 2.9, H-12)/δC 84.4 (C-12) and the doublet of the aldehyde
proton at δH 10.02 (d, 1.4, C-15)/δC 204.6 [C-15(CHO)]. The methine protons are confirmed
at δH 0.93 (m, H-5), 1.28 (m, H-9), 1.86 (bs, H-14) and 3.93 (s, H-18) by HSQC cross peaks
with carbons at δC 56.2 (C-5), 49.7 (C-9), 65.2 (C-14) and 66.5 (C-18), respectively. HMBC
correlations H-18→C-12, C-13, C-14 (Figure 2) confirm the formation of the new bond after
the Michael reaction leading to the α-lactone cycle and the pendant methyl ketone.

Figure 2. Selected 1H-13C HMBC, 1H-1H COSY and NOESY correlations for compound (10).
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The relative stereochemistry was established on the basis of the NOESY spectrum
(Figure 2). The configuration of the 12β-H proton which corresponds to the starting
substrate 6 was confirmed by H-12↔H3-25 correlations. The β-orientation of the aldehyde
group is proven by correlations H-14↔H-9 and H-15(CHO)↔H3-24.

The intramolecular aldol reaction of ketoaldehyde 10 was triggered upon treatment
with PTSA. The cyclization occurred with a good yield and selectivity; the desired unsat-
urated ketolactone 7 predominated over its isomer 11, which was formed as a result of
double bond migration under acidic reaction conditions. Such isomerizations are known in
aldol-related cyclizations; we did not make any attempts to optimize this transformation.

The IR spectrum of compound 7 shows the presence of the aliphatic C-H bonds (2920,
2865 cm−1) and carbonyl group (1760 cm−1). The structure of compound 7 was elucidated
on the basis of NMR spectral data, in particular of 2D HSQC, HMBC and 1H-1H COSY
correlations (Figure 3).

Figure 3. Selected 1H-13C HMBC, 1H-1H COSY and NOESY correlations for compound 7.

The 1H and 13C NMR show neither aldehyde group nor methyl ketone specific signals,
whereas a double bond is clearly detected (δC 129.9, 149.5). In this line, the 1H-1H COSY
cross peaks corresponding to H-15↔H-16↔H-17 correlations show convincingly the D-
ring closure as a result of the intramolecular aldol reaction in the substrate 8. On the
basis of 13C and HSQC spectra, the carbon backbone of compound 7 is revealed to include
24 carbon atoms: 5 methyl, 6 methylene groups and 7 methine groups, 6 quaternary carbons,
including two carbonyls (δC 169.7, 188.6). Attribution of 13C peaks and assignment of all
protons chemical shifts resulted in five methyls at δH 0.85 (3H-21)/δC 33.2 (C-21), 0.82 (3H-
22)/21.3 (C-22), 0.86 (3H-23)/15.6 (C-23), 0.99 (3H-24)/18.0 (C-24) and 1.27 (3H-25)/18.4
(C-25). The methine protons are confirmed at δH 0.89 (m, H-5), 1.32 (m, H-9), 4.38 (t, 2.8,
H-12), 2.39 (t, 3, H-14), 3.07 (s, H-18) by HSQC cross peaks with carbons at δC 56.6 (C-5),
52.2 (C-9), 82.8 (C-12), 50.4 (C-14) and 64.9 (C-18), respectively. The protons attached to
sp2 carbons are detected at δH 7.09 (dd, 10, 3, H-15)/δC 149.5 (C-15) and 6.09 (dd, 10, 3,
H-16)/129.9 (C-16).

The careful examination of 2D NMR confirmed assembling of the pentacyclic system
including tetracyclic nor-scalaranic framework condensed with the C-12–C-18 lactone ring
and oxygenated at C-17 with the keto group. The relative stereochemistry of lactone 7 was
established on the basis of NOESY spectrum (Figure 3). Correlation H-12↔H3-25↔H-18
clearly shows the α-orientation of the lactone ring, and H-14 α-orientation is proven by
H-14↔H-9 correlation.

The spectral data of minor lactone 11 are very much similar to those of major com-
pound 7. The only major difference represents the double bond position in cycle D, which
is trisubstituted and placed at C-14–C-15 carbon atoms.

