Supplementary Materials

Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine Algal-Derived Endophytic Fungus *Penicillium chrysogenum* XNM-12

Kuo Xu 1 , Xu-Lun Wei 2 , Lin Xue 3 , Zhong-Feng Zhang 1,* and Peng Zhang 1,*

- ¹ Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; <u>xukuo@caas.cn</u> (K.X.)
- ² ETSONG (Qingdao) Industry Co., Ltd., Qingdao 266021, China; <u>weixulun2020@163.com</u> (X.-L.W.)
- ³ Wannan Tobacco Group Co., Ltd., Xuancheng 242000, China; <u>xuelin-xx@163.com</u> (L.X.)
- * Correspondence: <u>zhangpeng@caas.cn</u> (P.Z.), <u>zhangzhongfeng@caas.cn</u> (Z.-F.Z.); Tel.: +86-532-66715079 (P.Z.), +86-532-88702239 (Z.-F.Z.)

Table of Contents	Table	of	Contents
-------------------	-------	----	----------

NO.	Contents	Page
Figure S1	The ECD spectrum of 1 in MeOH	S3
Figure S2	The HR-ESI-MS data of 1	S3
Figure S3	The ¹ H NMR spectrum (500 MHz) of 1 in DMSO- d_6	S4
Figure S4	The ¹³ C NMR and DEPT spectrum (125 MHz) of 1 in DMSO- d_6	S4
Figure S5	The ${}^{1}\text{H}-{}^{1}\text{HCOSY}$ spectrum (500 MHz) of 1 in DMSO- d_{6}	S5
Figure S6	The HSQC spectrum (500 MHz) of 1 in DMSO- d_6	S5
Figure S7	The HMBC spectrum (500 MHz) of 1 in DMSO- d_6	S6
Figure S8	The NOESY spectrum (500 MHz) of 1 in DMSO- d_6	S6
Figure S9	The HR-ESI-MS data of 2	S7
Figure S10	The ¹ H NMR spectrum (500 MHz) of 2 in DMSO- d_6	S7
Figure S11	The ¹³ C NMR and DEPT spectrum (125 MHz) of 2 in DMSO- d_6	S8
Figure S12	The HR-ESI-MS data of 3	S8
Figure S13	The ¹ H NMR spectrum (500 MHz) of 3 in DMSO- d_6	S9
Figure S14	The ¹³ C NMR and DEPT spectrum (125 MHz) of 3 in DMSO- d_6	S9
Figure S15	The HR-ESI-MS data of 4	S10
Figure S16	The ¹ H NMR spectrum (500 MHz) of 4 in DMSO- d_6	S10
Figure S17	The ¹³ C NMR and DEPT spectrum (125 MHz) of 4 in DMSO- d_6	S11
Figure S18	The HR-ESI-MS data of 5	S11
Figure S19	The ¹ H NMR spectrum (500 MHz) of 5 in DMSO- d_6	S12
Figure S20	The ¹³ C NMR and DEPT spectrum (125 MHz) of 5 in DMSO- d_6	S12
Figure S21	The HR-ESI-MS data of 6	S13

