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Abstract: Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats
including marine, fresh water, swamps, and rice fields. Species of this genus are associated with
many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis
and algal blooms. As a result, there have been a number of investigations of the ecology, natural
product chemistry, and biological characteristics of members of this genus. In general, the secondary
metabolites of cyanobacteria are considered to be rich sources for drug discovery and development.
In this review, the secondary metabolites reported in marine Leptolyngbya with their associated
biological activities or interesting biosynthetic pathways are reviewed, and new insights and
perspectives on their metabolic capacities are gained.
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1. Introduction

Cyanobacteria, also known as ‘blue-green algae’, rank among the oldest prokaryotes found on
Earth and evolved to possess remarkable capabilities of oxygenic photosynthesis and nitrogen fixation,
allowing them to both adapt to and affect the planet’s environmental conditions for over two billion
years [1–4]. In traditional classification schema, filamentous cyanobacteria without akinetes, heterocysts or
true-branching were generally assigned to the order Oscillatoriales (Section III) [5]. However, one specific
genus of filamentous, nonheterocystous cyanobacteria with granular surface ornamentation was ultimately
named Leptolyngbya in 1988, and placed in the order Pseudanabaenales [6–8]. The identification of this
genus was supported by phylogenetic analysis, including 16S rRNA gene sequences, which at the time
showed no clear relationship with any other defined genus of cyanobacteria [9].

Leptolyngbya originate from a diverse range of ecological habitats, including marine, fresh water,
swamps, forests, rice fields, alkaline lakes, and even the polar desert or hot desert environments [10–13].
Members of this genus possess a variety of thin (0.5–3.5 µm), long filaments, and can grow solitarily or
coiled into clusters and fine mats [14–16]. Heterocysts and akinetes are both absent in these organisms [17].
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In the taxonomic databases Algaebase [18] and CyanoDB [19] there are 138 taxonomically accepted
species of Leptolyngbya listed.

Marine collections of Leptolyngbya have been reported in Japan, Panama, Gulf of Thailand, the Red
Sea, Hawaii, America Samoa, and others (Table 1), which illustrates that this genus is distributed
widely in the world. A breadth of scientific studies have been conducted on these samples in recent
decades, including morphological and phylogenetic characterization, photosynthesis and nitrogen
fixation research, examination of the associated microbial community, growth modulation and natural
product chemistry research [4,9,17,20–22]. It is well known that cyanobacteria produce many secondary
metabolites, especially when grown in different environments and conditions. Variations such as
temperature, pH, dissolved phosphorous levels, nitrogen content or associated symbionts can influence
the expression of different natural products [22,23]. The metabolites of cyanobacteria are known to
possess potent biological activity in areas such as cytotoxicity, anti-inflammation, neuromodulatory,
antibacterial, and brine shrimp toxicity [24,25]. It is possible that these observed biological activities
match or mimic some of the natural ecological roles of these secondary metabolites. A limited number of
Leptolyngbya field collections have been propagated in laboratory cultures [26–28]. However, they grow
slowly in this environment, making for additional challenges in secondary metabolite discovery from
this resource [29]. This review summarizes recent research on the secondary metabolites found in the
genus Leptolyngbya, and covers chemical, pharmacological, and biosynthetic aspects.
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Table 1. Secondary metabolites from Leptolyngbya and the reported bioactivities from each.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Coibamide A (1)

N a N a Y b
Cytotoxicity MDA-MB-231 IC50 3.9 nM

[30]Cytotoxicity A549 IC50 3.6 nM

Cytotoxicity MCF-7 IC50 35.7 nM

N a N a Y b
Cytotoxicity MDA-MB-231 GI50 5.0 nM

[31]Cytotoxicity A549 GI50 5.4 nM
Cytotoxicity PANC-1 GI50 3.1 nM

Coiba National Park,
Panama

N a N a

Cytotoxicity H460 LC50 < 23 nM

[32]

Cytotoxicity Mouse neuro2a LC50 < 23 nM
Cytotoxicity MDA-MB-231 GI50 2.8 nM
Cytotoxicity LOX IMVI GI50 7.4 nM
Cytotoxicity HL-60(TB) GI50 7.4 nM
Cytotoxicity SNB-75 GI50 7.6 nM
Histological
Selectivity

Breast, CNS, colon,
and ovarian cancer cells Good

Coiba National Park,
Panama

N a N a
Cytotoxicity U87-MG EC50 28.8 nM

[33]Cytotoxicity SF-295 glioblastoma cell EC50 96.2 nM
Cytotoxicity MEFs EC50 96.2 nM

Synthetic l-HVA, l-MeAla-Coibamide A (2)

N a N a Y b

Cytotoxicity COLO205 IC50 11.5 µM [33]
Cytotoxicity H460 45% inhibition at 20 µM

Cytotoxicity MDA-MB-231 IC50 17.98 µM
[34]Cytotoxicity MCF-7 IC50 11.77 µM

Cytotoxicity A549 IC50 22.80 µM

Cytotoxicity MDA-MB-231 GI50 > 16000 nM
[31]Cytotoxicity A549 GI50 22800 nM

Cytotoxicity PANC-1 ND c

N a N a N a

Cytotoxicity H292 IC50 124 nM

[35]Cytotoxicity MDA-MB-231 IC50 66 nM
Cytotoxicity PC-3 IC50 80 nM
Cytotoxicity SF-295 IC50 219 nM

Synthetic O-Desmethyl, l-HVA,
l-MeAla-Coibamide A (3) N a N a Y b Cytotoxicity COLO205 IC50 13 µM [33]

