

Supplementary Materials

Antifouling napyradiomycins from marine-derived actinomycetes *Streptomyces aculeolatus*

Florbela Pereira¹, Joana R. Almeida², Marisa Paulino³, Inês R. Grilo⁴, Helena Macedo^{3,4}, Isabel Cunha², Rita G. Sobral⁴, Vitor Vasconcelos^{2,5} and Susana P. Gaudêncio^{1,3*}

- ¹ LAQV, Chemistry Department, Faculty for Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
- ² CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal.
- ³ UCIBIO, Chemistry Department, Blue Biotechnology and Biomedicine Lab, Faculty for Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
- ⁴ Life Sciences Department, UCIBIO, Faculty for Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
- ⁵ Biology Department, Faculty of Sciences, Porto University, Rua do Campo Alegre, 4069-007, Porto, Portugal.
- * Correspondence: s.gaudencio@fct.unl.pt (S.P.G.)

The molecular formulas of 1 and 2 were established by HR-MS as $C_{25}H_{30}$ ³⁵ Cl_2O_5 (*m/z* 479.1400 [M -H], calcd 479.1398) and C₂₅H₃₀³⁵Cl₂O₆ (m/z 495.1349 [M - H], calcd 495.1347) respectively. The ¹H and ¹³C NMR data of 1 and 2 are similar to those of napyradiomycin A1 (1) produced by Streptomyces spp. [1,2] and 18-hydroxynapyradiomycin A1 (2) produced by S. antimycoticus [3] respectively. NMR data for compound 1 and 2 are very similar, the ¹H NMR spectrum of 1 and 2 clearly presented one exchangeable OH signal ($\delta_{\rm H}$ 11.98 ppm in 1 and 2), two single aromatic protons (δ_{H} 7.22, 6.74 ppm in 1 and 7.13, 6.71 ppm in 2), two olefinic proton signals at δ_{H} 4.89, 4.71 ppm in 1 and 5.28, 4.90 ppm in 2, one methine proton adjacent to chlorine at $\delta_{\rm H}$ 4.42 ppm in 1 and 4.47 ppm in 2, three methylene proton signals (δH 2.46, 1.64 ppm in 1 and 2.52, 2.41, 1.89 ppm in 2), and four methyl groups at δ_H 1.50, 1.31, 1.18 ppm in **1** and 1.64, 1.50, 1.23 ppm in **2**. The ¹³C NMR spectrum of **1** and **2** showed two carbonyl signals at δc 196.27, 193.78 ppm in **1** and 194.68, 193.72 ppm in 2, two phenolic hydroxyl groups (δ_{C} 167.68, 164.73 ppm in 1 and 165.08, 165.28 ppm in 2), four aromatic carbon signals resonating between δc 135.16 and 107.77 ppm in **1** and between δc 134.80 and 108.20 ppm in **2**, four sp² carbon signals resonating between δc 142.85 and 114.89 ppm in 1 and between δc 139.70 and 116.87 ppm in 2, two quaternary carbon adjacent to oxygen atom (δc 83.51, 78.93 ppm in 1 and 84.46, 78.86 ppm in 2), and one methylene carbon adjacent to chlorine atom (δc 58.74 in **1** and **2**), as well as other seven aliphatic methylene or methyl carbon signals with chemical shifts were below δc 50.0 ppm in **1** and **2**. The main differences between **1** and **2** in the ¹H NMR is that the signal of the 17-Me methyl singlet (δ_{H} 1.50 ppm) in **1** was replaced by methylene protons (δ_{H} 4.19 and 4.09 ppm, d, J = 12. 7 Hz) in 2. The ¹³C NMR spectra of 1 and 2 showed the presence of a methyl carbon (δc 17.54 ppm for 17-CH₃) and an oxymethylene carbon (δc 69.10 ppm for 17-CH₂OH), respectively.

Mass spectrometry data obtained by HR-MS confirmed the presence of two compounds, the molecular formulas of **3** and **7** were established as $C_{26}H_{32}{}^{35}Cl_2O_5$ (*m*/*z* 493.1548 [M - H]⁻, calcd 493.1549) and $C_{26}H_{31}{}^{35}ClO_5$ (*m*/*z* 457.18 [M - H]⁻, calcd 457.1782) respectively. The comparison of ¹H NMR data of **3** and **7** revealed that **7** only differed from **3** by having an olefinic bond at C-4 and C-4a, which was evident from the presence of an alkene proton signal at δ_{H} 6.92 ppm (d, J = 1.6 Hz, H-4 in 7). Thus, **3** and **7** were established as SF2415B3 [4] (**3**) and 4-dehydro-4a-dechloro-SF2415B3 (**7**) respectively. Compounds **3** and **7** co-eluted, taking into account the integration of the exchangeable 6-OH signals (δ_{H} 12.90 ppm in **3** and δ_{H} 12.14 ppm in **7**) it was possible to establish the ratio of the two compounds in the mixture, which is approximately 67:33 of **3** and **7**. ¹H and ¹³C NMR data of **3** are very similar to that of **1**, discussed above, the ¹H and ¹³C NMR spectra of **3** showed that one aromatic proton of **1** (δ_{H} 6.74 ppm) was substituted by one methyl group in **3** (δ_{H} 2.23 ppm and δ_{C} 8.1 ppm).