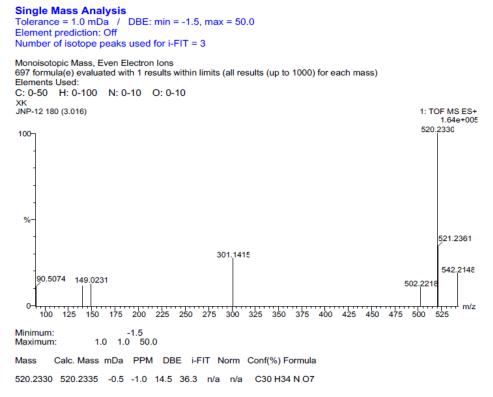
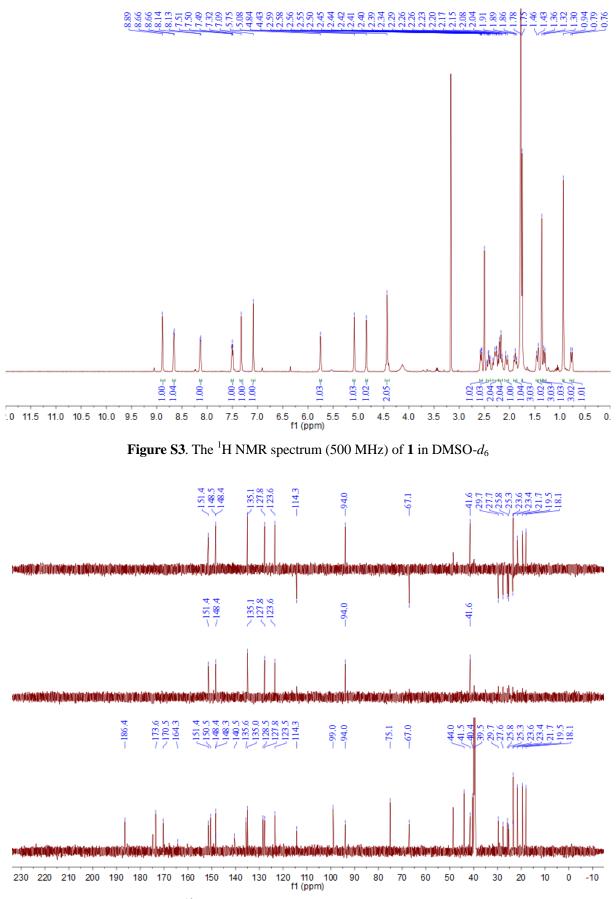
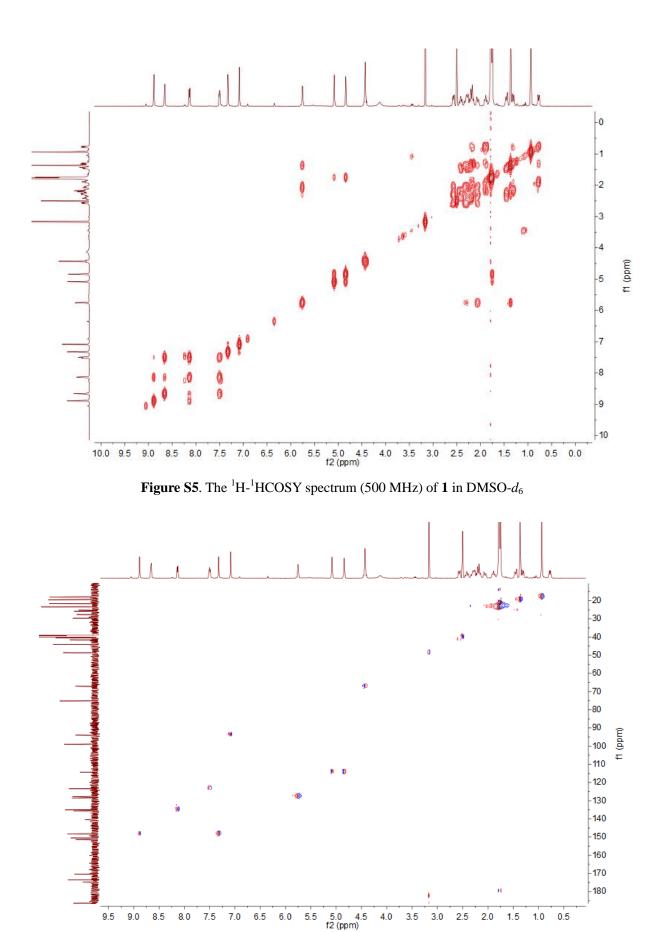
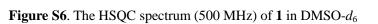
Figure S22	The ¹ H NMR spectrum (500 MHz) of 6 in DMSO- d_6	S13
Figure S23	The ¹ H NMR spectrum (500 MHz) of 6 in MeOH- d_4	S14
Figure S24	The ¹³ C NMR and DEPT spectrum (125 MHz) of 6 in DMSO- d_6	S14
Figure S25	The ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectrum (500 MHz) of 6 in DMSO- d_{6}	S15
Figure S26	The HSQC spectrum (500 MHz) of 6 in DMSO- d_6	S15
Figure S27	The HMBC spectrum (500 MHz) of 6 in DMSO- d_6	S16
Figure S28	The HPLC spectrum of 6	S16
Figure S29	The HR-ESI-MS data of 7	S17
Figure S30	The ¹ H NMR spectrum (500 MHz) of 7 in DMSO- d_6	S17
Figure S31	The ¹³ C NMR and DEPT spectrum (125 MHz) of 7 in DMSO- d_6	S18
Figure S32	The ${}^{1}\text{H} - {}^{1}\text{H}$ COSY spectrum (500 MHz) of 7 in DMSO- d_{6}	S18
Figure S33	The HSQC spectrum (500 MHz) of 7 in DMSO- d_6	S19
Figure S34	The HMBC spectrum (500 MHz) of 7 in DMSO- d_6	S19
Figure S35	The HPLC spectrum of 7	S20
_	Theoretical calculations of compound 1	S21
Table S1	The selected conformers of 1 with Boltzmann distribution over 1%	S22
Table S2	Experimental and calculated ¹³ C-NMR chemical shifts of 1	S22
_	Antimicrobial assay	S24
Table S3	¹ H, ¹³ C NMR, COSY and HMBC data of compound 1 in DMSO- d_6	S25
Table S4	¹ H, ¹³ C NMR, COSY and HMBC data of compound 6 in DMSO- d_6	S26
Table S5	¹ H, ¹³ C NMR, COSY and HMBC data of compound 7 in DMSO- d_6 .	S26
Table S6	The experimental and reported specific rotations of compounds 2–5.	S27

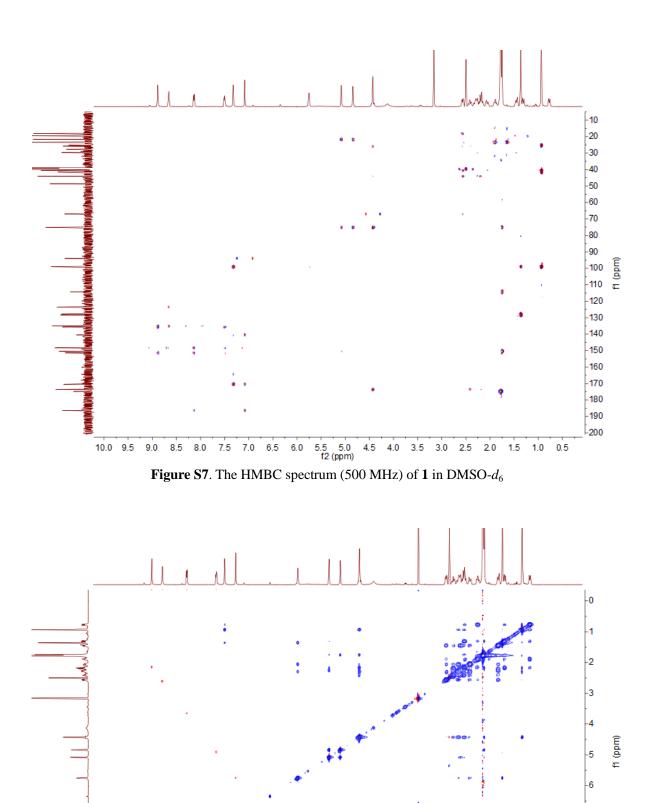


Figure S1. The ECD spectrum of 1 in MeOH

Page 1

Elemental Composition Report


Figure S2. The HR-ESI-MS data of 1

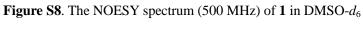
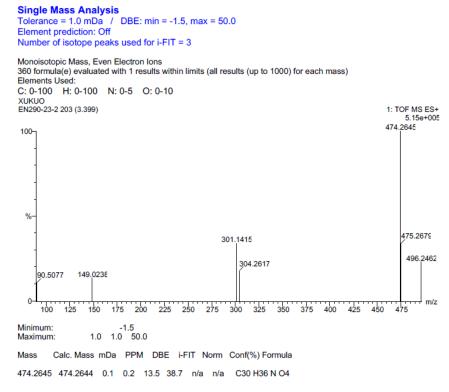


