Supplementary material for First Total Synthesis of 5'-*O*-α-D-Glucopyranosyl Tubercidin

Wenliang Ouyang, Haiyang Huang*, Ruchun Yang, Haixin Ding, Qiang Xiao*

Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.

*Correspondence: huanghaiyang1209@163.com (H.H.), xiaoqiang@tsinghua.org.cn (Q.X.)

Table of Contents

1. Chemical shifts of naturally occurring nucleoside 2, Synthetic nucleoside 2 and 17.	s2
Table S1. ¹³ C NMR chemical shifts of naturally occurring nucleoside 2, synt	hetic
nucleoside 2 and 17	s2
Table S2. ¹ H NMR chemical shifts and coupling constants of naturally occu	rring
nucleoside 2 , synthetic 2 and 17	s3
2. Optimization of glycosylation of 11 and 6	 s4
3. ¹ H and ¹³ C NMR spectra of compounds 2 – 17 s	5-s20

1. Chemical shifts of naturally occurring nucleoside **2**, Synthetic nucleoside **2** and **17**

Table S1. ¹³C NMR chemical shifts of naturally occurring nucleoside 2, synthetic nucleoside 2 and 17

Chemical	hemical Naturally occurring Synthetic nucleoside 2 Syr		Synthetic nucleoside	
shifts (δ)	nucleoside 2 / ppm	/ ppm	17 / ppm	
Position of				
carbon				
C-6	157.3	157.3	157.5	
CH-2	151.5	151.5	151.7	
C-4	150.6	150.6	150.7	
CH-8	122.2	122.4	122.2	
C-5	103.0	102.8	103.1	
CH-7	99.8	100.0	100.5	
CH-1"	98.7	98.5	103.5	
CH-1'	85.8	85.9	87.1	
CH-4′	83.0	83.2	83.1	
CH-2'	74.0	74.2	77.2	
CH-4"	73.4	73.3	74.2	
CH-5"	72.9	72.7	74.1	
CH-2"	71.8	71.5	77.4	
CH-3'	71.1	70.9	71.1	
CH-3"	70.2	70.0	70.5	
CH2-5'	67.2	67.0	69.5	
CH2-6"	60.9	60.9	61.5	

	-			
Chemical shifts (δ)	Naturally occurring	Naturally occurring Synthetic nucleoside 2 Syntheti		
Hydrogen	nucleoside 2 (coupling	(coupling constants) /	nucleoside 17	
	constants) / ppm	ppm	(coupling constants)	
			/ ppm	
H-2	8.03 (s)	8.09 (s)	8.07 (s)	
H-8	7.69(d, J = 3.7 Hz)	7.76 (d, J = 3.2 Hz)	7.38 (d, J = 3.7 Hz)	
NH ₂	6.95 (s)	7.20 (s)	7.09 (s)	
H-7	6.53 (d, J = 3.7 Hz)	6.61 (d, <i>J</i> = 3.4 Hz)	6.61 (d, J = 3.6 Hz)	
H-1′	6.12(d, <i>J</i> = 7.0 Hz)	6.14 (d, <i>J</i> = 7.0 Hz)	6.08 (d, J = 5.6 Hz)	
3'-OH	5.19 (d, <i>J</i> = 4.8 Hz)	5.21 (d, <i>J</i> = 4.6 Hz)	5.17 (d, <i>J</i> = 4.6 Hz)	
2"-OH	5.19 (d, <i>J</i> = 4.8 Hz)	5.21 (d, <i>J</i> = 4.6 Hz)	5.03 (d, J = 3.7 Hz)	
2'-OH	5.10 (d, <i>J</i> = 4.8 Hz)	5.10 (d, <i>J</i> = 4.3 Hz)	5.26 (d, J = 5.5 Hz)	
3''-OH	4.93 (d, J = 3.8 Hz)	4.92 (d, <i>J</i> = 4.9 Hz)	4.95 (s)	
4"-OH	4.85 (d, <i>J</i> = 4.6 Hz)	4.84 (d, <i>J</i> = 3.6 Hz)	4.91 (s)	
H-1"	4.70 (d, J = 3.5 Hz)	4.72 (d, J = 3.1 Hz)	4.21 (d, <i>J</i> = 7.8 Hz)	
6"-OH	4.50 (d, <i>J</i> = 4.7 Hz)	4.49 (m)	4.51 (s)	
H-2′	4.41 (td, J =6.3 Hz, 4.8,4.8 Hz)	4.43 (m)	4.36 (d, J = 5.0 Hz)	
H-4′	4.09 (td, J =4.9 Hz, 4.9,2.1 Hz)	4.11 (m)	4.02–3.95 (m)	
H-3′	4.05 (m)	4.08 (d, <i>J</i> = 1.7 Hz)	4.14 (d, <i>J</i> = 4.4 Hz	
H-5′	3.76 (dd, <i>J</i> = 11.1,3.1 Hz)	3.78 (dd, J = 10.9, 2.8 Hz)	4.02–3.95 (m)	
H-6″	3.64 (ddd, J = 10.9,4.8,1.2 Hz)	3.66-3.63 (m)	3.68 (d, J = 9.2 Hz)	
H-4″	3.45 (m)	3.47-3.42 (m)	3.12–3.04 (m)	
H-6′ ″	3.44 (m)	3.47-3.42 (m)	3.44 (d, J = 6.7 Hz)	
H-5′	3.41 (dd, <i>J</i> =11.1, 4.9 Hz)	3.47-3.42 (m)	3.59 (dd, <i>J</i> =11.9,5.7 Hz)	
H-5″	3.34 (m)	3.40-3.34 (m)	3.12–3.04 (m)	
H-2″	3.26 (m)	3.40-3.34 (m)	3.00 (d, J = 7.8 Hz)	
H-3″	3.10 (td, J = 9.3, 3.8 Hz)	3.13-3.07 (m)	3.15 (d, J = 9.9 Hz)	