Cytotoxicity H460 36% inhibition at 20 µM
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Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Synthetic l-HVA, d-MeAla-Coibamide A (4) N a N a Y b

Cytotoxicity A549 IC50 19.0 nM

[35]

Cytotoxicity HCT116 IC50 44.6 nM
Cytotoxicity MCF-7 IC50 48.6 nM
Cytotoxicity B16 IC50 54.4 nM
Cytotoxicity H292 IC50 610 nM
Cytotoxicity MDA-MB-231 IC50 545 nM
Cytotoxicity PC-3 IC50 424 nM
Cytotoxicity SF-295 IC50 816 nM

Cytotoxicity MDA-MB-231 GI50 545 nM

[31]Cytotoxicity A549 GI50 19 nM

Cytotoxicity PANC-1 ND c

Synthetic Coibamide A-1c (5) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 7518 nM

[31]Cytotoxicity A549 GI50 20091 nM
Cytotoxicity PANC-1 GI50 12417 nM

Synthetic Coibamide A-1d (6) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 10809 nM

[31]Cytotoxicity A549 ND c

Cytotoxicity PANC-1 ND c

Synthetic Coibamide A-1e (7) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 2662 nM

[31]Cytotoxicity A549 GI50 1995 nM
Cytotoxicity PANC-1 GI50 1906 nM

Synthetic MeAla3-MeAla6-Coibamide A-1f (8) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 5.1 nM

[31]Cytotoxicity A549 GI50 7.3 nM
Cytotoxicity PANC-1 GI50 7.0 nM

Synthetic Coibamide A-1g (9) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 5.3 nM

[31]Cytotoxicity A549 GI50 12.4 nM
Cytotoxicity PANC-1 GI50 32.9 nM

Synthetic Coibamide A-1h (10) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 61.6 nM

[31]Cytotoxicity A549 GI50 81.7 nM
Cytotoxicity PANC-1 GI50 124 nM
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Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Synthetic Coibamide A-1i (11) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 20.8 nM

[31]Cytotoxicity A549 GI50 194 nM
Cytotoxicity PANC-1 GI50 46.3 nM

Synthetic Coibamide A-1j (12) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 2056 nM

[31]Cytotoxicity A549 ND c

Cytotoxicity PANC-1 GI50 2178 nM

Synthetic Coibamide A-1k (13) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 183 nM

[31]Cytotoxicity A549 GI50 222 nM
Cytotoxicity PANC-1 GI50 277 nM

Synthetic Coibamide A-1l (14) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 450 nM

[31]Cytotoxicity A549 GI50 473 nM
Cytotoxicity PANC-1 GI50 601 nM

Synthetic Coibamide A-1m (15) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 415 nM

[31]Cytotoxicity A549 GI50 511 nM
Cytotoxicity PANC-1 GI50 723 nM

Synthetic Coibamide A-1n (16) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 >16000nM

[31]Cytotoxicity A549 ND c

Cytotoxicity PANC-1 ND c

Synthetic Coibamide A-1o (17) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 470 nM

[31]Cytotoxicity A549 GI50 733 nM
Cytotoxicity PANC-1 GI50 828 nM

Synthetic Coibamide A-1p (18) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 236 nM

[31]Cytotoxicity A549 GI50 360 nM
Cytotoxicity PANC-1 GI50 204 nM

Synthetic Coibamide A-1q (19) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 239 nM

[31]Cytotoxicity A549 GI50 443 nM
Cytotoxicity PANC-1 GI50 415 nM

Synthetic Coibamide A-1r (20) N a N a Y b
Cytotoxicity MDA-MB-231 GI50 >16000 nM

[31]Cytotoxicity A549 ND c

Cytotoxicity PANC-1 ND c



Mar. Drugs 2020, 18, 508 6 of 29

Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Dolastatin 12 (21) The Red Sea Y b N a Cytotoxicity

HeLa cells IC50 > 1 µM [36]

KB (human
nasopharyngeal

carcinoma cell line)
MICs <0.05 µg/mL

[37]
LoVo (a human colon

adenocarcinoma
cell line)

0.08 µg/mL

Murine P388
lymphocytic leukemia ED50 7.5 × 10−2 µg/mL [38,39]

Ibu-Epidemethoxylyngbyastatin 3 (22) The Red Sea Y b N a Cytotoxicity HeLa cells IC50 > 10 µM [36]

Grassypeptolide D (23)

The Red Sea Y b N a

Cytotoxicity HeLa cells IC50 335 nM

[36]Cytotoxicity Mouse neuro2a
blastoma cells IC50 599 nM

Grassypeptolide E (24)
Cytotoxicity HeLa cells IC50 192 nM

[36]Cytotoxicity Mouse neuro2a
blastoma cells IC50 407 nM

Loggerpeptin A (25) Florida, USA N a N a Antiproteolytic
Activity

Bovine pancreatic
chymotrypsin IC50 0.24 µM

[40]
Porcine pancreatic

elastase IC50 0.24 µM

Human neutrophil
elastase IC50 0.29 µM

Loggerpeptin B (26) Florida, USA N a N a Antiproteolytic
Activity

Bovine pancreatic
chymotrypsin IC50 0.22 µM

[40]
Porcine pancreatic

elastase IC50 0.28 µM

Human neutrophil
elastase IC50 0.89 µM

Loggerpeptin C (27) Florida, USA N a N a Antiproteolytic
Activity

Bovine pancreatic
chymotrypsin IC50 0.35 µM

[40]
Porcine pancreatic

elastase IC50 0.54 µM

Human neutrophil
elastase IC50 0.62 µM
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Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Molassamide (28) Florida, USA N a N a Antiproteolytic
Activity