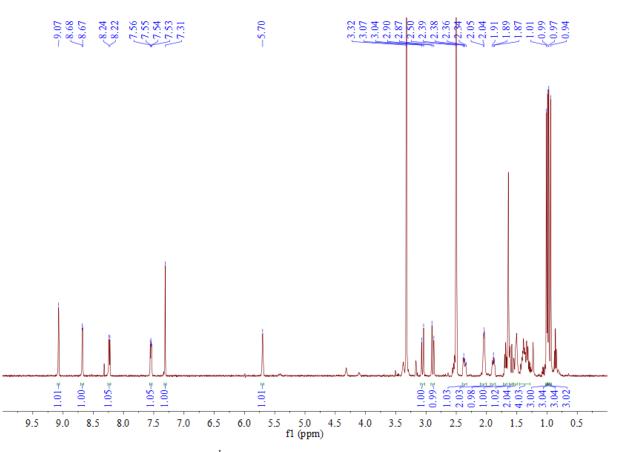
Figure S4. The ¹³C NMR and DEPT spectrum (125 MHz) of **1** in DMSO- d_6

10.0 9.5

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f2 (ppm)


7

8


9

10

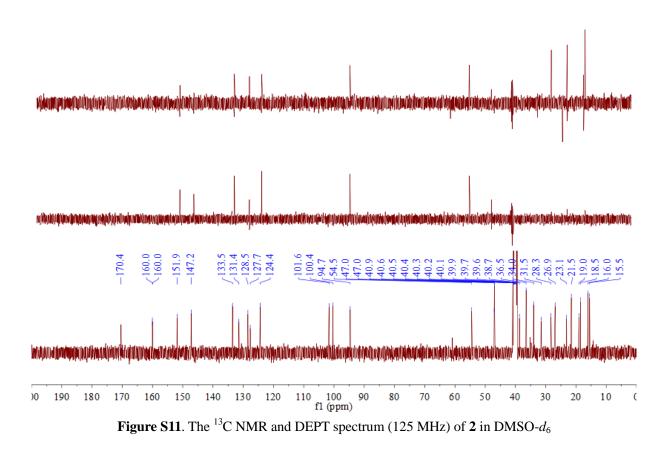

Page 1

Figure S9. The HR-ESI-MS data of 2

Figure S10. The ¹H NMR spectrum (500 MHz) of **2** in DMSO- d_6

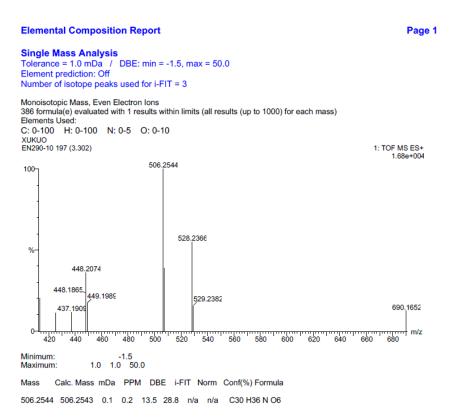
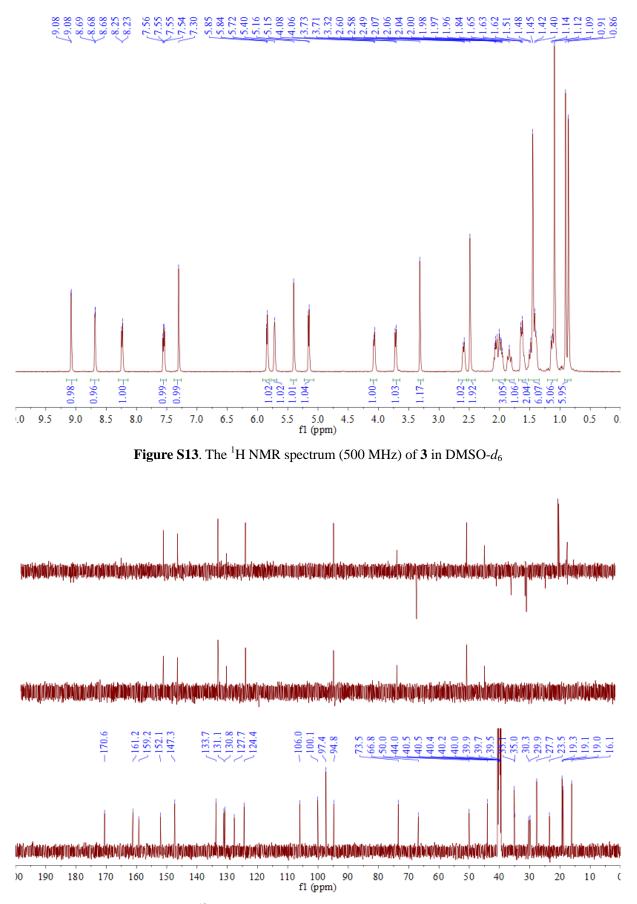
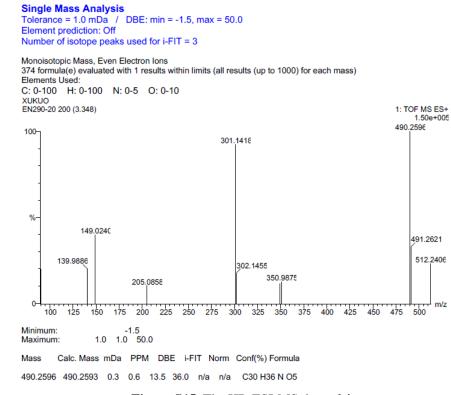