Table S2. ¹H NMR chemical shifts and coupling constants of naturally occurring nucleoside 2,synthetic 2 and 17

${\bf 2.} \ {\rm Optimization} \ {\rm of} \ {\rm glycosylation} \ {\rm of} \ {\bf 11} \ {\rm and} \ {\bf 6}$

Table S3 Optimization of glycosylation of 11 and 6

Entry	Solvent	Lewis Acid	Temperature	Ratio of	Yield
				12:13	
1	DCM	TMSOTf	-78 °C	2.6:1	71%
2	DCM	TMSOTf	-30 °C	4:1	79%
3	DCM	TMSOTf	0 °C	1.6:1	67%
4	DCM	BF _{3.} Et ₂ O	0 °C	1.2:1	43%
5	DCM	BF _{3.} Et ₂ O	-30 °C	3:1	59%
6	DCM	BF _{3.} Et ₂ O	-78 °C	1.5:1	57%

3. ¹H and ¹³C NMR spectra of compounds 2 - 17.

¹H NMR (CDCl₃) of 2,3,4,6-O-tetrabenzyl-D-glucopyranose.

¹³C NMR (CDCl₃) of 2,3,4,6-O-tetrabenzyl-D-glucopyranose.

¹³C NMR (CDCl₃) of **6**.

¹³C NMR (DMSO) of 8.

¹³C NMR (CDCl₃) of **9**.

¹³C NMR (DMSO) of **10**.

¹³C NMR (DMSO) of **11**.

¹H NMR (DMSO) of **12**.

¹³C NMR (DMSO) of **12**.

¹³C NMR (DMSO) of **13**.

50

40 30

20

10 0

70

60

80

-1

120 110 100 90 fl (ppm)

190

180

170

160

150 140

130

¹³C NMR (DMSO) of **14**.

¹³C NMR (DMSO) of **14**'.

¹H NMR (DMSO) of 15.

¹³C NMR (DMSO) of **15**.

¹H NMR (DMSO) of **15**'.

¹³C NMR (DMSO) of **15**'.

¹H NMR (DMSO) of **16**.

¹³C NMR (DMSO) of **16**.

¹³C NMR (DMSO) of **16**′.

¹H NMR (DMSO-d) of **2**.

¹³C NMR (DMSO) of **2**.

¹³C NMR (DMSO) of **17**.