The major pentacyclic ketolactone 7 represents a very useful compound for a flexible
generation of a whole array of molecular diversity. Direct short range functionalizations are
feasible in cycles C and D, and, evidently, olefination of the C-17 keto group can provide
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the C-25—scalaranic backbone. In order to finally prove the relative stereochemistry of
lactone 7, we performed X-ray analysis of its hydrogenation product 8, which turned out
to provide suitable crystals for this investigation. The hydrogenation of 7 went smoothly
(95%) after treatment with palladium under hydrogen gas atmosphere. The spectral data
of saturated ketolactone 8 have shown a perfect match to its suggested stereochemistry.
In particular, 2D NMR experiments confirmed the structural changes of the substrate 7,
consisting of the modified chemical shift values for C-15 and C-16 positions to δH 1.96–1.63
(m, 2H-15)/δC 18.5 (C-15) and 2.58–2.36 (m, 2H-16)/48.8 (C-16). Compound 8 shows a
total of 24 carbon atoms, including 6 methyl, 8 methylene and 5 methine groups, and
6 quaternary carbons. Attribution of 13C peaks and assignment of all protons chemical
shifts show methyl groups at δH 0.85 (3H-21)/δC 33.2 (C-21), 0.82 (3H-22)/21.3 (C-22), 0.85
(3H-23)/15.8 (C-23), 0.90 (3H-24)/17.0 (C-24) and 1.25 (3H-25)/18.4 (C-25). The attribution
of C-H groups included signals at δH 0.89 (m, H-5), 1.34 (m, H-9), 4.29 (t, 2.8, H-12), 1.54
(m, H-14), 3.05 (s, H-18), which correspond to carbon atoms at δC 56.4 (C-5), 52.4 (C-9), 84.2
(C-12), 50.4 (C-14) and 67.5 (C-18). NOESY correlations for compound 8 confirm the desired
trans-stereochemistry between newly built cycles of the tetracyclic scalaranic framework
(Figure 4).

Figure 4. Selected 1H-13C HMBC, 1H-1H COSY and NOESY correlations and X-ray molecular
structure of compound 8.

The chemical composition and crystal structure of compound 8 were confirmed by
single crystal X-ray diffraction. A single crystal of ketolactone 8 was obtained on its
crystallization from ethyl acetate-diethyl ether solvent mixture (1:1). According to X-ray
crystallography, compound 8 exhibits a molecular crystal structure crystallizing the P212121
Shohnke space group of the orthorhombic system with one neutral entity in the asymmetric
part, as shown in Figure 4. In the crystal, the neutral molecules are interacting through
C-H···O hydrogen bonding to form infinite supramolecular ribbons running along an axis.
A detailed report on the X-ray experiment, including one-dimensional architecture and
crystal packing, is available as Supplementary Materials.

3. Materials and Methods
3.1. General Experimental Procedures

Melting points were measured with a Boethius heating stage. Optical rotations:
Jasco-DIP-370 polarimeter; 5 cm cell; in CHCl3. IR Spectra: Spectrum-100 FT-IR spectropho-
tometer (PerkinElmer), with the universal ATR sampling accessory; ν in cm−1. 1H- and
13C-NMR Spectra: Bruker-Avance-III spectrometer (400.13 and 100.61 MHz); in CDCl3; δ
in ppm rel. to CHCl3 as internal standard (δH 7.26 and δC 77.0), J in Hz. The carbon and
hydrogen content of compounds were determined by standard microanalysis on Vario-EL-
III-CHNOS Elemental Analyzer. Commercial Merck silica gel 60 (70–230 mesh ASTM) was
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used for flash chromatography and Merck pre-coated silica gel plates were used for TLC.
The chromatograms were sprayed with 0.1% solution of cerium (IV) sulfate in 2N sulfuric
acid, and heated at 80 ◦C for 5 min to detect the spots. Treatment of reaction mixtures
in organic solvents included the extraction by diethyl ether, washing of the extract with
water up to neutral reaction, drying over anhydrous Na2SO4, filtering and solvent removal
in vacuum.

3.2. Single Crystal X-Ray Diffraction

X-ray diffraction measurements were carried out with a Rigaku Oxford-Diffraction
XCALIBUR E CCD diffractometer equipped with graphite-monochromated MoKα radi-
ation. A single crystal was positioned at 40 mm from the detector and 201 frames were
measured each for 125 s over 1◦ scan width. The unit cell determination and data integra-
tion were carried out using the CrysAlis package of Oxford Diffraction [20]. The structures
were solved by Intrinsic Phasing using Olex2 [21] software with the SHELXT [22] structure
solution program, and refined by full-matrix least-squares on F2 with SHELXL-2015 [23] us-
ing an anisotropic model for non-hydrogen atoms. In the absence of significant anomalous
scattering, the absolute configuration of the structures could not be reliably determined.
Friedel pairs were merged and any references to the Flack parameter were removed. The H
atoms were placed geometrically and constrained to ride on their parent atoms with dCH
= 0.96 Å and Uiso values of 1.2 Ueq of the parent atoms. The crystallographic data and
refinement details are quoted in Table S1, whereas bond lengths and angles are given in
Table S2 (Supplementary Materials available).