Figure S12. The HR-ESI-MS data of 3

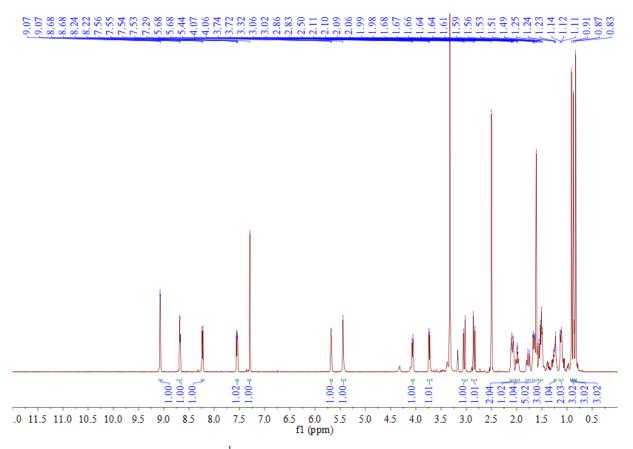
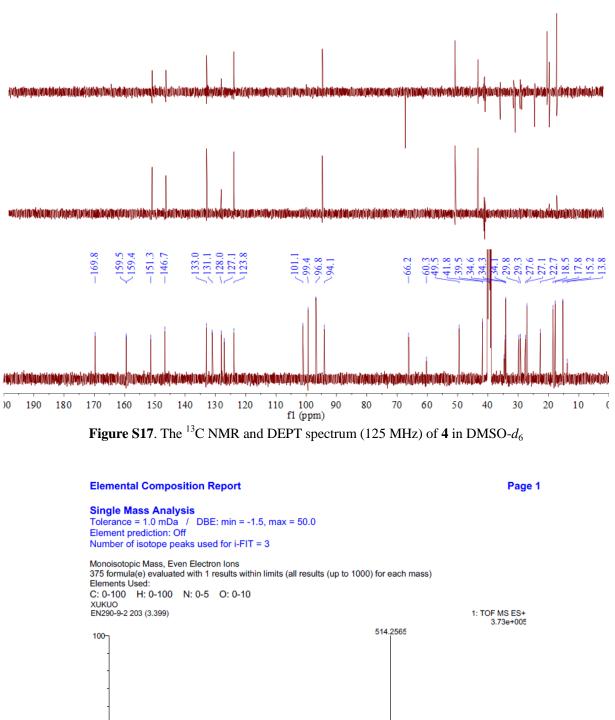


Figure S14. The ¹³C NMR and DEPT spectrum (125 MHz) of **3** in DMSO- d_6


Page 1

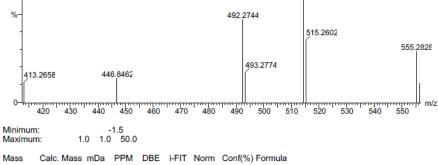
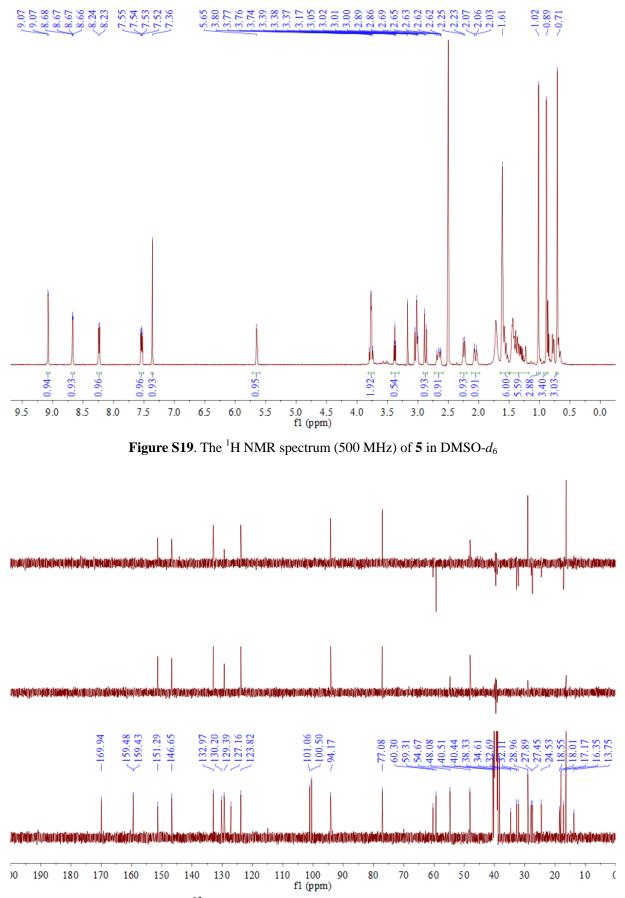
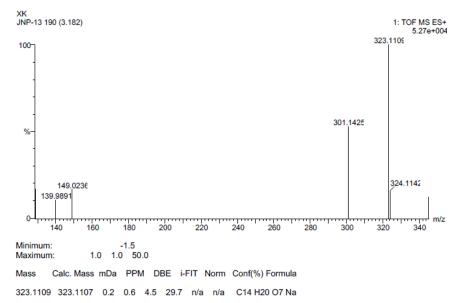