Bovine pancreatic
chymotrypsin IC50 0.24 µM

[40]
Porcine pancreatic

elastase IC50 0.05 µM

Human neutrophil
elastase IC50 0.11 µM

2-Hydroxyethyl-11-Hydroxyhexadec-9-Enoate
(29) Gulf of Thailand Y b N a

Antibacterial
Activities Vibrio harveyi MIC 250–1000 µg/mL

[41]Antibacterial
Activities Vibrio parahaemolyticus MIC 350–1000 µg/mL

Honaucin A (30) Hawaii, USA N a N a

Anti-Inflammatory
Activity

LPS-stimulated
RAW264.7 murine

macrophages
IC50 4.0 µM

[42]

Antioxidant
Activity

Radical Oxygen
Scavenging No activity at 146 µM

QS-Inhibitory
activities V. harveyi BB120 IC50 5.6 µM

QS-Inhibitory
activities E. coli JB525 IC50 38.5 µM

Cytotoxicity RAW264.7 cells No activity at 1 µg/mL

[43]Cellular TRAP
Activity

RANKL-induced
osteoclastogenesis in

RAW264.7 cells
IC50 0.63 µg/mL

Honaucin B (31) Hawaii, USA N a N a

Anti-Inflammatory
Activity

LPS-stimulated
RAW264.7 murine

macrophages
IC50 4.5 µM

[42]QS-Inhibitory
activities V. harveyi BB120 IC50 17.6 µM

QS-Inhibitory
activities E. coli JB525 IC50 > 500 µM

Honaucin C (32) Hawaii, USA N a N a

Anti-Inflammatory
Activity

LPS-stimulated
RAW264.7 murine

macrophages
IC50 7.8 µM

[42]QS-Inhibitory
activities V. harveyi BB120 IC50 14.6 µM

QS-Inhibitory
activities E. coli JB525 IC50 > 500 µM
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Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Synthetic Br-Honaucin A (33) N a N a Y b

Cytotoxicity RAW264.7 cells No activity at 1 µg/mL

[43]Cellular TRAP
Activity

RANKL-induced
osteoclastogenesis in

RAW264.7 cells
IC50 0.54 µg/mL

Synthetic Hex-Honaucin A (34) N a N a Y b

Cytotoxicity RAW264.7 cells 71.6% cell viability at
1 µg/mL

[43]
Cellular TRAP

Activity

RANKL-induced
osteoclastogenesis in

RAW264.7 cells
IC50 0.68 µg/mL

Synthetic I-Honaucin A (35) N a N a Y b

Cytotoxicity RAW264.7 cells No activity at 1 µg/mL

[43]Cellular TRAP
Activity

RANKL-induced
osteoclastogenesis in

RAW264.7 cells
IC50 0.61 µg/mL

Leptolyngbyolide A (36) Okinawa, Japan N a Y b

Cytotoxicity HeLa S3 cell IC50 0.099 µM
[44]Actin-Depolymerizing

activity F-actin EC50 12.6 µM

Leptolyngbyolide B (37) Okinawa, Japan N a Y b

Cytotoxicity HeLa S3 cell IC50 0.16 µM
[44]Actin-Depolymerizing

activity F-actin EC50 11.6 µM

Leptolyngbyolide C (38) Okinawa, Japan N a Y b

Cytotoxicity HeLa S3 cell IC50 0.64 µM
[44]Actin-Depolymerizing

activity F-actin EC50 26.9 µM

Leptolyngbyolide D (39) Okinawa, Japan N a Y b

Cytotoxicity HeLa S3 cell IC50 0.15 µM
[44]Actin-Depolymerizing

activity F-actin EC50 21.5 µM

Palmyrolide A (40) Palmyra Atoll N a Y b

Ca2+ Influx
(Inhibition)

Murine cerebrocortical
neurons

IC50 3.70 µM
(2.29–5.98 µM, 95% CI)

[45]Na+ Channel
Blocking Activity

Mouse neuroblastoma
(neuro2a) IC50 5.2 µM

Cytotoxicity H460 No activity at 20 µM

Phormidolide (42) The Red Sea Y b N a Brine Shrimp
Toxicity LC50 1.5 µM [46]
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Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Kalkipyrone A (43) America Samoa N a N a

Cytotoxicity H460 cells EC50 0.9 µM
[47]Cytotoxicity Saccharomyces cerevisiae

ABC16-monster IC50 14.6 µM

Brine Shrimp
Toxicity

Brine shrimp
(Artemia salina) LD50 1 µg/mL

[48]
Ichthyotoxicity Goldfish Carassius

auratus LD50 2 µg/mL

Cytotoxicity NCI’s 60 human tumor
cell line

Modestly inhibitory to
several renal and

melanoma cell lines

Kalkipyrone B (44) America Samoa N a N a
Cytotoxicity H460 cells EC50 9.0 µM

[47]Cytotoxicity Saccharomyces cerevisiae
ABC16-monster IC50 13.4 µM

Yoshinone A (45) Ishigaki island, Japan N a Y b

Adipogenic
Differentiation 3T3-L1 cells EC50 420 nM

[49]Cytotoxicity 3T3-L1 cells IC50 > 50 µM
Cytotoxicity HeLa IC50 > 50 µM

Cytotoxicity Saccharomyces cerevisiae
ABC16-monster IC50 63.8 µM [47]

Cytotoxicity H460 cells EC50 > 10 µM

Yoshinone B1 (46) Ishigaki island, Japan N a N a Adipogenic
Differentiation 3T3-L1 cells <50% inhibition at 5 µM [49]

Yoshinone B2 (47) Ishigaki island, Japan N a N a Adipogenic
Differentiation 3T3-L1 cells <50% inhibition at 5 µM [49]

Crossbyanol A (48) Hawaii, USA N a N a

Cytotoxicity H460 human lung cancer
cells IC50 30 µg/ mL

[50]

Na+ Influx
(Activation and

Inhibition)

Mouse neuroblastoma
(neuro2a)

IC50
20 µg/mL(Activation)

Antibacterial
Activity

Methicillin-resistant
Staphylococcus aureus

(MRSA)
No activity at 125 µg/mL

Brine Shrimp
Toxicity

Brine shrimp
(Artemia salina) No activity at 25 µg/mL
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Table 1. Cont.