The molecular formula of **4** was established as $C_{25}H_{30}^{35}Cl_2O_6$ by HR-MS (*m*/*z* 495.1346 [M - H]⁻, calcd 495.1347). The ¹H and ¹³C NMR data of **4** were very similar and indistinguishable from the known compound napyradiomycin A2 (**4**) [5]. The hydroxyl substituent at C-16 was confirmed by the ¹³C and ¹H NMR chemical shifts of 75.39 ppm and 4.03 ppm (t, J = 6.4 Hz) respectively.

Mass spectrometry data obtained by HR-ESI-MS confirmed the presence of two compounds, the molecular formulas of **5** and **6** were established as $C_{25}H_{28}{}^{35}Cl_2O_6$ (*m*/*z* 493.1197 [M - H]⁻, calcd 493.1190) and $C_{25}H_{27}{}^{35}ClO_6$ (*m*/*z* 457.1429 [M - H]⁻, calcd 457.1423) respectively. The comparison of ¹H NMR data of **5** and **6** revealed that **6** only differed from **5** by having an olefinic bond at C-4 and C-4a, which was evident from the presence of an alkene proton signal at $\delta_{\rm H}$ 6.40 ppm (br s, H-4 in **5**), and the absence of the methylene proton signal at $\delta_{\rm H}$ 2.55 ppm (m, two H-4 in **5**). Thus, **5** and **6** were established as 16-oxonapyradiomycin A2 (**5**) [3] and 4-dehydro-4a-dechloro-16-oxonapyradiomycin A2 (**6**) respectively. Compounds **5** and **6** co-eluted, taking into account the

integration of the exchangeable 6-OH signals (δ_{H} 11.88 ppm in **5** and δ_{H} 11.83 ppm in **6**) it was possible to establish the ratio of the two compounds in the mixture, which is approximately 60:40 of **5** and **6**.

Mass spectrometry data obtained by HR-MS confirmed the presence of two compounds, the molecular formulas of **8** and **11** were established as $C_{25}H_{29}^{79}Br^{35}Cl_2O_5$ (*m/z* 557.0503 [M - H]⁻, calcd 557.0503) and $C_{25}H_{28}^{79}Br^{35}ClO_5$ (*m/z* 521.0738 [M - H]⁻, calcd 521.0736) respectively. The comparison of ¹H NMR data of **8** and **11** showed that **11** only differed from **8** by having an olefinic bond at C-4 and C-4a, which was evident from the presence of an alkene proton signal at δ_{H} 6.87 ppm (d, J = 1.7 Hz, H-4 in **11**), and the lack of the methylene proton signal at δ_{H} 2.52 ppm (dd, J = 13.9 and 3.9 Hz, two H-4 in **8**). In the same way, the ¹³C NMR spectrum of **11** showed two olefinic carbon atoms for C-4 (δ_{C} 137.02 ppm, CH) and C-4a (δ_{C} 136.9 ppm, qC). Whereas in the ¹³C NMR spectrum of **8**, there was a methylene carbon at C-4 (δ_{C} 42.81 ppm, CH₂) and a quaternary carbon at C-4a (δ_{C} 78.91 ppm, qC). Therefore, **8** and **11** were established as napyradiomycin B3(**8**) [2] and 4-dehydro-4a-dechloronapyradiomycin B3 (**11**) [6] respectively. Similar to compounds **5** and **6**, the napyradiomycins **8** and **11** co-eluted, taking into account the integration of the exchangeable 6-OH signals (δ_{H} 12.04 ppm in **8** and δ_{H} 12.58 ppm in **11**) it was possible to establish the ratio of the two compounds in the mixture, which was approximately 56:44 of **8** and **11**.

Mass spectrometry data obtained by HR-MS confirmed the presence of two compounds, the molecular formulas of 9 and 12 were established as $C_{26}H_{31}$ ³⁵Cl₃O₅ (*m*/*z* 527.1170 [M - H]⁻, calcd 527.1164) and C₂₆H₃₀³⁵Cl₂O₅ (*m*/*z* 491.23 [M - H]-, calcd 491.1398) respectively. The comparison of ¹H NMR data of 9 and 12 revealed that 12 only differed from 9 by having an olefinic bond at C-4 and C-4a, which was evident from the presence of an alkene proton signal at $\delta_{\rm H}$ 6.86 ppm (d, J = 1.6 Hz, H-4 in 12), and the absence of the methylene proton signal at $\delta_{\rm H}$ 2.54 ppm (m, two H-4 in 9). Comparison of ¹H and ¹³C NMR data of 8 and 9, as well as 11 and 12 showed that in addition to the substitution of the aromatic proton H-7 of compounds 8 and 11 by the methyl group 7-CH₃ in the compounds 9 and 12, the pairs of compounds 8, 9 and 11, 12 differ only from each another by having at the 16-position a bromine atom (8 and 11) or a chlorine atom (9 and 12) respectively. Taking into account the ¹³C NMR data, it showed a shift of the C-16 signal from 66.85 ppm and 66.43 ppm in compounds 8 and 11 respectively to 70.70 ppm and 70.87 ppm in compounds 9 and 12 respectively. Thus, 9 and 12 were established as A80915A (9) [7] and 4-dehydro-4a-dechloro-A80915A(12) [8] respectively. Compounds 9 and 12 also co-eluted, taking into account the integration of the exchangeable 6-OH signals (δ_{H} 12.90 ppm in 9 and δ_{H} 12.36 ppm in 12) it was possible to establish the ratio of the two compounds in the mixture, which is approximately 65:35 of 9 and 12.

