

Supplementary Material for:

Design, Synthesis and In Vitro Experimental Validation of Novel TRPV4 Antagonists Inspired by Labdane Diterpenes

Sarah Mazzotta ^{1,2,†}, Gabriele Carullo ^{1,3,†}, Aniello Schiano Moriello ^{4,5}, Pietro Amodeo ⁶, Vincenzo Di Marzo ^{4,7}, Margarita Vega-Holm ², Rosa Maria Vitale ^{ψ,*}, Francesca Aiello ^{1,*}, Antonella Brizzi ^{3,‡} and Luciano De Petrocellis ^{4,‡}

- ¹ Department of Pharmacy, Health and Nutritional Sciences, DoE 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; sarmaz1@alum.us.es (S.M.); gabriele.carullo@unisi.it (G.C.)
- ² Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain; mvegaholm@us.es
- ³ Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; brizzi3@unisi.it
- ⁴ Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; aniello.schianomoriello@icb.cnr.it (A.S.M.); vincenzo.dimarzo@criucpq.ulaval.ca (V.D.M.); luciano.depetrocellis@icb.cnr.it (L.D.P.)
- ⁵ Epitech Group SpA, Saccolongo, Padova, Italy
- ⁶ Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, (NA), Italy; pamodeo@icb.cnr.it
- ⁷ Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND)-Université Laval, Quebec, QC, Canada
- * Correspondence: rmvitale@icb.cnr.it (R.M.V.); francesca.aiello@unical.it (F.A.)
- ⁺ These authors contributed equally.
- [‡] Antonella Brizzi and Luciano De Petrocellis are joint senior authors.

Contents

Table S1. Results of TRPV1 assay of compounds 1-16, 18-20, 22-25	. S 3
Synthesis, yield, melting points of compounds 20 and 21	.S3
Representations of the ¹ H-NMR and ¹³ C-NMR spectra of all final compounds	S5

			HN-R	,o−R		OCOR	ÓR		
			он	, ОН	H	Сон	С,он		
		1-16	1	8-20	2	2-24	21, 25		
Cpd.	R	Efficacy ^b %	Potency EC50 (µM)	IC50 (μM) ^c inh TRPV1	Cpd.	R	Efficacy ^b %	Potency EC ₅₀	IC50 (μM) ^c inh TRPV1
								(µM)	
1	\sum	33.6 ± 0.8	>10	> 100	14	\sim	25.2 ± 2.0	> 10	> 100
2	F	< 10	$\mathbf{N}\mathbf{A}^{d}$	> 100	15		< 10	NA	> 100
3		32.0 ± 1.2	4.7 ± 0.4	> 100	16		< 10	NA	> 100
4		36.8 ± 0.2	> 10	>10	18	$\widehat{}$	< 10	NA	>10
5	CI	< 10	NA	> 100	19	CI	17.5 ± 2.7	>10	> 100
6	CI	16.9 ± 0.3	> 10	> 100	20	Me	< 10	NA	> 100
7	F	24.5± 0.2	9.9 ± 0.1	>50	21	Н	< 10	NA	> 100
8	ОМе	19.7 ± 1.1	> 10	> 100	22		<10	NA	>100
9	OMe	< 10	NA	> 100	23		< 10	NA	> 100
10		< 10	NA	>10	24	∽∽∽_s_)	< 10	NA	> 100
11	CI	< 10	NA	>100	25	CI	< 10	>10	> 100
12	F	< 10	NA	> 100	Scd ^e	-	12.6 ± 0.5	>10	> 100
13	F	20.8 ± 1.6	> 10	>50					

Table S1. Results of TRPV1 assay of compounds 1-16, 18-20, 22-25.^a

^a Data are means ± SEM of at least N = 3 determinations. ^b As percent of the effect of ionomycin (4 μ M). Inh = inhibitory activity. ^c Determined against the effect of Capsaicin (100 nM) after a 5 min pre-incubation with each compound. ^dNA = not active, if the efficacy is lower than 10% the potency is not calculated, ^e Scd = (+)-Sclareolide. Capsaicin efficacy 78.6 +/- 0.6 EC50 5.3 +/- 0.4 nM [1]

[1] Del Prete D, Caprioglio D, Appendino G, Minassi A, Schiano-Moriello A, Di Marzo V, De Petrocellis L. Discovery of non-electrophilic capsaicinoid-type TRPA1 ligands. Bioorg Med Chem Lett. 2015 Mar 1;25(5):1009-11. doi: 10.1016/j.bmcl.2015.01.039. Epub 2015 Jan 28. PMID: 25666822.

Synthesis of methyl ester derivative (20).

A well stirred methanolic solution of (+)-sclareolide (100 mg, 3 mL) was heated at 45 $\,^{\circ}$ C for 72 h. After that, the mixture was evaporated to dryness and the pure compound obtained after flash column chromatography using a gradient of PE/EtOAc. The compound was isolated as a white solid. Mp 72-73 $\,^{\circ}$ C (G). NMR data are in agreement with those reported. [1] Anal. Calcd. for C₁₇H₃₀O₃: C, 72.30; H, 10.71. Found: C, 72.56; H, 10.75.

[1] Carmna, R.M. and Deeth, H.C. Diterpenoids XXVII. The Synthesis of α -Onoceradiene from Abienol. *Aust. J. Chem.* **1971**, *24*, 1099-1102.

Synthesis of (1*R*,2*R*,4a*S*,8a*S*)-1-(2-hydroxyethyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2ol (homodrimanyl diol) (21). (+)-Sclareolide (300 mg, 1.2 mmol, 1.0 eq.) was dissolved in dry THF (50 mL) under argon and cooled to 0 $\,^{\circ}$ C. Then, LiAlH₄ (455.4 mg, 12.0 mmol, 10.0 eq.) was added to the solution. The reaction mixture was stirred at rt for 6 h, then quenched with EtOAc (30 mL) and evaporated to dryness. The residue was dissolved in CH₂Cl₂ (50 mL) and the organic phase washed twice with 1 N HCl (30 mL), with staturated aqueous NaHCO₃ (30 mL), and brine (30 mL). The organic phase was finally dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to give homodrimanyl diol **21** as a white crystalline solid in quantitative yield. Mp 129.5-130.5 $\,^{\circ}$ C. ¹H-NMR data are in agreement with those reported. [2] Anal. Calcd. for C₁₇H₃₀O₃: C, 72.30; H, 10.71. Found: C, 72.56; H, 10.75.

[2] Li, D.; Zhang, S.; Song, Z.; Wang, G.; Li, S. Bioactivity-Guided Mixed Synthesis Accelerate the Serendipity in Lead Optimization: Discovery of Fungicidal Homodrimanyl Amides. *Eur. J. Med. Chem.* **2017**, *136* (31401777), 114–121. https://doi.org/10.1016/j.ejmech.2017.04.073.

2.78

1.5

1.6

83

1.8 1.7 f1 (ppm)

2.80

2.1 2.0

2.81

1.9

24.21-

1.2 1.1 1.0

1.4 1.3

1

2.5

2.6

8

2.4 2.3 2.2

5.70

2.9 2.8 2.7

-500000

--500000

0.6

0.5

0.98

0.8 0.7

g

0.9

sansionato con CamScanner

S66

S73