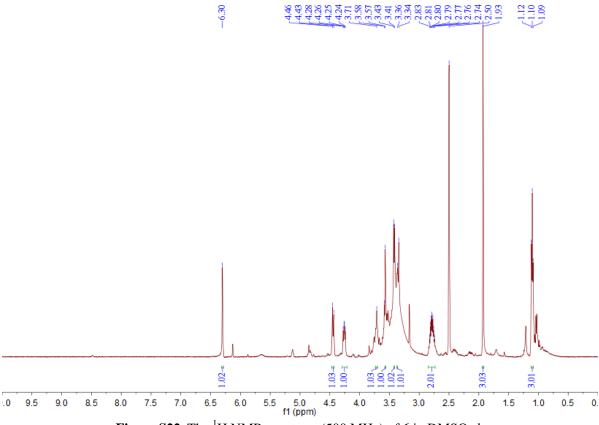
Figure S15. The HR-ESI-MS data of 4

Figure S16. The ¹H NMR spectrum (500 MHz) of **4** in DMSO- d_6

492.2744 492.2750 -0.6 -1.2 12.5 36.6 n/a n/a C30 H38 N O5

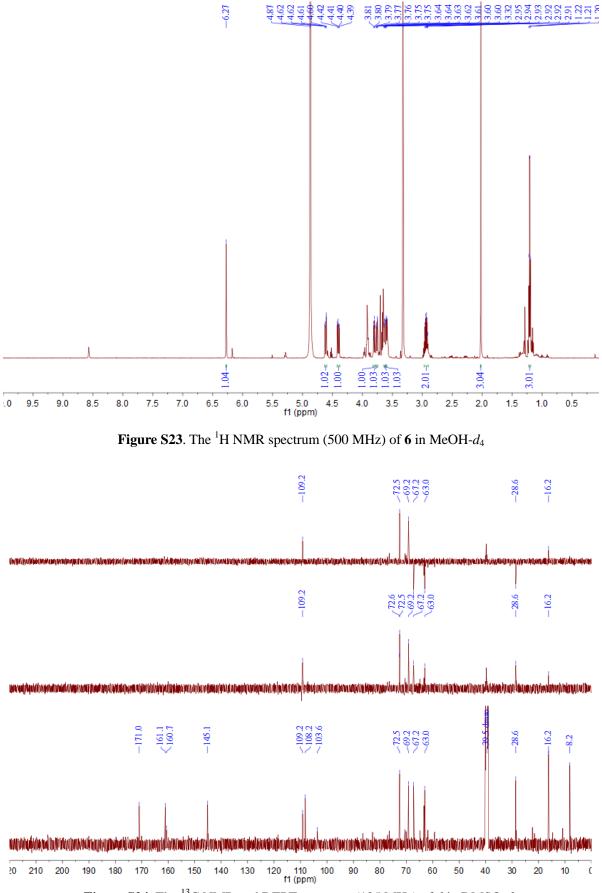
Figure S18. The HR-ESI-MS data of 5


Figure S20. The 13 C NMR and DEPT spectrum (125 MHz) of 5 in DMSO- d_6

Single Mass Analysis Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 83 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-100 O: 0-10 Na: 0-1



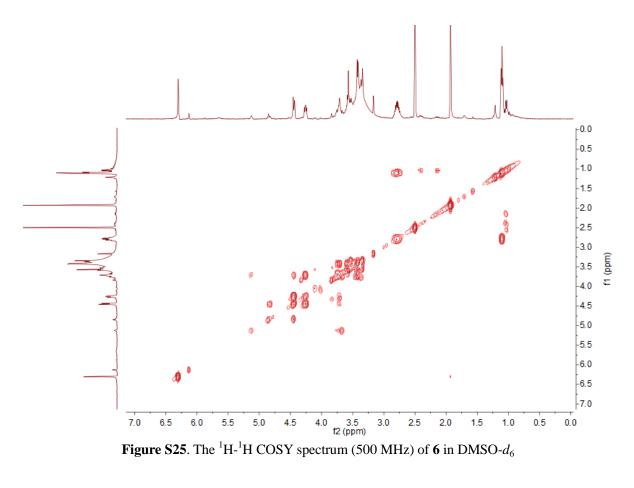


Figure S22. The ¹H NMR spectrum (500 MHz) of **6** in DMSO- d_6

Page 1

Figure S24. The ¹³C NMR and DEPT spectrum (125 MHz) of **6** in DMSO- d_6

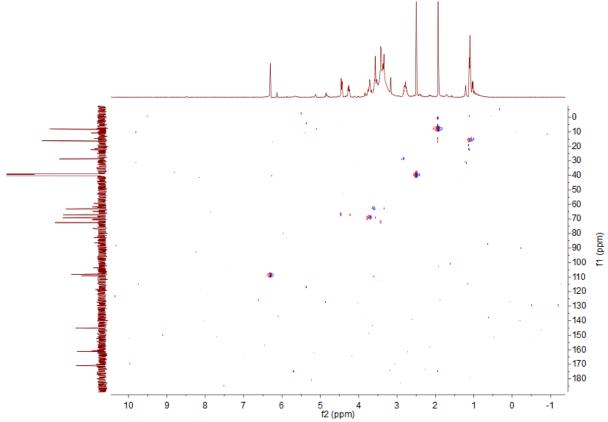


Figure S26. The HSQC spectrum (500 MHz) of 6 in DMSO- d_6

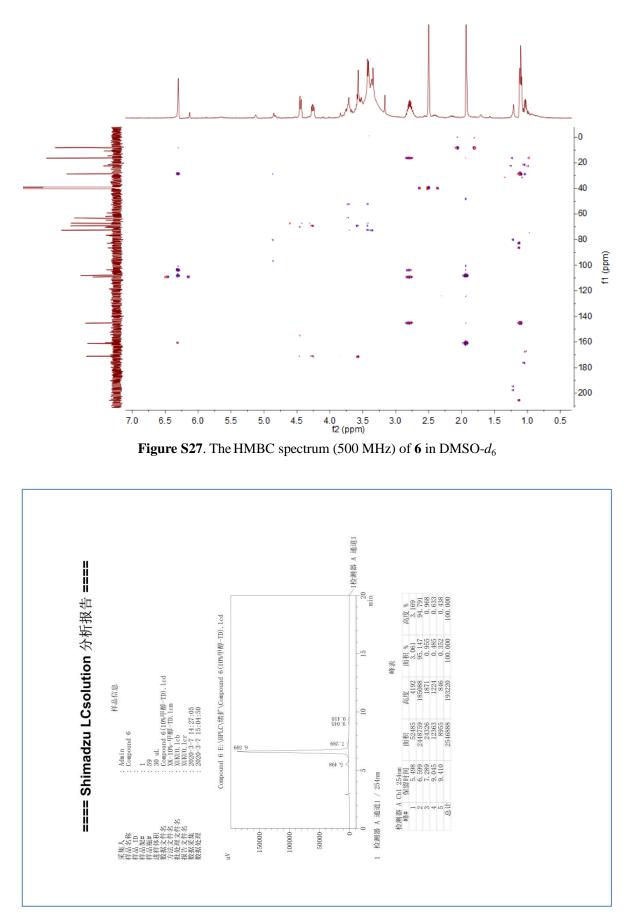
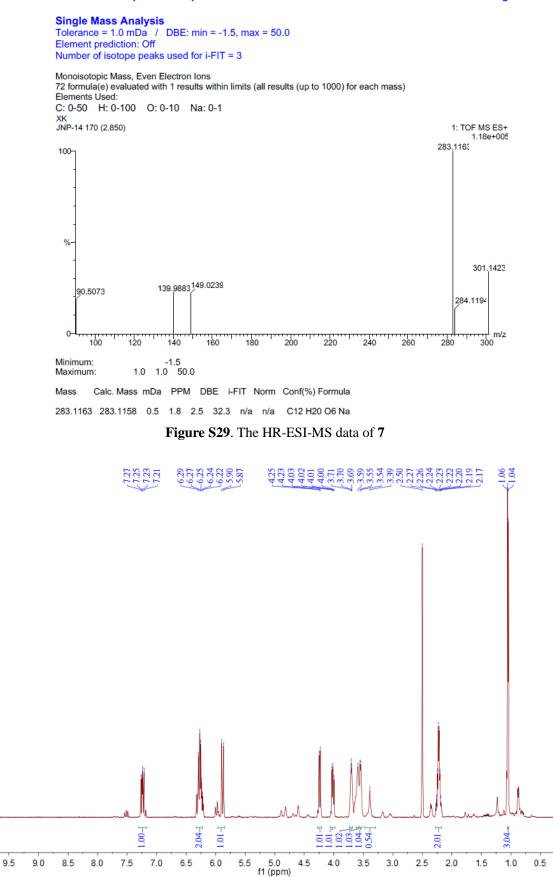
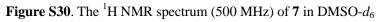