The molecular formula of **10** was established as $C_{26}H_{33}{}^{35}Cl_{3}O_{6}$ by HR-MS (*m*/*z* 545.1270 [M - H]⁻, calcd 545.1270). The ¹H and ¹³C NMR data of **10** were very similar and indistinguishable from the known compound A80915C (**10**) [7,9]. The hydroxyl and methyl substituents at C-13 were confirmed by the ¹³C and ¹H NMR chemical shifts of 72.24 ppm (qC, C-13), 24.38 ppm (CH₃, 13-Me), 6.52 ppm (s, 13-OH) and 1.33 ppm (s, CH₃, 13-Me) respectively.

2. Data for structural characterization of napyradiomycin derivatives

Napyradiomycin A1 (1):

Orange oil (12.86 mg); UV λ_{max} (nm): 200.5, 251.1, 360.4; IR NaCl ν_{max} (cm⁻¹): 3341.13, 1614.99, 1450.10, 2984.33, 2929.27, 759.56; ¹H NMR (400 MHz, CDCl₃): δ 11.98 (s, 1H, 6-OH), 7.22 (d, 1H, *J*= 1.8 Hz, H-9), 6.74 (d, 1H, *J*= 1.8 Hz, H-7), 4.89 (br s, 1H, H-16), 4.71 (t, 1H, *J*= 8.1 Hz, H-12), 4.42 (dd, 1H, *J*= 11.4, 4.5 Hz, H-3), 2.70 (d, 2H, *J*= 8.2 Hz, H-11), 2.46 (m, 2H, H-4), 1.62 (s, 3H, 17-Me), 1.64 (m,

4H, H-14, H-15), 1.50 (s, 6H, 2-Me, 17-Me), 1.31 (s, 3H, 13-Me), 1.18 (s, 3H, 2-Me); ¹³C NMR (100 MHz, CDCl₃): δ 196.27 (Cq, C-10), 193.78 (Cq, C-5), 167.68 (Cq, C-6), 164.73 (Cq, C-8), 142.85 (Cq, C-13), 135.16 (Cq, C-9a), 131.76 (Cq, C-17), 123.67 (CH, C-16), 114.89, (CH, C-12), 110.20 (Cq, C-5a), 109.57 (CH, C-7), 107.77 (CH, C-9), 83.51 (Cq, C-10a), 78.93 (Cq, C-2), 78.78 (Cq, C-4a), 58.74 (CH, C-3), 42.68 (CH₂, C-4), 41.29 (CH₂, C-11), 39.72 (CH₂, C-14), 28.74 (CH₃, 2-Me), 25.91 (CH₂, C-15), 25.63 (CH₃, 17-Me), 22.24 (CH₃, 2-Me), 17.54 (CH₃, 17-Me), 16.44 (CH₃, 13-Me); HR-MS *m*/*z* 479.1400 (calcd for C₂₅H₂₉³⁵Cl₂O₅, [M-H]⁻479.1398); RT: 71.9 min.

18-hydroxynapyradiomycin A1 (2):

Orange oil (5.04 mg); UV λ_{max} (nm): 197.7, 252.4, 361.3; IR NaCl ν_{max} (cm⁻¹): 3100, 1615.34, 1259.18, 757.79; ¹H NMR (400 MHz, CDCl₃): δ 11.98 (s, 1H, 6-OH), 7.13 (br s, 1H, H-9), 6.71 (br s, 1H, H-7), 5.28 (m, 1H, H-16), 4.90 (t, 1H, *J*= 7.7 Hz, H-12), 4.47 (m, 1H, H-3), 4.19 (d, 1H, *J*= 12.7 Hz, 17-CH₂OH), 4.09 (d, 1H, *J*= 12.7 Hz, 17-CH₂OH), 2.73 (m, 1H, H-11), 2.52 (m, 2H, H-4, H11), 2.41 (m, 1H, H-4), 1.89 (m, 4H, H-14, H-15), 1.64 (s, 3H, 17-Me), 1.50 (s, 3H, 2-Me), 1.23 (s, 6H, 2-Me,13-Me); ¹³C NMR (100 MHz, CDCl₃): δ 194.68 (Cq, C-10), 193.72 (Cq, C-5), 165.28 (Cq, C-8), 165.08 (Cq, C-6), 139.70 (Cq, C-13), 134.80 (Cq, C-9a), 133.69 (Cq, C-17), 126.69 (CH, C-16), 116.87 (CH, C-12), 109.47 (CH, C-7), 108.9 (Cq, C-5a), 108.20 (CH, C-9), 84.46 (Cq, C-10a), 79.07 (Cq, C-4a), 78.86 (Cq, C-2), 69.10 (CH₂, 17-CH₂OH), 58.74 (CH, C-3), 42.41 (CH₂, C-4), 40.48 (CH₂, C-11), 38.67 (CH₂, C-14), 29.08 (CH₃, 2-Me), 24.81 (CH₂, C-15), 22.22 (CH₃, 2-Me), 15.73 (CH₃, 13-Me), 13.78 (CH₃, 17-Me); HR-MS *m*/*z* 495.1349 (calcd for C₂₅H₂₉³⁵Cl₂O₆, [M-H]⁻495.1347); RT: 36.5 min.