Name Geographic Location Culture Total Synthesis Bioactivity Cell Line Activity Reference

Crossbyanol B (49) Hawaii, USA N a N a

Cytotoxicity H460 human lung
cancer cells No activity at 20 µg/mL

[50]

Na+ Influx
(Activation and

Inhibition)

Mouse neuroblastoma
(neuro2a) No activity at 20 µg/mL

Antibacterial
activity

Methicillin-resistant
Staphylococcus aureus

(MRSA)
MIC 2.0-3.9 µg/mL

Brine Shrimp
Toxicity

Brine shrimp
(Artemia salina) IC50 2.8 µg/mL

Crossbyanol C (50) Hawaii, USA N a N a

Cytotoxicity H460 human lung
cancer cells No activity at 20 µg/mL

[50]Na+ Influx
(Activation and

Inhibition)

Mouse neuroblastoma
(neuro2a) No activity at 20 µg/mL

Crossbyanol D (51) Hawaii, USA N a N a

Cytotoxicity H460 human lung
cancer cells No activity at 20 µg/mL

[50]Na+ Influx
(Activation and

Inhibition)

Mouse neuroblastoma
(neuro2a) No activity at 20 µg/mL

Leptazoline A (52) Honolulu Y b N a Cytotoxicity PANC-1 No significant activity
[51]

Leptazoline B (53) Honolulu Y b N a Cytotoxicity PANC-1 GI50 10 µM
a Not found in literature. b Found in literature. c Not determined.
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2. Chemical Diversity of the Secondary Metabolites Isolated from Leptolyngbya

