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Abstract: Exploration for specialized metabolites of Okinawan marine sponges Agelas spp.
resulted in the isolation of five new bromopyrrole alkaloids, agesasines A (1) and B (2),
9-hydroxydihydrodispacamide (3), 9-hydroxydihydrooroidin (4), and 9E-keramadine (5).
Their structures were elucidated on the basis of spectroscopic analyses. Agesasines A (1) and
B (2) were assigned as rare bromopyrrole alkaloids lacking an aminoimidazole moiety, while 3–5
were elucidated to be linear bromopyrrole alkaloids with either aminoimidazolone, aminoimidazole,
or N-methylated aminoimidazole moieties.
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1. Introduction

A number of structurally unique bioactive specialized metabolites have been isolated from marine
sources including sponges, algae, cnidarians, and marine microorganisms, etc. [1]. To date, more than
8000 species of marine sponges (phylum Porifera) have been found under the sea throughout tropical,
temperate, and polar area [2]. Marine sponges utilize some of their specialized metabolites as chemical
defenses against predator attacks, microbial infections, biofouling, and overgrowth of other sessile
organisms [3,4]. On the other hand, natural products isolated from marine sponges are recognized as
an attractive source of leads for therapeutic agents due to a diversity of their chemical structures and
biological activities.

Marine sponges belonging to the genus Agelas are known to be a rich source of bromopyrrole
alkaloids and diterpene alkaloids that have been used as a taxonomically characteristic maker [5].
In our search for structurally unique marine natural products [6–8], we have recently reported the
isolation of diterpene alkaloids from the extracts of a marine sponge Agelas spp. [9]. As part of this
research project, we have investigated another specimen of Agelas marine sponges, which resulted in
the isolation of five new bromopyrrole alkaloids (1–5). Among others, agesasines A (1) and B (2) are
rare bromopyrrole alkaloids lacking an aminoimidazole moiety, from the point of view that typical
bromopyrrole alkaloids consist of a brominated pyrrolecarboxamide moiety and an aminoimidazole
moiety linked through a C3 unit. Herein, we describe the isolation and structure elucidation of 1–5.

Mar. Drugs 2020, 18, 455; doi:10.3390/md18090455 www.mdpi.com/journal/marinedrugs

http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0002-9281-7098
https://orcid.org/0000-0002-5429-3211
http://www.mdpi.com/1660-3397/18/9/455?type=check_update&version=1
http://dx.doi.org/10.3390/md18090455
http://www.mdpi.com/journal/marinedrugs


Mar. Drugs 2020, 18, 455 2 of 8

2. Results and Discussion

2.1. Isolation of 1–5 from Marine Sponges Agelas spp.

Two specimens of the marine sponge Agelas spp. (SS-516 and SS-1302) were separately extracted
with MeOH to give extracts, each of which was partitioned between n-hexane and 90% MeOH
aq. Repeated chromatographic separations of the 90% MeOH aq.-soluble materials from SS-516
gave two new bromopyrrole alkaloids, agesasines A (1, 2.5 mg) and B (2, 2.2 mg) (Figure 1)
together with two known bromopyrrole alkaloids, tauroacidin A [10] and taurodispacamide A [11].
In contrast, the 90% MeOH aq.-soluble materials of SS-1302 were further partitioned with n-BuOH
and water. The n-BuOH-soluble materials were separated by column chromatographies to give three
new bromopyrrole alkaloids, 9-hydroxydihydrodispacamide (3, 5.0 mg), 9-hydroxydihydrooroidin
(4, 2.1 mg), and 9E-keramadine (5, 3.1 mg) (Figure 1), together with four known alkaloids, oroidin [12,13],
keramadine [14], 2-bromo-9,10-dihydrokeramadine [15], and nagelamide L [16].
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Figure 1. Structures of agesasines A (1) and B (2), 9-hydroxydihydrodispacamide (3),
9-hydroxydihydrooroidin (4), and 9E-keramadine (5).