Napyradiomycin SF2415B3 (3):

Orange oil (6.80 mg); UV λ_{max} (nm): 196.2, 263.9, 323.3; IR NaCl ν_{max} (cm⁻¹): 3293.88, 1698.70, 1608.31, 1433.37, 2981.60, 2927.53, 757.16; ¹H NMR (400 MHz, CDCl₃): δ 12.90 (s, 1H, 6-OH), 7.27 (s, 1H, H-9), 5.03 (br s, 1H, H-16), 4.89 (t, 1H, *J*= 8.1 Hz, H-12), 4.42 (dd, 1H, *J*= 11.3, 4.4 Hz, H-3), 2,70 (br d, 2H *J*= 8.1 Hz, H-11), 2.46 (m, 2H, H-4), 2.23 (s, 3H, 7-Me), 1.70 (s, 3H, 17-Me), 1.64 (m, 4H, H-14, H-15), 1.59 (s, 3H, 17-Me), 1.55 (s, 3H, 2-Me), 1.34 (s, 3H, 13-Me), 1.09 (s, 3H, 2-Me); HR-MS *m*/z 493.1548 (calcd for C₂₆H₃₂³⁵Cl₂O₅, [M-H]⁻, 493.1549); **R**_T: 37.6 min.

Napyradiomycin A2 (4):

Orange oil (11.36 mg); $[\alpha]_D$ –19 (*c* 0.42, CHCl₃); UV λ_{max} (nm): 197.9, 251.8, 361.1; IR NaCl ν_{max} (cm⁻¹): 3300, 1615.34, 757.79, 1386.13, 1371.64; ¹H NMR (400 MHz, CDCl₃): δ 11.94 (s, 1H, 6-OH), 7.32 (d, 1H, *J*= 1.6 Hz, H-9), 6.75 (br s, 1H, H-7), 4.96 (s, 1H, H-18a), 4.87 (s, 1H, H-18b), 4.76 (t, 1H, *J*= 7,8 Hz, H-12), 4.45 (dd, 1H, *J*= 11.8 Hz, *J*= 3.8 Hz, H-3), 4.03 (t, 1H, *J*= 6.4 Hz, H-16), 2.81 (m, 1H, H-11), 2.48 (m, 3H, H-4, H-11), 1.82 (t, 2H, *J*= 7.4 Hz, H-14), 1.71 (s, 3H, 17-Me), 1.51 (s, 3H, 2-Me), 1.35 (s, 3H, 13-Me), 1.34 (m, 2H, H-15), 1.19 (s, 3H, 2-Me); ¹³C NMR (100 MHz, CDCl₃): δ 196.13 (qC, C-10), 193.70 (qC, C-5), 165.24 (qC, C-6, C-8), 146.46 (qC, C-17), 141.54 (qC, C-13), 134.76 (qC, C-9a), 116.52 (CH, C-12), 111.97 (CH₂, C-18), 110.16 (CH, C-7), 109.39 (qC, C-5a), 108.52 (CH, C-9), 84.30 (qC, C-10a), 79.26 (qC, C-2), 79.10 (qC, C-4a), 75.39 (CH, C-16), 58.77 (CH, C-3), 42.69 (CH₂, C-4), 40.22 (CH₂, C-11), 35.86 (CH₂, C-14), 31.85 (CH₂, C-15), 29.05 (CH₃, 2-Me), 22.38 (CH₃, 2-Me), 17.88 (CH₃, 17-Me), 16.11 (CH₃, 13-Me); HR-MS *m*/*z* 495.1346 (calcd for C₂₅H₂₉³⁵Cl₂O₆, [M-H]⁻, 495.1347; Rr: 40.3 min.