3.3. 12α-Hydroxy-ent-isocopal-13,14-en-15-al (9)

Compound 9 was obtained according to the described method [14]. 12α-Hydroxy-
ent-isocopal-13,14-en-15-al (9) was obtained as a white crystalline solid. Mp: 123–125 ◦C;
(Lit. [13] Mp: 134–135 ◦C); α20

D –69.8 (c 0.31, CHCl3). IR (υ, cm−1): 3388, 2869, 1678, 1456,
1379, 1042, 733. 1H (400.13 MHz, CDCl3) δH: 0.81 (3H, s, H-19), 0.83 (3H, s, H-18), 0.87 (3H,
s, H-20), 1.16 (3H, s, H-17), 2.12 (3H, s, H-16), 4.04 (1H, dd, J = 4.5, 1.2 Hz, H-12), 10.08 (1H,
s, CHO). 13C (100.61 MHz, CDCl3) δC: 16.5 (q, C-20), 16.8 (q, C-16), 18.4 (t, C-2), 18.5 (t,
C-6), 19.8 (q, C-17), 21.2 (q, C-19), 27.1 (t, C-11), 33.2 (q, C-18), 33.2 (s, C-4), 37.0 (s, C-10),
37.6 (t, C-7), 38.9 (s, C-8), 39.6 (t, C-1), 42.0 (t, C-3), 50.3 (d, C-9), 56.5 (d, C-5), 70.8 (d, C-12),
145.1 (d, C-14), 148.1 (s, C-13), 194.3 (s, C-15).

3.4. Synthesis of Compound 6

Et3N (80 µL, 0.57 mmol) and diketene (45 µL, 0.57 mmol) were added to a solution
of hydroxyaldehyde 9 (117 mg, 0.38 mmol) and benzene (2 mL) in the inert atmosphere.
The reaction mixture was stirred for 30 min at 0 ◦C and 2 h at room temperature. After
the usual work-up, the extract was dried and filtered. The solvent was removed under
reduced pressure and the residue (~156 mg) of compound 6 was obtained, pale yellow
viscous oil. Because the substance 6 is unstable, it was used in the next step without any
purification. 1H (400.13 MHz, CDCl3) δH: 1.17 (3H, s, Me-24), 1.97 (3H, s, Me-25), 2.27 (3H,
s, Me-16), 3.51 (2H, s, H-18), 5.31 (1H, bd, J = 3.9 Hz, H-12), 10.08 [1H, s, C-15(CHO)]; 13C
(100.61 MHz, CDCl3) δC: 16.2 (q, C-23), 16.2 (q, C-25), 18.4 (t, C-2), 18.4 (t, C-6), 19.9 (q,
C-24), 21.2 (q, C-22), 33.2 (s, C-4), 36.9 (s, C-10), 37.5 (t, C-7), 38.5 (s, C-8), 39.4 (t, C-1), 41.9
(t, C-3), 50.3 (t, C-18), 50.5 (d, C-9), 56.2 (d, C-5), 73.8 (d, C-12), 143.0 (s, C-14), 147.39 (s,
C-13), 166.7 (s, C-19), 193.9 (s, C-15), 200.0 (s, C-17).

3.5. Synthesis of Compound 10

To a solution of compound 6 (140 mg, 0.36 mmol) and anhydrous MeCN, and inert
atmosphere, was added anhydrous Cs2CO3 (122 mg, 0.37 mmol). The reaction mixture
was stirred for 15 min at room temperature and 2 h at reflux. After the usual work-up,
the extract was dried and filtered. The solvent was removed, and the residue (~146 mg)
was purified on a silica gel (5 g) column (petroleum ether–ethyl acetate, gradient elution),
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resulting in compound 10 (85 mg, ~61% over two steps from 9), pale yellow viscous oil.
α20