Figure S28. The HPLC spectrum of 6 (254nm, 10-100% MeOH, 20 min)

Page 1

0.

.0

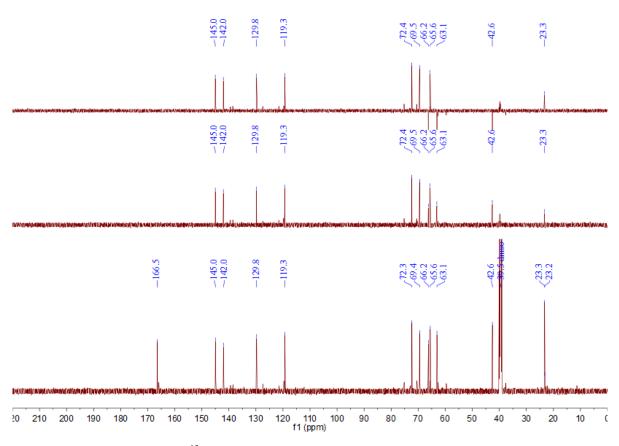
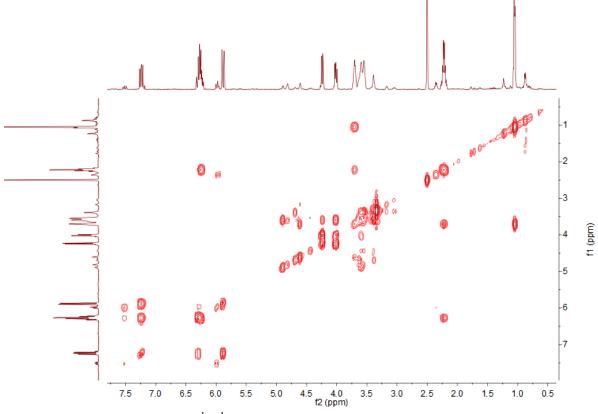



Figure S31. The 13 C NMR and DEPT spectrum (125 MHz) of 7 in DMSO- d_6

Figure S32. The ¹H-¹H COSY spectrum (500 MHz) of **7** in DMSO- d_6

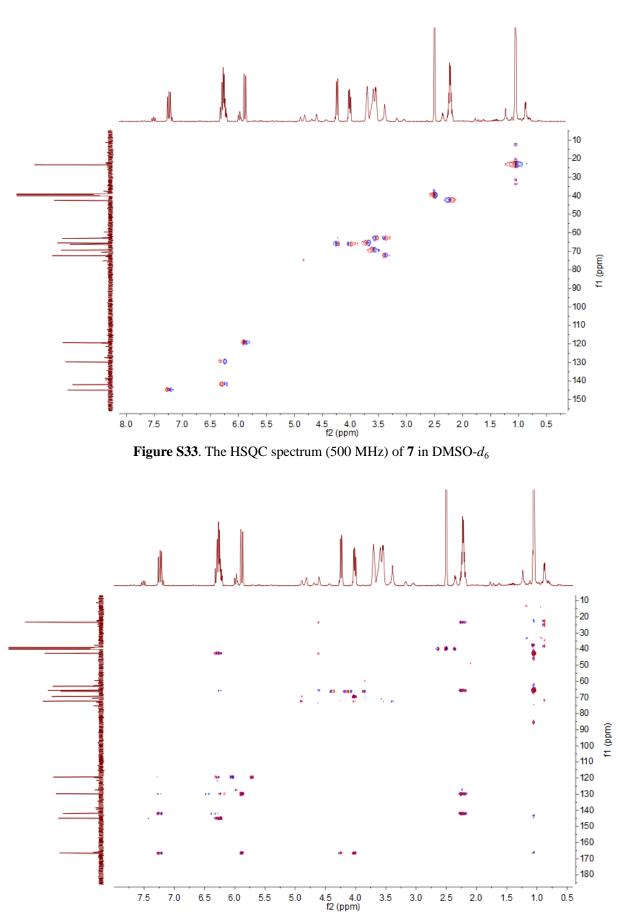


Figure S34. The HMBC spectrum (500 MHz) of 7 in DMSO-d₆

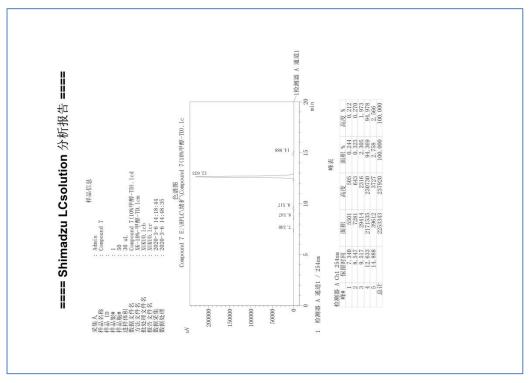


Figure S35. The HPLC spectrum of 7 (254nm, 10-100% MeOH, 20 min)