16-oxonapyradiomycin A2 (5):

Orange oil (1.67 mg); UV λ_{max} (nm): 198.0, 234.48, 361.5; IR NaCl ν_{max} (cm⁻¹): 3400, 2980.84, 2928.02, 1615.54, 1257.31, 758.11; ¹H NMR (400 MHz, CDCl₃): δ 11.88 (s, 1H, 6-OH), 9.37 (s, 1H, 8-OH), 7.10 (s, 1H, H-9), 6.73 (s, 1H, H-7), 6.41 (s, 1H, H-18), 5.79 (s, 1H, H-18), 4.84 (t, 1H, *J*=7.2 Hz, H-12), 4,43 (dd, 1H, *J*=11.7, 4.5 Hz, H-3), 2,68 (br d, 2H *J*= 8.2 Hz, H-11), 2.55 (m, 2H, H-4), 2.40 (m, 2H, H-15),

1.97 (m, 2H, H-14), 1.67 (s, 3H, 17-Me), 1.50 (s, 3H, 2-Me), 1.37 (s, 3H, 13-Me), 1.19 (s, 3H, 2-Me); **HR-MS** *m*/*z* 493.1197 (calcd for C₂₅H₂₇³⁵Cl₂O₆, [M-H]⁻, 493.1190), **R**т: 54.4 min.

4-dehydro-4a-dechloro-16-oxonapyradiomycin A2 (6):

Orange oil (1.67 mg); **UV** *λ_{max}* (**nm**): 198.0, 234.48, 361.5; **IV NaCl** *ν_{max}* (**cm**⁻¹): 3400, 2980.84, 2928.02, 1615.54, 1257.31, 758.11; ¹H **NMR** (400 MHz, CDCl₃): δ 11.83 (s, 1H, 6-OH), 7.20 (s, 1H, H-9), 7.10 (s, 1H), 6.70 (s, 1H, H-7), 6.40 (br s, 1H, H-4), 6.38 (s, 1H, H-18), 5.90 (s, 1H, H-18), 4.73 (t, 1H, *J*=7.5 Hz, H-12), 4.40 (br s, 1H, H-3), 2.75 (dd, 2H, *J*= 14.2, 7.5 Hz, H-12), 2.48 (m, 2H, H-15), 2,15 (m, 2H, H-14), 1.84 (s, 3H, 17-Me), 1.50 (s, 3H, 2-Me), 1.34 (s, 3H, 13-Me), 1.18 (s, 3H, 2-Me); **HR-MS** *m*/*z* 457.1429 (calcd for C₂₅H₂₆³⁵ClO₆, [M-H]⁻, 457.1423); **R**_T: 54.4 min.

4-dehydro-4a-dechloro-16-oxo napyradiomycin SF2415B3 (7):

Orange oil (6.80 mg); UV λ_{max} (nm): 196.2, 263.9, 323.3; IR NaCl ν_{max} (cm⁻¹): 3293.88, 1698.70, 1608.31, 1433.37, 2981.60, 2927.53, 757.16; ¹H NMR (400 MHz, CDCl₃): δ 12.14 (s, 1H, 6-OH), 7.23 (s, 1H, H-9), 6.92 (d, 1H, *J*= 1.6 Hz, H-4), 5.01 (br s, 1H, H-16), 4.71 (t, 1H, *J*= 8.0 Hz, H-12), 4.39 (d, 1H, *J*= 1.6 Hz, H-3), 2.22 (s, 3H, 7-Me), 1.70 (s, 3H, 17-Me), 1.64 (m, 4H, H-14, H-15), 1.59 (s, 3H, 17-Me), 1.55 (s, 3H, 2-Me), 1.33 (s, 3H, 13-Me), 1.18 (s, 3H, 2-Me); HR-MS *m*/*z* 457.18 (calcd for C₂₆H₃₁³⁵ClO₅, [M-H]⁻, 457.1782); **R**_T: 37.6 min.

Napyradiomycin B3 (8):

Orange oil (5.21 mg); UV λ_{max} (nm): 196.1, 252.2, 357.6; IV NaCl ν_{max} (cm⁻¹): 3321.45, 2933.19, 2980.36, 1703.09, 1619.64, 1260.41, 756.03; ¹H NMR (400 MHz, CDCl₃): δ 12.04 (s, 1H, 6-OH), 7.14 (d, 1H, *J*= 1.7 Hz, H-9), 6.74 (br s, 1H, H-7), 4.78 (br s, 1H, 13-CH₂), 4.76 (br s, 1H, 13-CH₂), 4.45 (dd, 1H, *J*= 11.1, 3.9 Hz, H-3), 4.06 (dd, 1H, *J*= 10.8, 4.1 Hz, H-16), 2.66 (dd, 1H, *J*= 15.2, 8.6 Hz, H-12), 2.52 (dd, 2H, *J*= 13.9, 3.9 Hz, H-4), 2.20 (m, 2H, H-14, H-15), 2.04 (m, 1H, H-11), 1.93 (m, 2H, H-14, H-15), 1.61 (br d, 2H, *J*= 15 Hz, H-11), 1.37 (s, 3H, 2-Me), 1.19 (s, 3H, 2-Me), 0.72 (s, 3H, 17-Me), 0.66 (s, 3H, 17-Me); ¹³C NMR (100 MHz, CDCl₃): δ 195.05 (qC, C-10), 193.57 (qC, C-5), 165.58 (qC, C-8), 163.83 (qC, C-6), 145.70 (qC, C-13), 135.16 (qC, C-9a), 110.35 (CH₂, 13-CH₂), 109.58 (qC, C-5a), 109.17 (CH, C-7), 108.64 (CH, C-9), 84.36 (qC, C-10a), 81.01 (qC, C-2), 78.91 (qC, C-4a), 66.85 (CH, C-16), 58.87 (CH, C-3), 45.84 (CH, C-12), 42.81 (CH₂, C-4), 41.94 (qC, C-17), 37.44 (CH₂, C-14), 36.03 (CH₂, C-15), 35.47 (CH₂, C-11), 29.09 (CH₃, 2-Me), 27.92 (CH₃, 17-Me), 22.55 (CH₃, 2-Me), 16.45 (CH₃, 17-Me); HR-MS *m*/z 557.0503 (calcd for C₂₅H₂₈⁷⁹Br³⁵Cl₂O₅, [M-H]-, 557.0503); **R**T: 81.5 min.