2.2. Structure Elucidation of 1–5

Agesasine A (1) displayed ion peaks at m/z 391, 393, and 395 (1:2:1), suggesting the presence
of two bromine atoms in 1. The molecular formula of 1, C9H10N2O4Br2, was determined by the
high-resolution electrospray ionization mass spectrometry (HRESIMS) (m/z 390.89045 [M + Na]+,
∆ − 0.05 mmu). The 1H and 13C NMR spectra (Table 1) displayed the signals of one sp3 methine,
one sp3 methylene, one methoxy group, and one carboxy carbon as well as resonances assignable to
a 2,3-dibromopyrrole carboxamide moiety (N-1~N-7). Analysis of the 1H-1H correlation spectroscopy
(COSY) spectrum revealed the connectivities from 7-NH to 9-OH (Figure 2), while heteronuclear
multiple bond coherence (HMBC) correlations for methoxy protons and H2-8 with C-10 suggested
the presence of a methoxy carbonyl group at C-9. Thus, the planar structure of agesasine A (1) was
elucidated as shown in Figure 2. Agesasine B (2) showed an ion peak at m/z 380.9088 ([M − H]−,
∆ + 0.2 mmu), corresponding to the molecular formula of C10H12N2O4Br2. The 1D NMR spectra of 2
(Table 1) were closely correlated to those of 1, except for the presence of an additional sp3 methylene
signal (CH2-10) in 2. The methylene protons (H2-10) showed a 1H-1H COSY cross-peak with H-9 and
an HMBC correlation with a methoxy carbonyl carbon (C-11), suggesting the planar structure of 2 as
shown in Figure 2.
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Table 1. One-dimensional (1D) NMR data for agesasines A (1) and B (2) in DMSO-d6.

Position
1 2

13C 1H (J in Hz) 13C 1H (J in Hz)

1 – 12.67 (brs) – 12.65 (brs)
2 104.8 – 104.7 –
3 98.0 – 98.0 –
4 113.1 6.93 (brs) 113.0 6.93 (d, 2,7)
5 128.1 – 128.3 –
6 159.3 – 159.3 –
7 – 8.20 (t, 5.8) – 8.12 (t, 5.5)
8 42.7 3.46, 3.36 (each 1 H, m) 44.9 3.20 (2 H, m)
9 69.3 4.17 (q, 6.1) 66.6 3.99 (m)

10 173.1 – 40.6 2.49 (m), 2.27 (dd, 15.2, 8.8)
11 – – 171.8 –

9-OH – 5.71 (d, 5.9) – nd
OMe 51.8 3.61 (3 H, brs) 51.4 3.56 (3 H, brs)

nd: Not detected.
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Figure 2. Key two-dimensional (2D) NMR correlations for agesasines A (1) and B (2).

The racemic nature of agesasines A (1) and B (2) indicated by their specific rotation values being
nearly zero prompted us to perform the optical resolutions of 1 and 2. The analysis of 1 using the
reversed phase chiral high performance liquid chromatography (HPLC) gave a pair of peaks in the
integral ratio of ca. 1:1, indicating agesasine A (1) to be a racemate. Agesasine B (2) was also deduced
to be a racemate, although the optical resolution could not be achieved in spite of attempts being made
at various separation conditions.

9-Hydroxydihydrodispacamide (3) was obtained as a pale yellow amorphous solid. The HRESIMS
showed an ion peak at m/z 443.92824 ([M −H + Na]+, ∆ − 0.04 mmu), suggesting the molecular formula
of C11H14N5O3Br2. The 1H and 13C NMR spectra of 3 (Table 2) were similar to those of a known linear
bromopyrrole alkaloid, dihydrodispacamide [17], except for the presence of an oxygenated methine
signal (CH-9) in 3. Therefore, 3 was deduced to be a hydroxylated derivative of dihydrodispacamide.
The presence of the hydroxy group at C-9 was confirmed by 1H-1H COSY cross-peaks of H2-8/H-9 and
H-9/H2-10 (Figure 3). The relative configuration of 3 was not assigned in this study, while the racemic
nature of 3 was confirmed by HPLC analysis with chiral column with a similar manner as for 1.
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Table 2. 1D NMR data for 9-hydroxydihydrodispacamide (3), 9-hydroxydihydrooroidin (4),
and 9E-keramadine (5) in DMSO-d6.

Position
3 4 5

13C 1H (J in Hz) 13C 1H (J in Hz) 13C 1H (J in Hz)

1 – 12.66 (brs) – 12.66 (brs) – 11.83 (brs)
2 104.7 – 104.8 – 121.6 6.98 (dd, 2.9, 1.6)
3 98.0 – 98.2 – 95.2 –
4 113.1 6.94 (d, 2.8) 113.2 6.86 (s) 111.8 6.92 (s)
5 128.3 – 128.4 – 126.9 –
6 159.3 – 159.4 – 159.7 –
7 – 8.15 (t, 5.9) – 8.19 (t, 5.6) – 8.40 (t, 5.5)
8 45.3 3.18 (2 H, m) 44.8 3.23 (m), 3.16 (m) 40.4 3.99 (2 H, t, 5.5)
9 66.3 3.79 (m) 68.4 3.76 (m) 130.8 6.19 (dt, 16.1, 5.5)