D –19.7 (c 0.21, CHCl3). IR (ν, cm−1): 2922, 2870, 1774, 1711, 1390, 1207. 1H (400.13 MHz,
CDCl3) δH: 0.82 (3H, s, Me-22), 0.86 (6H, s, Me-21, 23), 1.21 (3H, s, Me-24), 1.24 (3H, s,
Me-25), 1.86 (1H, bs, H-14) 2.34 (3H, s, Me-16), 3.93 (1H, s, H-18), 4.63 (1H, t, J = 2.9 Hz,
H-12), 10.02 (1H, d, J = 1.4 Hz, CHO). 13C (100.61 MHz, CDCl3) δC: 15.5 (q, C-25), 15.9 (q,
C-23), 17.8 (t, C-6), 18.3 (t, C-2), 19.0 (q, C-24), 20.3 (t, C-11), 21.3 (q, C-22), 33.2 (q, C-21),
33.3 (s, C-4), 33.3 (q, C-16), 37.1 (s, C-10), 37.5 (s, C-8), 39.1 (t, C-1), 41.5 (t, C-7), 41.8 (t, C-3),
44.9 (s, C-13), 49.7 (d, C-9), 56.2 (d, C-5), 65.2 (d, C-14), 66.5 (d, C-18), 84.4 (d, C-12), 172.8 (s,
C-19), 203.2 (s, C-17), 204.6 (s, C-15). Anal. Calc. for C24H36O4: C 74.19, H 9.49; found: C
74.24, H 9.41.

3.6. Intramolecular Aldol Condensation of Compound 10

To a solution of compound 10 (78 mg, 0.20 mmol) and anhydrous benzene (3 mL),
p-TsOH (11 mg, 0.06 mmol) was added, and the reaction mixture was refluxed for 4 h.
After the usual work-up, the extract was dried and filtered. The solvent was removed,
and the residue (~76 mg) was purified on a silica gel (3.5 g) column (petroleum ether—
ethyl acetate, gradient elution), resulting in compound 11 (18 mg, 23%) and compound (7)
(39.1 mg, ~50%).

3.6.1. Compound 11

Pale yellow amorphous gum. IR (ν, cm−1): 2922, 2870, 1774, 1711, 1390, 1207. IR (ν,
cm−1): 2916, 2872, 1756, 1677, 1142, 1070. 1H (400.13 MHz, CDCl3) δH: 0.83 (3H, s, Me-22),
0.87 (3H, s, Me-21), 0.90 (3H, s, Me-23), 1.14 (3H, s, Me-24), 1.40 (3H, s, Me-25), 3.19 (1H, s,
H-18), 4.42 (1H, t, J = 2.8 Hz, H-12), 2.88–2.93 (1H, dd, J = 22.7, 2.7 Hz, H-16), 3.10–3.16 (1H,
dd, J = 22.7, 5.2 Hz, H-16), 5.66 (1H, dd, J = 5.1, 2.7 Hz, H-15). 13C (100.61 MHz, CDCl3) δC:
16.1 (q, C-23), 18.5 (t, C-2), 18.5 (t, C-6), 20.7 (t, C-11), 21.5 (q, C-22), 23.2 (q, C-24), 23.6 (q,
C-25), 33.3 (s, C-4), 33.3 (q, C-21), 37.5 (s, C-10), 38.2 (t, C-16), 39.4 (t, C-1), 39.6 (s, C-8), 39.9
(t, C-7), 41.8 (t, C-3), 47.6 (s, C-13), 48.4 (d, C-9), 56.2 (d, C-5), 65.1 (d, C-18), 85.1 (d, C-12),
117.6 (d, C-15), 148.2 (s, C-14), 170.3 (s, C-19), 201.7 (s, C-17). Anal. Calc. for C24H34O3: C
77.80, H 9.25; found: C 77.49, H 9.31.

3.6.2. Compound 7

White crystalline solid. Mp: 260–262 ◦C; α20
D –14.6 (c 0.19, CHCl3). IR (ν, cm−1): 2920,