Napyradiomycin A80915A (9):

Orange oil (7.40 mg); UV λ_{max} (nm): 193.2, 258.6, 314.6; IR NaCl ν_{max} (cm⁻¹): 3329.40, 1696.48, 1605.55, 1442.64, 2977.05, 2931.59, 760.67; ¹H NMR (400 MHz, CDCl₃): δ 12.90 (s, 1H, 6-OH), 7.20 (s, 1H, H-9), 4.82 (br s, 1H, 13-CH₂), 4.44 (dd, 1H, *J*= 11.2, 4.0 Hz, H-3), 4.31 (br s, 1H, 13-CH₂), 3.83 (dd, 1H, *J*= 11.4, 4.2 Hz, H-16), 2.66 (dd,1H, *J*= 15.5, 8.5 Hz, H-12), 2.52 (dd, 2H, *J*= 14.0, 3,9 Hz, H-4), 2,33 (m, 2H, H-14, H-15), 2.24 (br s, 3H, 7-Me), 1.90 (m, 1H, H-11), 1.75 (m, 2H, H-14, H-15), 1.61 (br d, 2H, *J*= 15 Hz, H-11), 1.33 (s, 3H, 2-Me), 1.19 (s, 3H, 2-Me), 1.05 (s, 3H, 17-Me), 0.63 (s, 3H, 17-Me); HR-MS *m*/z 527.1170 (calcd for C₂₆H₃₁³⁵Cl₃O₅, [M-H]⁻, 527.1164); **R**⁻ 30.6 min.

Napyradiomycin A80915C (10):

Orange oil (13.2 mg); UV λ_{max} (nm): 194.9, 264.6, 326.6; IV NaCl ν_{max} (cm⁻¹): 3358.92, 1701.91, 1631.85, 1600.32, 1449.68, 2977.07, 2924.52, 756.05; ¹H NMR (400 MHz, CDCl₃): δ 12.28 (s, 1H, 6-OH), 10.50 (s, 1H, 8-OH), 7.90 (s, 1H, H-9), 6.52 (s, 1H, 13-OH), 4.58 (dd, 1H, *J*= 11.9, 3.5 Hz, H-3), 3.44 (dd, 1H, *J*= 12.2, 3.5 Hz, H-16), 2.64 (dd, 1H, *J*= 14.2, 3.8 Hz, H-4), 2.51 (m, 1H, H-4), 2.51 (m, 1H, H-11), 2.23 (s, 3H, 7-Me), 1.94 (m, 2H, H-14, H-15), 1.78 (m, 1H, H-15), 1.59 (m, 1H, H-11), 1.44 (m,

2H, H-112, H14), 1.57 (s, 3H, 2-Me), 1.37 (s, 3H, 2-Me), 1.33 (s, 3H, 13-Me), 0.76 (s, 3H, 17-Me), 0.42 (s, 3H, 17-Me); ¹³C NMR (100 MHz, CDCl₃): δ 192.64 (qC, C-5), 190.96 (qC, C-10), 164.31 (qC, C-8), 163.33 (qC, C-6), 131.76 (qC, C-9a), 109.58 (qC, C-5a), 120.38 (qC, C-7), 108.65 (CH, C-9), 85.52 (qC, C-10a), 81.52 (qC, C-2), 80.36 (qC, C-4a), 72.24 (qC, C-13), 71.02 (CH, C-16), 57.90 (CH, C-3), 52.14 (CH, C-12), 42.08 (CH₂, C-4), 40.79 (CH₂, C-14), 40.54 (qC, C-17), 38.20 (CH₂, C-11), 29.83 (CH₂, C-15), 28.51 (CH₃, 2-Me), 28.51 (CH₃, 17-Me), 24.38 (CH₃, 13-Me), 22.97 (CH₃, 2-Me), 15.70 (CH₃, 17-Me), 8.43 (CH₃, 7-Me); **HR-MS** *m*/*z* 545.1270 (calcd for C₂₆H₃₃³⁵Cl₃O₆, [M-H]⁻, 545.1270); **R**_T: 41.1 min.