10 34.8 1.96 (ddd, 14.4, 5.5, 2.6)
1.71 (ddd, 14.4, 10.9, 5.5) 30.1 2.57 (dd, 15.2, 4.2)

2.40 (dd, 15.2, 7.8) 115.3 6.30 (d, 16.1)

11 56.8 4.34 (t, 5.5) 124.3 – 126.6 –
12 – 9.47 (brs) – 11.95 (brs)
13 158.2 – 147.1 – 146.9 –
14 – nd – 11.87 (brs) – 12.35 (brs)
15 175.6 – 110.1 6.58 (brs) 109.4 7.14 (brs)

N-Me 29.8 3.38 (3 H, s)
13-NH2 – nd – 7.35 (2 H, brs) – 7.71 (2 H, brs)

nd: Not detected.

9-Hydroxydihydrooroidin (4) was obtained as a pale yellow amorphous solid. Although the 1H
and 13C NMR spectra (Table 2) implied that 4 was a bromopyrrole alkaloid related to dihydrooroidin [17],
the signals of an oxygenated methine (CH-9, δH 3.76, and δC 68.4) were observed in 4. In the 1H-1H
COSY spectrum, the oxygenated methine proton (H-9) showed cross-peaks with H2-8 and H2-10
(Figure 4). Based on the above findings and the molecular formula of 4, C11H14N5O2Br2, obtained by
the HRESIMS (m/z 405.9510 [M]+, ∆ − 0.4 mmu), 4 was assigned as 9-hydroxydihydrooroidin (Figure 1).
A nearly zero value of the specific rotation indicated 4 to be a racemate, which was supported by the
fact that 4 showed no cotton effect in the electronic circular dichroism (ECD) spectrum.
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Figure 4. Selected 2D NMR correlations for 9-hydroxydihydrooroidin (4) and 9E-keramadine (5).

9E-Keramadine (5) displayed the 1H and 13C NMR spectra (Table 2) similar to those of
a known bromopyrrole alkaloid possessing a 3-bromopyrrolecarboxamide moiety, keramadine [14].
The HRESIMS revealed the molecular formula of 5 to be C12H15N5OBr, which was identical to that
of keramadine. However, the 3J (H-9/H-10) value (J = 16.1 Hz) in 5 indicated the geometry of the
double bond to be E, whereas keramadine has the Z-olefin. The E-geometry was further underpinned
by rotating frame nuclear Overhauser effect spectroscopy (ROESY) correlations for H-9/H-15 and
H2-8/H-10 (Figure 4). This is the first report of 9E-keramadine from a natural source, although the
synthesis of 9E-keramadine has been reported to date [18].

Bromopyrrole alkaloids isolated from marine sponges have attracted the interest of researchers
due to their diverse chemical structures. Various intriguing biological activities of bromopyrrole
alkaloids leading drug discovery such as cytotoxic, antibacterial (antibiofilm), and protein kinase C
modulating activities have been reported [19,20]. We have also reported the isolation of antimicrobial
bromopyrrole alkaloids to date [6]. In this study, the antiproliferative activity of 1–5 against human
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cancer cell lines (HeLa, A549, and MCF7) were evaluated, showing no cytotoxicity against all cell lines
(IC50 > 100 µM) (Figures S43–S45).

In conclusion, five new bromopyrrole alkaloids, agesasines A (1) and B (2),
9-hydroxydihydrodispacamide (3), 9-hydroxydihydrooroidin (4), and 9E-keramadine (5) were isolated
from Okinawan marine sponges Agelas spp. Typical bromopyrrole alkaloids such as oroidin [12,13] and
keramadine [14] consist of a mono or dibrominated pyrrolecarboxamide moiety and an aminoimidazole
moiety linked through a C3 unit. In contrast, agesasines A (1) and B (2) are rare bromopyrrole alkaloids
lacking an aminoimidazole moiety, whereas 1 and 2 might be artifacts during the extraction and
isolation process with acidic condition. Few alkaloids with such structural feature have been isolated
from marine sponges Agelas spp. collected off the South China Sea [21,22].