2.1. Polypeptides

In 2008, McPhail and co-workers reported the discovery of coibamide A (1), a cyclic depsipeptide
with a high degree of N- and O-methylation from a Leptolyngbya species collected in Panama
(Figure 1) [32]. The absolute configuration was determined by a series of chiral HPLC analyses
of the amino acids resulting from the hydrolyzed peptide as well as some computational modeling.
Interest in coibamide A (1) mounted due to its exquisitely potent low-nanomolar in vitro inhibition
activity against multiple cancer cell lines, including human NCI-H460, MDA-MB-231, H292, PC-3,
SF-295, mouse neuro2a, LOX IMVI, HL-60(TB), and SNB-75 cell lines [32]. The number of cell lines
was expanded to include human U87-MG, SF-295 glioblastoma cells and mouse embryonic fibroblasts
(MEFs), and it was further revealed that the cyclized structure was crucial for potent biological
activity [52]. Several studies subsequently reported the total synthesis of coibamide A (1). Yao and
Lim et al. completed the total synthesis of the structure originally reported for coibamide A (2), as well
as a synthetic O-desmethyl analogue. However, both the 1H and 13C NMR data for the synthetic
product 2 differed from those of the natural product, which indicated that the absolute configuration
of this compound required revision [33,34]. Additionally, Oishi and Fujii synthesized the d-N-Me-Ala
epimer of coibamide A (4) due to an epimerization of this residue during the macrocyclization process
(Figure 1) [35]. In 2015, Fang and Su were able to assign the correct configuration of coibamide A (1)
with the revision of the l-HVA and l-N-Me-Ala residues to the d-HVA and d-N-Me-Ala after total
synthesis of this alternative along with its diastereomeric analogues (Figure 1) [30]. The absolute
configuration of coibamide A (1) proposed by Fang and Su was further confirmed by McPhail and
Cheong using computational methods to calculate NMR data for the conformational space occupied
by several possible diastereomers and comparison with experimental values [53]. This considerable
effort to resolve the structure of coibamide A (1) was largely motivated by the potent cytotoxicity
of this molecule, and as a byproduct, provided a number of new analogues for mechanistic and
pharmacological studies. More recently, Su and Fang went on to synthesize 18 new analogues (2, 4,
5–20) including the originally proposed structure of coibamide A (2) as well as the revised correct
structure (1) to perform a structure–activity relationship study (Figure 2) [31]. However, none of
the coibamide A analogues were more potent cytotoxins than the natural product, indicating the
strong correlation between the observed activity, the core molecular structure and optimization of this
structure through natural evolutionary processes. The only analogue that exhibited similar inhibition
as natural coibamide A was the [MeAla3-MeAla6]-coibamide (8), which significantly suppressed tumor
growth in vivo [31,33,35].
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The dolastatins are an expansive and well-known series of peptidic compounds. These were
named after first being discovered from the sea hare Dolabella auricularia, but it was later found
that the mollusk accumulates these natural products from cyanobacteria in their diets [37,39,54,55].
Dolastatin 12 (21) is one such compound, and has interesting 4-amino-2,2-dimethyl-3-oxopentanoic
acid (Ibu) and (2S,3R)-3-amino-2-methylpentanoic acid (MAP) residues in its cyclic structure (Figure 3).
The macrocycle also includes an ester linkage across a 2-hydroxy-3-methylpentanoate (Hmp) residue,
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and is thus a depsipeptide. While this compound was originally isolated from D. auricularia, it was
noted to resemble the Lyngbya majuscula metabolite majusculamide C. Dolastatin 12 (21) was later
re-discovered from a mixed cyanobacterial assemblage of L. majuscula and Schizothrix calcicola from
Guam [36,39,56,57] as well as from a Leptolyngbya sp. RS03 collected in the Red Sea [36]. Dolastatin
12 (21) may be present as a mixture of diastereomers arising from epimerization of the acid-sensitive
Ibu unit during the isolation process [57]. The configuration of this Ibu residue was determined
by CD and 1H NMR analysis after hydrolysis and purification [39]. The correct configuration was
determined to be R by comparing the free Ibu unit to Adhpa synthetic standards [57]. In the early
studies, dolastatin 12 (21) was shown to inhibit actin polymerization [37,58]. Dolastatin 12 (21) has
in vitro MICs <0.05 µg/mL against human nasopharyngeal carcinoma cells and 0.08 µg/mL against
human colon adenocarcinoma cells [37]. Further cytotoxicity characterization showed that dolastatin
12 has an in vitro IC50 > 1 µM against HeLa cells [36,56] and a ED50 of 7.5 × 10−2 µg/mL against murine
P388 lymphocytic leukemia [38,39].
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Ibu-epidemethoxylyngbyastatin 3 (22) has a similar structural backbone to dolastatin 12 (21) and
possesses the same Ibu residue (Figure 4). However, rather than containing the MAP as in dolastatin
12, Ibu-epidemethoxylyngbyastatin 3 has a molecular mass comparatively increased by 14 Da, which
results from the presence of a 3-amino-2-methylhexanoic acid (Amha) moiety instead of MAP. In vitro
cytotoxicity testing showed that Ibu-epidemethoxylyngbyastatin 3 (22) is at least 10-fold less toxic than
dolastatin 12 (IC50 > 1 µM) against HeLa cells [36,56].
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Grassypeptolides are a series of cyclic depsipeptides first isolated from the marine cyanobacterium
Lyngbya confervoides. These peptides contain d-amino acids, thiazoline rings, and a β-amino acid
(Figure 5) [59,60]. Further research led to the isolation and description of grassypeptolides D (23) and E
(24) from a Red Sea Leptolyngbya sp. RS03, and grassypeptolides F and G from Lyngbya majuscula [61,62].
Grassypeptolides D (23) and E (24) showed cytotoxic activity to both HeLa cells (IC50 335 and 192
nM, respectively) and neuro2a cells (IC50 599 and 407 nM, respectively) [36,56,63]. By comparing with
other grassypeptolide structures and their biological activities, an initial structure–activity relationship
was deduced that indicated the N-Me-Phe-thn-ca-Aba-thn-ca tetrapeptide motif could be the key
pharmacophore of the grassypeptolides [36,56].
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Loggerpeptins A–C (25–27) are cyclic depsipeptides with 3-amino-6-hydroxy-2-piperidone (Ahp)
residues (Figure 6) that were isolated from a Florida cyanobacterial collection identified morphologically
as Leptolyngbya sp. [40]. These compounds were screened for serine protease inhibitory activities to
assess their antimetastatic effect against breast cancer cells. Loggerpeptin A (25) and B (26) were more
potent than loggerpeptin C (27) with IC50s of 0.24 and 0.22 µM against bovine pancreatic chymotrypsin
and 0.24 and 0.28 µM against porcine pancreatic elastase [40]. Loggerpeptin A (25) was 2- and 3-fold
more potent than loggerpeptin B (26) and C (27) against human neutrophil elastase (HNE) [40]. All three
compounds exhibited antiproteolytic activities, with IC50 values under 1 µM. As the major component
in the collection, loggerpeptin C (27) was subject to a detailed molecular study [40]. Molecular docking
showed that the Leu and N-terminal Thr-1, Abu and Ala residues of loggerpeptin C (27) were binding
to the subsites S1-S4 of HNE and porcine pancreatic elastase [40].

Molassamide (28) is another cyclic depsipeptide (Figure 7) that was isolated along with
loggerpeptins A–C (25–27) [40]. Compared to loggerpeptins (25–27), molassamide (28) exhibited
much more potent inhibition activity against porcine pancreatic elastase, with an IC50 value of 50 nM,
indicating the Abu residue between Ahp and Thr-1 is important to the antiproteolytic selectivity [40].
Molassamide presents similar binding patterns in molecular docking as loggerpeptin C (27), with the
Abu and N-terminal Thr-1, Thr-2 and Ala binding in subsites S1–S4 of HNE and porcine pancreatic
elastase [40]. Molassamide also inhibited elastase from cleaving the substrate CD40 in both biochemical
and cellular assays, and it also inhibited ICAM-1 cleavage and downregulated elastase-induced
ICAM-1 gene expression. Overall, this profile of activity is indicative of molassamide being a promising
candidate for potential treatment of breast cancer [40].
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2.2. Simple Esters