2865, 1760, 1681, 1149, 1077. 1H (400.13 MHz, CDCl3) δH: 0.82 (3H, s, Me-22), 0.85 (3H, s,
Me-21), 0.86 (3H, s, Me-23), 0.99 (3H, s, Me-24), 1.27 (3H, s, Me-25), 2.39 (1H, t, J = 3 Hz,
H-15), 3.07 (1H, s, H-18), 4.38 (1H, t, J = 2.8 Hz, H-12), 6.09 (1H, dd, J = 10, 3 Hz, H-16),
7.09 (1H, dd, J = 10, 3 Hz, H-15). 13C (100.61 MHz, CDCl3) δC: 15.6 (q, C-23), 17.7 (t, C-6),
18.0 (q, C-24), 18.4 (t, C-2), 18.4 (q, C-25), 20.1 (t, C-11), 21.3 (q, C-22), 33.2 (q, C-21), 33.3 (s,
C-4), 35.6 (s, C-8), 37.0 (s, C-10), 39.1 (t, C-1), 40.1 (t, C-7), 41.8 (t, C-3), 48.0 (s, C-13), 50.4
(d, C-14), 52.2 (d, C-9), 56.6 (d, C-5), 64.9 (d, C-18), 82.8 (d, C-12), 129.9 (d, C-16), 149.5 (d,
C-15), 169.7 (s, C-19), 188.6 (s, C-17). Anal. Calc. for C24H34O3: C 77.80, H 9.25; found: C
77.58, H 9.38.

3.7. Hydrogenation of Unsaturated Ketone 7

To a solution of compound 7 (30 mg, 0.08 mmol) and EtOAc (4 mL), 10% Pd/C (9.4 mg,
0.009 mmol) was added and was stirred for 15 min. Afterwards, a stream of hydrogen was
added to the reaction mixture and was stirred for 24 h at room temperature. The mixture
was filtered, and the solvent was removed in vacuum. The residue (29 mg) was purified on
a silica gel (1.0 g) column (petroleum ether—ethyl acetate, gradient elution), resulting in
compound 8 (28,6 mg, ~95%) as a white crystalline solid. Mp: 279–281 ◦C; α20

D 32.2 (c 0.9,
CHCl3). IR (ν, cm−1): 2957, 2923, 2845, 1776, 1712, 1190, 1037. 1H (400.13 MHz, CDCl3) δH:
0.82 (3H, s, Me-22), 0.85 (3H, s, Me-23), 0.86 (3H, s, Me-22), 0.90 (3H, s, Me-24), 1.25 (3H, s,
Me-25), 3.05 (1H, s, H-18), 4.29 (1H, t, J = 2.8 Hz, H-12). 13C (100.61 MHz, CDCl3) δC: 15.8
(q, C-23), 17.0 (q, C-24), 18.1 (t, C-6), 18.4 (t, C-2), 18.4 (q, C-25), 18.5 (t, C-15), 20.5 (t, C-11),
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21.3 (q, C-22), 33.2 (q, C-21), 33.3 (s, C-4), 36.9 (s, C-8), 37.1 (s, C-10), 39.3 (t, C-1), 40.8 (t,
C-7), 40.8 (t, C-16), 41.9 (t, C-3), 44.9 (s, C-13), 50.4 (d, C-14), 52.5 (d, C-9), 56.4 (d, C-5), 67.5
(d, C-18), 84.2 (d, C-12), 171.0 (s, C-19), 202.4 (s, C-17). Anal. Calc. for C24H36O3: C 77.38, H
9.74; found: C 77.46, H 9.68.

4. Conclusions

The target-oriented synthesis of 17-oxo-20-norscalaran-12α,19-O-lactone has been
realized, starting from the commercially available (-)-sclareol. The proposed synthetic
approach includes 11 steps providing the C-12 functionalized scalaranic framework with
the correct trans-stereochemistry between C and D cycles with an 11.3% overall yield.
The key step constitutes a Michael reaction of a 12α-hydroxy-ent-isocopal-13,14-en-15-
al acetoacetic ester and its following intramolecular aldol reaction that put in place the
tetracyclic scalaranic framework. This simple and efficient strategic pathway represents a
new approach towards natural scalaranes with advanced functionalization in both C and
D cycles of the tetracyclic skeleton. It opens a broad perspective for structural diversity
building in this important natural product family of bioactive compounds.

The structure and stereochemistry of all synthetic intermediates was elucidated on
the basis of extensive spectral investigations, including 2D NMR spectroscopy. The stere-
ochemistry of the assembled scalaranic framework was convincingly proven by X-ray
monocrystal diffraction studies of the synthesized 17-oxo-20-norscalaran-12α,19-O-lacton.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19110636/s1. Figures S1 and S2: X-ray crystal structure report for compound (8). Table S1:
The crystallographic data and refinement details. Table S2: (a) Bond distances (Å) and (b) angles (◦)
for compound 8 (CCDC 2116545). 1H, 13C and 2D NMR spectra of compounds (6–11).
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