Theoretical calculations of compound 1

The theoretical calculations of ECD and NMR were carried on the Yinfo Cloud Platform (http://cloud.yinfotek.com). Conformational analysis of **1** was performed using Confab with systematic search algorithm at MMFF94 force field with RMSD threshold of 0.5 Å and energy window of 7 kcal/mol^[1]. The energies of all dominative conformers were provided in Table S1. At first, conformers were optimized at PM6 and HF/6-31G(d) theory levels, consecutively. Room-temperature equilibrium populations were calculated according to Boltzmann distribution law, based on which dominative conformers were saved with the values over 1%. The chosen conformers were further optimized at B3LYP/6-31G(d) in gas phase. Vibrational frequency analysis confirmed the stable structures. Finally, the ECD calculations were executed in methanol with IEFPCM model using Time-dependent Density functional theory (TD-DFT) at the B3LYP/6-311G(d,p) level. Rotatory strengths for 50 excited states were calculated. The ECD spectrum of **1** was simulated by overlapping Gaussian functions (σ and UV-shift values were set 0.35 eV and -30 nm, respectively)^[2]. As a result, the experimental ECD spectrum of **1** was matched well with the calculated spectrum of (7*E*, 12*S*, 16*S*, 17*R*, 20*R*, and 21*R*)-isomer.

The above optimized conformations were further conducted into ¹³C-NMR calculations, which were carried out using the Gauge-Including Atomic Orbitals (GIAO) method at mPW1PW91/6-311+G(2d,p) level in DMSO simulated by the IEFPCM model ^[3]. Finally, the TMS-corrected NMR chemical shift values were averaged based on Boltzmann distribution and fitted to the experimental values by linear regression. As a result, the TMS-corrected computed ¹³C-NMR chemical shift of compound **1** was fitted to the experimental values by Ordinary Least Squares (OLS) Linear Regression method in order to remove systematic error that results from the conformational search and random error from experimental conditions (Table S2). Relatively higher R² and lower CMAD and CLAD values were shown in both ¹³C-NMR Linear Regression for (7*E*, 12*S*, 16*S*, 17*R*, 20*R*, and 21*R*)-isomer, which further supported the data of the ECD calculation.

Conformers	Energy (kcal/mol)	Population (%)
1	108.64	29.29
2	108.69	26.92
3	108.91	18.57
4	108.92	18.26
5	110.23	2.00
б	110.31	1.75
7	110.44	1.40
8	110.47	1.33

 Table S1. The selected conformers of 1 with Boltzmann distribution over 1%.

 Table S2. Experimental and calculated ¹³C-NMR chemical shifts of 1.

Position	Experimental	Calculated	Fitted	Residue
1	148.3	157.6497721	148.3272	-0.0272
2	128.5	139.5167951	130.8624	-2.36239
3	135	142.8913135	134.1126	0.887439
4	123.5	129.0017913	120.7348	2.765164
5	151.4	160.7459463	151.3093	0.090709
6	186.4	193.7836939	183.1297	3.270327
7	94	98.3128387	91.1767	2.823299
8	170.5	179.9479279	169.8037	0.696277
9	140.5	141.3593472	136.637	3.86296
10	164.3	172.2550605	162.3943	1.905679
11	148.4	169.691203	149.925	-1.5249
12	99	106.2241465	98.7965	0.203505
13	135.6	137.8683478	131.275	4.32532
14	127.8	141.0855288	132.373	-4.5733
15	23.6	31.06219489	26.40409	-2.80409
16	41.5	44.55883742	39.40341	2.096587
17	40.4	49.48447924	44.14756	-3.74756
18	25.3	29.42959099	24.83164	0.468355
19	27.6	30.48711538	25.8502	1.749798
20	75.1	88.64159996	79.86183	-4.76183
21	44	53.25734315	47.7814	-3.7814
22	25.8	30.98632834	26.33102	-0.53102
23	29.7	34.43590228	29.65348	0.046515
24	173.6	183.4828274	173.2084	0.39163
25	67	74.17570582	67.92897	-0.92897
26	19.5	21.48233474	17.17723	2.322773
27	18.1	21.29209459	16.994	1.106004
28	150.5	159.124968	149.748	0.751958

29	114.3	124.6640714	116.557	-2.25695
30	21.7	22.50753193	18.16465	3.535352

References:

- Noel M OBoyle, Tim V, ermeersch, Christopher J Flynn, Anita R Maguire Maguire, and Geoffey R Hutchison. Confab-systematic generation of diverse low-energy conformers. *Journal of Cheminformatics*, 2011, 3, 3–8.
- Stephens, P. J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. *Chirality* 2010, 22, 229–233.
- Michael W. Lodewyk, Matthew R. Siebert, and Dean J. Tantillo. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. *Chem. Rev.*, 2012, 112, 1839–1862.

Antimicrobial assay

Antifungal bioassay: The isolated compounds were tested in vitro for the antifungal activity against five pathogenic fungi: Alternaria alternata (A. alternata), Botrytis cinerea (B. cinerea), Fusarium oxysporum (F. oxysporum), Penicillium digitatum (P. digitatum), and Valsa mali (V. mali). All of these phytopathogenic fungi tested were purchased from Qingdao Agricultural University (Qingdao, People's Republic of China). Antifungal activity was assessed by the microbroth dilution method in 96-well flat-microtiter plates using potato dextrose (PD) medium. The test compounds were made up to 2 mg/mL in DMSO. The commercial fungicide prochloraz was used as a positive control. The solution of equal concentration of DMSO was used as a negative control. The fungi were incubated in the PD medium for 18-36 h at 28 \pm 0.5 °C at 150 rpm, and spore concentrations of different microorganism were diluted to approximately 1×10^6 colony-forming units/mL (CFU/mL) with PD medium. Test compounds (10 μ L) were added to 96-well microplates, and 90 μ L of PD medium was added. Serial dilutions were made in the 96-well round-bottom sterile plates in triplicate in 50 μ L of PD medium, and then 50 μ L of the fungal suspension was added. In flat-microtiter plates, tested compounds, fungal suspension, and sterile water were added to make up final concentrations of the compounds in the range of 1-64 µg/mL. Each measurement consisted of three replicates. Cultures then grew in the dark at 28 \pm 0.5 % for 48 h. Minimum inhibitory concentrations (MICs) were inspected as the lowest concentrations in which no fungal growth could be observed.