Lumyong et al. isolated an antibacterial compound, 2-hydroxyethyl-11-hydroxyhexadec-9-enoate
(29) (Figure 8), from Leptolyngbya sp. LT19 [41], as a result of screening for antibacterial activities.
They showed compound 25 to be active against Vibrio harveyi and V. parahaemolyticus, with MIC
values of 250–1000 and 350–1000 µg/mL. This antibacterial activity could potentially be useful
to the shrimp aquaculture industry that is often burdened by the highly damaging Vibrio spp.
pathogens [41]. However, the absolute configuration of the single stereocenter in compound 25 has not
yet been determined.
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Choi et al. isolated honaucins A–C (30-32) from a Hawaiian collection of Leptolyngbya crossbyana
which possess potent anti-inflammatory and quorum-sensing (QS) inhibitory activity (Figure 9) [42].
Chemical synthesis of honaucin and a number of analogs (30–32) revealed that the each of the
functional groups is critical for both of these biological activities. Further, synthetic honaucin analogues
4-bromo-honaucin A (33) and 4′-iodohonaucin A (35) were discovered to have slightly more potent
activity in cellular TRAP activity than honaucin A itself (30), with IC50 values of 0.54 and 0.61 µg/mL
compared to 0.63 µg/mL for 30 (Figure 9), [43]. Mechanistic pharmacological investigations of honaucin
A (30) indicated that the molecular target(s) involves the Nrf2-ARE (Antioxidant Response Element)
pathway, and specifically involves interaction with Cys residues on Keap1 when it is complexed with
Nrf2. This allows Nrf2 to be transported to the nucleus, where it activates cytoprotective genes and
generates an anti-inflammatory response [64]. Additionally, further investigation of bromo-honaucin
A (33) revealed that it provides a protective effect against bone loss in RANKL-treated murine
monocyte/macrophage RAW264.7 cells [43].
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2.3. Macrolides

Leptolyngbyolides A–D (36–39), a series of 22-membered macrolides, were isolated from
Leptolyngbya sp. collected in Okinawa, Japan. The absolute configuration of each was assigned
following an asymmetric total synthesis of leptolyngbyolide C (38) (Figure 10) [44]. Leptolyngbyolides
A–D (36–39) were screened for cytotoxic activity against HeLa S3 cells in vitro and were found to be
moderately active, with IC50 values of 0.99, 0.16, 0.64 and 0.15 µM, respectively [44]. Furthermore, these
metabolites possessed actin-depolymerizing activity with an EC50 of 12.6, 11.6, 26.9 and 21.5µM, and this
may represent the mechanism for the observed cellular apoptosis caused by these compounds [44].
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NMR experiments, including GHMBC, 2D INADEQUATE, and ACCORD-ADEQUATE, G-BIRDR, 
X-HSQMBC NMR experiments, enabled a J-based configuration analysis and deduction of relative 
configuration of stereocenters; a variable temperature Mosher ester analysis was used to assign the 
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phormidolide (41) gene cluster was found to be of the trans-AT PKS type, which has been relatively 
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A new macrolide, palmyrolide A (40), was isolated from an environmental assemblage of a
Leptolyngbya cf. and Oscillatoria spp. collected from Palmyra Atoll in the Central Pacific Ocean
(Figure 11). Palmyrolide A (40) comprises a rare N-methyl enamide functionality, as well as an
intriguing t-butyl branch that likely results biosynthetically from the incorporation of malonate
and three methyl groups from S-adenosyl-l-methionine (SAM), as shown for apratoxin [45,65].
The absolute configuration of this molecule was assigned by total synthesis of both the natural
(−)-palmyrolide A (40) and its enantiomer, (+)-ent-palmyrolide A. This was necessitated because
the t-butyl substituent apparently provides the lactone ester bond with resistance to hydrolysis,
precluding chemical degradation studies [66–68]. It was speculated that cyanobacterial secondary
metabolites possessing this motif, a t-butyl adjacent to an ester, might be stable under a wide variety of
environmental conditions, similar to what was observed in the laboratory environment. Palmyrolide A
(40) exhibited potent inhibition of calcium oscillations in murine cerebrocortical neurons and sodium
channel-blocking activity in neuroblastoma (neuro2a) cells [45].
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Phormidolide (41) is a 16-membered macrocyclic lactone polyketide-derived metabolite that
was discovered from an Indonesian Leptolyngbya sp. (ISB3NOV94-8A) (Figure 12). This molecule
has several unique structural features including a large number of hydroxy and methyl groups on
the carbon backbone, several points of both cis and trans unsaturation, and a vinyl bromide at one
terminus. Phormidolide (41) showed in vitro brine shrimp toxicity, with an LC50 of 1.5 µM. Multiple
NMR experiments, including GHMBC, 2D INADEQUATE, and ACCORD-ADEQUATE, G-BIRDR,
X-HSQMBC NMR experiments, enabled a J-based configuration analysis and deduction of relative
configuration of stereocenters; a variable temperature Mosher ester analysis was used to assign the
absolute configuration [46]. An investigation of the biosynthetic pathway for phormidolide (41) used
a genome sequencing approach, and identified the phormidolide biosynthetic gene cluster (phm).
The phormidolide (41) gene cluster was found to be of the trans-AT PKS type, which has been relatively
rarely reported in cyanobacteria. This was based on finding two discrete trans-AT open reading
frames along with KS-AT adaptor regions (ATd) within the PKS megasynthase. The megasynthase
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possesses ketosynthases, ketoreductases, KS-AT adaptor regions, dehydratases, methyltransferases,
O-methyltransferase, enoyl-CoA hydratases, an FkbH-like domain, a pyran synthase, an NRPS-like
condensation domain and an acyl carrier protein that were consistent with structure of phormidolide
(41). The biosynthetic pathway also provided further supporting evidence for the absolute configuration
of phormidolide (41), due to the stereospecificity of the ketoreductases observed in phm compared with
known homologues [26]. However, subsequent chemical synthesis of key fragments of phormidolide
revealed the need for a revision in configuration in at least one stereocenter [69]. Simultaneously,
a reanalysis of the biosynthetic gene cluster suggested additional revisions in configuration were possibly
required [70]. These findings stimulated a concerted computational and NMR-based re-investigation
of phormidolide’s complex 3-dimensional structure, leading to a revision in several stereocenters
(42) [71].
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2.4. Pyrones