3. Materials and Methods

3.1. General Procedures

Optical rotations were obtained on a JASCO P-2200 digital polarimeter (JASCO Co., Tokyo,
Japan). UV spectra were recorded on a Hitachi U-3900H spectrophotometer (Hitachi, Ltd., Tokyo,
Japan). NMR spectra were measured by a Bruker AVANCE-500 instrument (Bruker, Billerica, MA,
USA) using tetramethylsilane as an internal standard. HRESIMS were recorded on a Waters LCT
PREMIER 2695 (Waters Co., Milford, MA, USA) and a JEOL JMS-T100LP (JEOL, Ltd., Tokyo, Japan).
Column chromatography was performed with silica gel 60 N (Kanto Kagaku, Tokyo, Japan) and Diaion
HP-20 (Mitsubishi Chemical, Tokyo, Japan). Medium pressure liquid chromatography (MPLC) was
carried out on Toyopearl HW-40F (TOSOH Co., Tokyo, Japan), MCI gel CHP20P (Mitsubishi Chemical,
Tokyo, Japan), and Biotage SNAP Cartridge KP-C18-HS (Biotage, Uppsala, Sweden).

3.2. Materials

The marine sponges Agelas spp. were collected off Kerama Islands, Okinawa, and identified by
one of the authors (N.T.). The voucher specimens (SS-516 and SS-1302) were deposited in the Graduate
School of Pharmaceutical Sciences, Tokushima University.

3.3. Extraction and Isolation

The marine sponges Agelas spp. SS-516 (5.22 kg, wet weight) and SS-1302 (3.42 kg, wet weight)
were separately extracted with MeOH to give the extracts (197.1 and 376.3 g, respectively), each of
which was partitioned with n-hexane and 90% MeOH aq. The 90% MeOH aq.-soluble materials of
SS-516 were separated by column chromatography on Diaion HP-20 (MeOH/H2O, 0:100–100:0) to give
six fractions (frs. 1–6). Fr. 3 was subjected to silica gel column chromatography (CHCl3/MeOH/TFA,
95:5:0.1–80:20:0.1) to yield 12 fractions (frs. 3.1–3.12). Fr. 3.7 was applied to ODS MPLC
(MeCN/H2O/TFA, 5:95:0.1–80:20:0.1), and then purified by ODS HPLC (YMC Hydrosphere C18,
φ20 × 250 mm, MeCN/H2O/TFA, 35:65:0.1) to furnish agesasines A (1, 2.5 mg) and B (2, 2.2 mg).
Separation of fr. 3.11 by ODS MPLC (MeCN/H2O/TFA, 5:95:0.1–80:20:0.1) gave five fractions
(frs. 3.11.1–3.11.5). Tauroacidin A (124.1 mg) and taurodispacamide A (34.5 mg) were purified
from fr. 3.11.3 by ODS MPLC (MeCN/H2O/TFA, 20:80:0.1).

The 90% MeOH aq.-soluble materials of SS-1302 were further partitioned between n-BuOH and
water. The n-BuOH-soluble materials (58.0 g) were applied to silica gel column chromatography
(CHCl3/MeOH/TFA, 9:1:0.1–5:5:0.1) to give six fractions (frs. 1′–6′) including oroidin (17.1 g, fr. 3′). Fr. 4′

was subjected to MPLC on a Toyopearl HW-40F column (MeOH/H2O/TFA, 10:90:0.1–90:10:0.1), an MCI
gel CHP 20P column (MeOH/H2O/TFA, 10:90:0.1–90:10:0.1) to yield seven fractions (frs. 4′.4.1–4′.4.7).
Fr. 4′.4.3 was loaded to MPLC on an ODS column (MeCN/H2O/TFA, 10:90:0.1–60:40:0.1) to give six
fractions (frs. 4′.4.3.1–4′.4.3.6), and then fr. 4′.4.3.3 was purified by ODS HPLC (COSMOSIL
5C18-MS-II, φ 20 × 250 mm, MeCN/H2O/TFA, 17:83:0.1). Further purification of fr. 4′.4.3.3.2
on ODS HPLC (YMC Hydrosphere C18, φ 10 × 250 mm, MeCN/H2O/TFA, 13:87:0.1) afforded
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9-hydroxydihydrodispacamide (3, 5.0 mg), 9E-keramadine (5, 3.1 mg), and keramadine (6.7 mg).
9-Hydroxydihydrooroidin (4, 2.1 mg) was isolated from fr. 4′4.3.3.3 by ODS HPLC (YMC Hydrosphere
C18, φ 10 × 250 mm, MeCN/H2O/TFA, 13:87:0.1). Fr. 4′.4.4 was subjected to ODS MPLC
(MeCN/H2O/TFA, 10:90:0.1–50:50:0.1) and then ODS HPLC (YMC Hydrosphere C18, φ 10 × 250 mm,
MeCN/H2O/TFA, 15:85:0.1) to furnish 2-bromo-9,10-dihydrokeramadine (2.1 mg). Fr. 5′ was applied to
MPLC on a Toyopearl HW-40F column (MeOH/H2O/TFA, 10:90:0.1–90:10:0.1) to give eight fractions
(frs. 5′.1–5′.8). Fr. 5′ was passed through an MCI gel CHP 20P column (MeOH/H2O/TFA,
10:90:0.1–100:0:0.1) and an ODS column (MeOH/H2O/TFA, 10:90:0.1–0:10:0.1) to afford nagelamide L
(187.5 mg). Tauroacidin A and nagelamide L did not show optical rotations.