Antibacterial bioassay: The isolated compounds were tested in vitro for the antibacterial activity against four pathogenetic bacteria: *Escherichia coli* (*E. coli*), *Micrococcus luteus* (*M. luteus*), *Pseudomonas aeruginosa* (*P. aeruginosa*), and *Ralstonia solanacearum* (*R. solanacearum*). Antibacterial activity was assessed by the microbroth dilution method in 96-well flat-microtiter plates using a beef protein liquid (BP) medium. Antibacterial activity was assessed according to the same procedure as antifungal bioassay. Chloromycetin was used as a positive control, and the solution of equal concentration of DMSO was used as a negative control. Cultures were grown for 24 h at 37 ± 0.5 °C in the dark without shaking, in a moist chamber.

Position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$, type	COSY	HMBC
2	8.89 (s)	148.3, CH		4, 7,
3		128.5, C		
4	8.14 (d, 8.0)	135.0, CH	5	2, 6, 7
5	7.50 (m)	123.5, CH	4, 6	3
6	8.66 (d, 4.5)	151.4, CH	5	4
7		186.4, C		
9		164.3, C		
10		140.5, C		
11		170.5, C		
12	7.09 (s)	94.0, CH		3, 10
14		99.0, C		
15	7.32 (s)	148.4, CH		9, 11, 16, 20
16		135.6, C		
17	5.75 (s)	127.8, CH	18	14, 19, 30
18a	2.29 (overlap)	23.6, CH ₂	17, 19	16, 20, 24
18b	2.06 (d, 18.0)			
19	2.57 (dd, 5.0, 12.0)	41.5, CH	18	14, 17, 21, 25, 29
20		40.4, C		
21a	1.89 (t, 12.5)	25.3, CH ₂	22	14, 19, 23, 31
21b	0.77 (d, 12.5)			
22a	2.18 (t, 14.0)	27.6, CH ₂	21	20, 24, 32
22b	1.31 (d, 14.0)			
23		75.1, C		
24		44.0, C		
25a	2.27 (overlap)	25.8, CH ₂	26	19, 23, 27, 29
25b	1.45 (d, 15.5)			
26a	2.42 (dt, 14.0, 5.0)	29.7, CH ₂	25	24
26b	2.20 (overlap)			
27		173.6, C		
29	4.43 (s)	67.0, CH ₂		19, 23, 25
30	1.36 (s)	19.5, CH ₃		14, 17
31	0.94 (s)	18.1, CH ₃		14, 19, 20
32		150.5, C		
33a	5.08 (s)	114.3, CH ₂		23, 34
33b	4.84 (s)			
34	1.75 (s)	21.7, CH ₃		23, 33

Table S3. ¹H, ¹³C NMR COSY and HMBC data of compound **1** in DMSO-*d*₆.

Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$, type	COSY	HMBC
1a	4.44 (d, 11.0)	67.2, CH ₂	2	3, 7'
1b	4.26 (dd, 11.0, 7.0)			
2	3.71 (m)	69.2, CH	1, 3	4
3	3.42 (overlap)	72.5, CH	2,4	1
4a	3.58 (m)	63.0, CH ₂	3	2
4b	3.36 (overlap)			
1'		103.6, C		
2'		161.1, C		
3'		108.2, C		
4′		160.7, C		
5'	6.30 (s)	109.2, CH		1', 3', 9'
6'		145.1, C		
7'		171.0, C		
8′	1.93 (s)	8.2, CH ₃		2', 4'
9′	2.78 (m)	28.6, CH ₂	10'	1', 5'
10′	1.10 (t, 7.5)	16.2, CH ₃	9'	6′

Table S4. ¹H, ¹³C NMR COSY and HMBC data of compound 6 in DMSO-*d*₆.

Table S5. ¹H, ¹³C NMR COSY and HMBC data of compound 7 in DMSO-*d*₆.

Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$, type	COSY	HMBC
1a	4.24 (d, 11.0)	66.2, CH ₂	2	3, 1'
1b	4.01 (dd, 11.0, 7.5)			
2	3.59 (m)	69.4, CH	1, 3	4
3	3.38 (overlap)	72.3, CH	2,4	1
4a	3.55 (m)	63.1, CH ₂	3	2
4b	3.39 (overlap)			
1'		166.5, C		
2'	5.88 (d, 15.5)	119.3, CH	3'	4′
3'	7.24 (dd, 15.5, 10.0)	145.0, CH	2', 4'	1', 5'
4′	6.27 (overlap)	129.8, CH	3', 5'	2', 6'
5'	6.25 (overlap)	142.0, CH	4', 6'	3', 7'
6'	2.22 (m)	42.6, CH ₂	5', 7'	4', 8'
7′	3.70 (m)	65.6, CH	6', 8'	5'
8'	1.05 (d, 6.0)	23.3, CH ₃	7′	6′

Compounds	Experimental specific rotations/ $[\alpha]_{D}^{25}$	Reported specific rotations/ $[\alpha]_{\rm D}^{25}$	Ref.
2	+71 °(<i>c</i> 0.1, CH ₂ Cl ₂)	+58 °(c 0.1, CH ₂ Cl ₂)	[1]
3	+149 °(<i>c</i> 0.1, CH ₂ Cl ₂)	+124 °(c 0.2, CH ₂ Cl ₂)	[2]
4	+137 °(<i>c</i> 0.1, CH ₂ Cl ₂)	+167 °(<i>c</i> 0.2, CH ₂ Cl ₂)	[1]
5	+85 °(<i>c</i> 0.2, CH ₂ Cl ₂)	+104 °(<i>c</i> 0.1, CH ₂ Cl ₂)	[3]

Table S6. The experimental and reported specific rotations of compounds 2–5.

References

- [1] Li, C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Antiinsectan decaturin and oxalicine analogues from *Penicillium thiersii. J. Nat. Prod.* 2005, 68, 319–322.
- [2] Zhang, Y.; Li, C.; Swenson, D.C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Novel antiinsectan oxalicine alkaloids from two undescribed fungicolous *Penicillium* spp. Org. Lett. 2003, 5, 773–776.
- [3] Wang, P.L.; Li, D.Y.; Xie, L.R.; Wu, X.; Hua, H.M.; Li, Z.L. Novel decaturin alkaloids from the marine-derived fungus *Penicillium oxalicum*. *Nat. Prod. Commun.* **2013**, *8*, 1397–1398.