Kalkipyrone A (43) was first reported in a mixed assemblage of Lyngbya majuscula and Tolypothrix sp.
(Figure 13), and was found to have potent brine shrimp toxicity (LD50 = 1 µg/mL) and ichthyotoxicity
against Carassius auratus goldfish (LD50 = 2 µg/mL) [48]. Kalkipyrone A (43) and its analogue
kalkipyrone B (44) were later found as metabolites of a Leptolyngbya sp. (ASG15JUL14-6) collected
from America Samoa (Figure 12) [47]. Kalkipyrone A (43) and B (44) were moderately toxic to a
Saccharomyces cerevisiae strain lacking 16 ATP-binding cassette transporter pump genes (ABC16-monster
strain; IC50 = 14.6 and 13.4 µM, respectively), while the in vitro cytotoxicity of these two natural
products against H460 human lung cancer cells was somewhat more potent (EC50 = 0.9 and 9.0 µM,
respectively) [47].
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Three related γ-pyrone-containing polyketides described as yoshinones A, B1, and B2 (45–47),
were isolated from Leptolyngbya sp. collected from Ishigaki island Okinawa, Japan (Figure 14).
The absolute configuration of each compound was attempted by a modified Mosher’s method;
however, these failed possibly as a result of the low amounts of samples available [49]. Thus, to
assign the absolute configuration and provide sufficient amounts for further research, the absolute
stereochemistry was achieved through total synthesis and comparison of NMR and chiroptical
properties between the natural product and synthetic standards [72]. Yoshinone A (45) was found
to inhibit adipogenic differentiation against 3T3-L1 cells, with an EC50 of 420 nM and with little
cytotoxicity (IC50 = 63.8 µM to S. cerevisiae ABC16-monster cell) [47,49]. The adipogenic differentiation
against 3T3-L1 cells of yoshinone B1 (46) and B2 (47) was considerably less potent, with less than 50%
activity observed at tested concentrations up to 5 µM [48]. Further examination of structure–activity
relationships in this drug class indicated that the position of the pyrone ring and side chain olefin are
important for the inhibition of adipogenic differentiation. Further in vitro and in vivo experiments
showed that yoshinone A (45) stimulates lactate accumulation deriving from the glycolytic system,
and increases fat utilization to compensate for an insufficient energy supply [73]. These properties
could possibly support the utility of yoshinone A in anti-obesity indications.
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2.5. Polyaromatics

A series of brominated polyphenolics, crossbyanols A–D (48-51), were isolated from an extensive
benthic Leptolyngbya crossbyana bloom in Hawaii (Figure 15) [50]. In addition to the high level of
bromination, crossbyanol B–D (49–51) also have sulfated phenolic functionalities. These metabolites
were suggested to play a role in the observed coral toxicity caused by the overgrowing cyanobacteria.
Crossbyanol A (48) was found to activate sodium influx in mouse neuroblastoma (neuro2a) cells,
with an EC50 20 µg/mL, whereas crossbyanol B (49) possessed antibiotic activity, with an MIC of
2.0–3.9 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA). The latter metabolite also
showed moderately potent brine shrimp toxicity (IC50 2.8 µg/mL). Crossbyanols C (50) and D (51)
were not observed to have biological activity in these tests, and all four compounds were inactive as
cytotoxins to H460 human lung cancer cells [50].
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2.6. Oxazolines

A series of polar oxazolines, named leptazolines A–D (52–55), were isolated from the culture
media of a Leptolyngbya sp. (Figure 16) [51]. Their planar structures were characterized by MS and NMR
along with formation of acetate derivatives. Relative configuration was determined by comparison of
carbon shifts with those calculated by density functional theory (DFT). Interestingly, the calculations
were found to vary as a function of the computer operating system (Ubuntu 16, Windows 10, MAC
Mavericks, MAC Mojave). Biological assay showed that leptazoline B (53) modestly inhibited the
growth of PANC-1 cells, with a GI50 of 10 µM [51], whereas leptazoline A (52) with its aromatic chlorine
atom did not show any significant activity to this cell line.
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2.7. Other

2.7.1. Toxins

Cyanobacteria are known to produce a variety of toxins, including those that are hepatotoxic,
neurotoxic, or cardiotoxic, and which generally increase economic burdens and impact public health [23].
Cyanobacterial populations are known to sporadically grow excessively to form blooms, and in some
cases these are harmful. A total of 34 species from 15 genera and five families were screened for known
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toxins including the neurotoxic saxitoxin (56) and the hepatotoxic microcystins (e.g., microcystin-LR,
57) (Figure 17) [17,23,74]. Leptolyngbya collections from the Red Sea had on average 58.9 µg/g dry
wt. and 438–489 µg/g dry wt. of these two toxin classes, respectively. Toxin production by marine
Leptolyngbya poses toxicological risks to marine organisms that may feed on them, or that may be
exposed to the cyanotoxins present in seawater [74].
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2.7.2. Non-Toxic Metabolites