Agesasine A (1): Pale yellow amorphous solid; [α]28
D 0 (c 0.10, MeOH); UV (MeOH) λmax 275 (ε 4900)

nm; 1H and 13C NMR data (Table 1); ESIMS: m/z 391, 393, and 395 (1:2:1), [M + Na]+; HRESIMS: m/z
390.89045 [M + Na]+ (calcd for C9H10N2O4Na79Br2, 390.89050).

Agesasine B (2): Pale yellow amorphous solid; [α]28
D 0 (c 0.10, MeOH); UV (MeOH) λmax 274 (ε 3100)

nm; 1H and 13C NMR data (Table 1); ESIMS: m/z 381, 383, and 385 (1:2:1), [M − H]−; HRESIMS: m/z
380.9088 [M − H]− (calcd for C10H11N2O4

79Br2, 380.9086).

9-Hydroxydihydrodispacamide (3): Pale yellow amorphous solid; [α]27
D 0 (c 0.10, MeOH); UV (MeOH)

λmax 223 (ε 3900) and 275 (3400) nm; 1H and 13C NMR data (Table 2); ESIMS: m/z 444, 446, and 448
(1:2:1), [M − H + Na]+; HRESIMS: m/z 443.92824 [M − H + Na]+ (calcd for C11H13N5O3Na79Br2,
443.92828).

9-Hydroxydihydrooroidin (4): Pale yellow amorphous solid; [α]27
D 0 (c 0.10, MeOH); UV (MeOH) λmax

276 (ε 3900) nm; 1H and 13C NMR data (Table 2); ESIMS: m/z 406, 408, and 410 (1:2:1), [M]+; HRESIMS:
m/z 405.9510 [M]+ (calcd for C11H14N5O2

79Br2, 405.9514).

9E-Keramadine (5): Pale yellow amorphous solid; UV (MeOH) λmax 271 (ε 3300) nm; 1H and 13C
NMR data (Table 2); ESIMS: m/z 324 and 326 (1:1), [M]+; HRESIMS: m/z 324.04592 [M]+ (calcd for
C12H15N5O79Br, 324.04600).

3.4. Optical Resolutions of 1–3

Optical resolutions of agesasine A (1) and 9-hydroxydihydrodispacamide (3), were performed on
chiral HPLC (Chiral ART Cellulose-SB, YMC, φ 4.6 × 250 mm, flow rate 0.5 mL/min, UV detection
254 nm) at 35 ◦C with elution of MeOH/MeCN/H2O/H3PO4 (30:10:60:0.1 for 1; 8:2:90:0.1 for 3) to give
enantiomers in the integral ratio of ca. 1:1 (tR 27.5 and 29.0 min for 1; tR 12.5 and 14.3 min for 3)
in each case. The separations of enantiomers were confirmed by MS analyses. Separated peaks for
enantiomers of agesasine B (2) could not be obtained in any condition in this study.

3.5. Evaluation for Antiproliferative Activity of 1–5

New bromopyrrole alkaloids 1–5 were evaluated for their antiproliferative activity against human
cancer cell lines (HeLa, A549, and MCF7) according to the following procedure. The human cancer
cell lines were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with 5%
fetal bovine serum (FBS). All cells were incubated at 37 ◦C in a humidified atmosphere with 5%
CO2–95% air. Cells were seeded at 1 × 104 cells/well in a 96-well plate and preincubated for 24 h.
Test samples were dissolved in small amounts of DMSO and diluted in the appropriate culture medium
(final concentration of DMSO < 1%). After removal of the preincubated culture medium, 100 µL of
medium containing various concentrations of test compound was added and further incubated for
48 h. A cell proliferation assay was performed with the Cell Counting Kit-8 (WST-8; Dojindo, Japan)
according to the manufacturer’s instruction. Briefly, the WST-8 reagent solution (10 µL) was added to
each well of a 96-well microplate containing 100 µL of cells in the culture medium at various densities,
and the plate was incubated for 2 h at 37 ◦C. Absorbance was measured at 450 nm using a microplate
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reader. Cisplatin was used as a positive control, whose IC50 values against HeLa, A549, and MCF7
cells were 11.7, 7.2, and 52.4 mM, respectively.
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