4-dehydro-4a-dechloro-16-oxonapyradiomycin B3 (11):

Orange oil (5.21 mg); **UV** *λ_{max}* (nm): 196.1, 252.2, 357.6; **IV** NaCl *ν_{max}* (cm⁻¹): 243321.45, 2933.19, 2980.36, 1703.09, 1619.64, 1260.41, 756.03; ¹H NMR (400 MHz, CDCl₃): δ 12.58 (s, 6-OH), 7.13 (br s, 1H, H-9), 6.87 (d, 1H, 1.7 Hz, H-4), 6,71 (br s, 1H, H-7), 4.82 (br s, 1H, 13-CH₂), 4.46 (d, 1H, *J*= 1.8 Hz, H-3), 4,30 (br s, 1H, 13-CH₂), 4.01 (dd, 1H, *J*= 10.6, 3.6 Hz, H-16), 2.34 (m, 1H, H-12), 2,20 (m, 2H, H-14, H-15), 2.04 (m, 1H, H-11), 1.93 (m, 2H, H-14, H-15), 1.61 (br d, 2H, *J*= 15 Hz, H-11), 1.53 (s, 3H, 2-Me), 1.08 (s, 3H, 17-Me), 1.07 (s, 3H, 2-Me), 0.62 (s, 3H, 2-Me); ¹³C NMR (100 MHz, CDCl₃): δ 194.06 (qC, C-10), 188.52 (qC, C-5), 165.83 (qC, C-8), 164.36 (qC, C-6), 145.34 (qC, C-13), 137.02 (CH, C-4), 136.90 (qC, C-4a), 135.79 (qC, C-9a), 111.64 (qC, C-5a), 109.58 (CH₂, 13-CH₂), 109.17 (CH, C-7), 108.49 (CH, C-9), 82.39 (qC, C-10a), 76.66 (qC, C-2), 66.43 (CH, C-16), 59.56 (CH, C-3), 48.07 (CH, C-12), 42.18 (qC, C-17), 37.61 (CH₂, C-14), 36.03 (CH₂, C-11), 35.99 (CH₂, C-15), 28.45 (CH₃, 17-Me), 27.25 (CH₃, 2-Me), 20.38 (CH₃, 2-Me), 16.60 (CH₃, 17-Me); HR-MS *m*/z 521.0738 (calcd for C₂₅H₂₇⁷⁹Br³⁵ClO₅, [M-H]⁻, 521.0736); **RT:** 81.5 min.

4-dehydro-4a-dechloro-16-oxonapyradiomycin A80915A (12):

Orange oil (7.40 mg); UV λ_{max} (nm): 193.2, 258.6, 314.6; IR NaCl ν_{max} (cm⁻¹): 3329.40, 1696.48, 1605.55, 1442.64, 2977.05, 2931.59, 760.67; ¹H NMR (400 MHz, CDCl₃): δ 12.36 (s, 6-OH), 7.18 (s, 1H, H-9), 6.86 (d, 1H, 1.6 Hz, H-4), 4.78 (br s, 1H, 13-CH₂), 4.47 (d, 1H, *J*= 1.3 Hz, H-3), 3.86 (br s, 1H, 13-CH₂), 3.73 (dd, 1H, *J*= 11.6, 3.9 Hz, H-16), 2.33 (m, 1H, H-12), 2.24 (br s, 3H, 7-Me), 2,00 (m, 2H, H-14, H-15), 1.90 (m, 1H, H-11), 1.75 (m, 2H, H-14, H-15), 1.61 (br d, 2H, *J*= 15 Hz, H-11), 1.53 (s, 3H, 2-Me), 1.08 (s, 3H, 17-Me), 1.07 (s, 3H, 2-Me), 0.62 (s, 3H, 2-Me); HR-MS *m*/z 491.23 (calcd for C₂₆H₃₀³⁵Cl₂O₅, [M-H]⁻, 491.1398); **R**T: 30.6 min.

3. In silico environmental toxicity assessment for approved drugs and biocides

	Approved drugs						
Toxicity end points for consensus models	S1 ^a	S 2	S 3	S 4	S5	S6	S7
Fathead minnow 96 hour LC50 (mg/L)	0.26	1.87	0.96	0.22 ^d	0.88	0.0117	0.22
Daphnia magna 48 hour LC50 (mg/L)	15.80	21.03	8.74	10.35	4.40	0.72	7.73
Tetrahymena pyriformis 48 hour IGC50 (mg/L)	3.14	22.03	2.97	14.00 ^d	13.49 ^d	1.20 ^d	1.71

Table S1. Toxicity end point predictions for seven Prestwick approved drugs.