Non-toxic secondary metabolites from cyanobacteria include various chemical classes such as
phytohormones, siderophores, and UV-absorbing compounds such as mycosporine amino acids
(MAAs) and scytonemin (58); all of these have been reported in Leptolyngbya sp. (Figure 18) [23,75,76].
These latter two series of compounds have been shown to protect photosynthetic cyanobacteria from
solar UV damage [23]. An investigation of UV-B photoprotective compounds in marine Leptolyngbya
discovered shinorine (59) (Figure 18), which is now realized to be one of the most dominant MAAs
present in several species of cyanobacteria [75]. Scytonemin has a broader absorption profile than the
MAAs, protecting against the solar irradiance damage across the UV (UV-A, -B and -C; 250–425 nm).
Interestingly, scytonemin also shows interesting anti-inflammatory activity through inhibition of
polo-like kinase stimulated cell proliferation pathways [77]. The biosynthesis of scytonemin, deriving
from the assembly of tyrosine and tryptophan derived components, has been studied at the genomic
and mechanistic level in several studies; however, all of these studies have been conducted in other
genera of cyanobacteria such as Nostoc punctiforme ATCC 29133 and Lyngbya aestuarii [78–81].
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2.7.3. Phenolic Compounds

Phenolic compounds, including flavonoids and lignans, are typically natural antioxidants as well
as an important group of bioactive compounds [82]. The extract from a thermophilic cyanobacterium
Leptolyngbya sp. collected from northern Tunisia was screened by HPLC and showed the presence of
25 phenolic compounds—gallic acid (60), hydroxytyrosol (61), protocatechuic acid (62), vanillic acid
(63), isovanillic acid (64), 3-hydroxybenzoic acid (3-HBA) (65), 4-hydroxybenzoic acid (4-HBA) (66),
resorcinol (67), naphtoresorcinol (68), syringic acid (69), catechol (70), and oleuropein (71) (Figure 19);
chlorogenic acid (72), dihyrdro-p-coumaric acid (73), dihyrdro-m-coumaric acid (74), ferulic acid (75),
and rosamerinic acids (76) (Figure 20); catechin (77), luteolin-7-glucoside (78), apigenin-7-glucoside (79),
flavone (80), naringenin (81), luteolin (82), and apigenin (83) (Figure 21); resveratrol (84) and pinoresinol
(85) (Figure 22)—demonstrating that Leptolyngbya may constitute a rich source of antioxidant natural
products [83,84]. These compounds also have inherent UV-absorbing properties, albeit at more
restricted wavelengths than scytonemin (58).
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2.7.4. Odorous Metabolites

Geosmin (86) and 2-methylisoborneol (87) are two earthy-musty odorous terpenoid secondary
metabolites that were first isolated from actinomycetes (Figure 23). Later, these same molecules were
found to have a significant presence in many cyanobacteria species. These simple terpenoids have
each been reported numerous times as being among the main causes for off-flavors in water and other
products [85]. Wang et al. isolated 86 and 87 from Leptolyngbya bijugata strains, and quantified each at
13.6–22.4 and 12.3–57.5 µg/L, respectively, demonstrating their production by Leptolyngbya [86].
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2.7.5. Pigments

Phycocyanin is a pigment–protein complex found in cyanobacteria and eukaryotic algae that
functions as a light-harvesting pigment. It is widely used in biotechnological, food and pharmaceutical
industries [87]. Schipper et al. analyzed the phycocyanin content in Leptolyngbya sp. QUCCCM 56
from a desert environment to reveal that it possesses higher and purer phycocyanin compared to
the current commercial source, Arthrospira platensis [87]. Other than absorbing light, phycocyanin
also shows potential anti-aging and proteostasis-suppressive activities. With phycocyanin treatment,
the life span of wild-type (N2) C. elegans was extended from 14.8 to 19.1 days [88].

3. Laboratory Cultivation

Despite many attempts, only a few environmental collections of Leptolyngbya have been propagated
under laboratory culture conditions and, from these, there has been a relatively low rate of natural
product isolation. Rather, most of the compounds reported in this genus have been discovered
from environmental samples (Table 1). Martins et al. screened five Leptolyngbya strains among
28 cyanobacteria samples collected from the Portuguese Coast and cultured in Z8 medium, and showed
cytotoxic activities of the extracts against multiple human tumor cell lines [15,16,89]. The most
commonly used media for cyanobacteria culture is BG11 [53], originally formulated in 1988 to possess
synthetic sea salt, microelements mixture, deionized water and vitamin mixtures [28]. In most
cases, even with suitable media and abiotic factors, filamentous cyanobacteria are slow-growing life
forms, normally with growth rates much slower than algae and other bacteria, thereby presenting
a challenge for secondary metabolite discovery due to the small quantities of biomass produced in
cultures [28,90]. The 2-hydroxyethyl-11-hydroxyhexadec-9-enoate, by contrast, was able to be isolated
from the laboratory culture of Leptolyngbya with the relatively small biomass of 383.6 g because of its
reduced structural complexity and higher production yield [41].

4. Conclusions

Leptolyngbya is a widely distributed genus of cyanobacteria that has emerged to be a very rich
source of structurally novel and biologically active natural products. However, to date, this genus
appears to be underexplored for its chemical, biological and biosynthetic potential when compared to
some other genera of filamentous cyanobacteria, such as Moorena and Symploca [90]. Working with
Leptolyngbya has been challenging due to the difficulty in bringing it into culture in the laboratory
environment. This has impeded not only new compound discovery, but also exploration of its genomic
characteristics, including those that are responsible for natural product biosynthesis. It is possible that
developments with the heterologous expression of cyanobacterial natural product pathways will enable
a more extensive exploration of the rich secondary metabolome of this genus in the future [91,92].
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