Oral rat LD50 (mg/kg) R phrases, danger symbol, ATE category Bioconcentration factor	205.85 N, R50, 3 4.87	1127.76 N R50, 4 3.94	242.69 N, R50, 3 52.94 ^d	438.20d N, R50, 4 6.82 ^d	186.97 N, R50, 3 61.52	1.67 N, R50, 1 67.81	396.16 N, R50, 4 21.56
Developmental toxicity	0.45; DNT ^b	0.75; DT ^ь	0.78; DT ^b	1.01; DT ^b	0.87; DT ^b	0.90; DT ^b	0.52; DT ^b
Ames mutagenicity	0.17; MN ^c	0.22; MN ^c	0.07; MN ^c	0.16; MN ^c	0.26; MN ^{c,e}	0.01; MN ^c	0.07; MN ^c

S1 – Bimatoprost, topical medication used for controlling the progression of glaucoma or ocular hypertension, **S2** – Alfuzosin, nonselective alpha-1 adrenergic antagonist used in the therapy of benign prostatic hypertrophy, **S3** – Lovastatin is a fungal metabolite isolated from cultures of *Aspergillus terreus* and is a potent anticholesteremic agent, **S4** – Antimycin A is an antibiotic substance produced by *Streptomyces* species, **S5** – Oxethazaine is an anesthetic, **S6** – Calcipotriene is a synthetic derivative of calcitriol or Vitamin D used for the treatment of moderate plaque psoriasis in adults, **S7** – Latanoprost is a prostaglandin F2alpha analogue and a prostanoid selective FP receptor agonist with an ocular hypertensive effect; ^b DNT - Developmental Non-Toxicant and DT - Developmental Toxicant; ^c Mutagenicity Negative; ^d Predicted by the Nearest Neighbor model, the other models are unable to predict this end point; ^e this compound is in the training set of the mutagenicity model.

Table S2. Toxicity end point predictions for two antifouling approved drugs.

Toxicity end points for	Ivermectin B1b	Ivermectin B1a	
consensus models	(S8)	(S9)	
fathead minnow 96 hour	0.0541	0 00176a	
LC50 (mg/L)	0.0341	0.00170-	
Daphnia magna 48 hour	12 01	15.81	
LC50 (mg/L)	12.91	15.01	
Tetrahymena pyriformis	10 77a	75 78	
48 hour IGC50 (mg/L)	10.77	73.76	
Oral rat LD50 (mg/kg)	29.69	30.31	
R phrases, danger	N, R50,	N, R50,	
symbol, ATE category	2	2	
Bioconcentration factor	1.99	2.20	
Developmental toxicity	0.44; DNT ^b	0.50; DNT ^b	
Ames mutagenicity	0.13; MN ^c	0.25; MN ^c	

^a Predicted by the Nearest Neighbor model, the other models are unable to predict this end point; ^b DNT - Developmental Non-Toxicant; ^c Mutagenicity Negative.

Table S3. Aquatic toxicity, environmental fate data and classification of copper and arsenic, experimental data (Tisler and Zagorc-Koncan, 2003).

Toxicity end points	Copper	Arsenic
Aquatic toxicity Fish Orcorhynchus mykiss	0.48	15.3
96 hour LC50 (mg/L)		
Aquatic toxicity Daphnia magna EC50	0.030	2.5

48 hour (mg/L)		
Aquatic toxicity Alga Scenedesmus quadricauda 72 hour	0.18	34.7
IC50 (mg/L)		
Chronic toxicity	0.015	1.85
Daphnia magna 21 day NOEC (mg/L)		
Acute toxicity ^a Oral rat/rabit LD ₅₀ (mg/kg)	140	12
ATE category	3	2
Biodegration	Irrelevant	Irrelevant
R phrases, danger symbol	R50/53, N	R50/53, N

^a Acros Organics safety data sheet.

References

- Wu, Z.C.; Li, S.M.; Li, J.; Chen, Y.C.; Saurav, K.; Zhang, Q.B.; Zhang, H.B.; Zhang, W.J.; Zhang, W.M.; Zhang, S., et al. Antibacterial and Cytotoxic New Napyradiomycins from the Marine-Derived Streptomyces sp SCSIO 10428. *Marine Drugs* 2013, *11*, 2113-2125, doi:10.3390/md11062113.
- 2. Shiomi, K.; Nakamura, H.; Iinuma, H.; Naganawa, H.; Isshiki, K.; Takeuchi, T.; Umezawa, H. Structures of New Antibiotics Napyradiomycins. *Journal of Antibiotics* **1986**, *39*, 494-501.
- 3. Motohashi, K.; Sue, M.; Furihata, K.; Ito, S.; Seto, H. Terpenoids produced by actinomycetes: Napyradiomycins from Streptomyces antimycoticus NT17. *Journal of Natural Products* **2008**, *71*, 595-601, doi:10.1021/np070575a.
- 4. Gomi, S.; Ohuchi, S.; Sasaki, T.; Itoh, J.; Sezaki, M. Studies on New Antibiotics-SF2415 .2. The Structural Elucidation. *Journal of Antibiotics* **1987**, *40*, 740-749, doi:10.7164/antibiotics.40.740.
- 5. Shiomi, K.; Nakamura, H.; Iinuma, H.; Naganawa, H.; Takeuchi, T.; Umezawa, H.; Iitaka, Y. New Antibiotics Napyradiomycns A2 and B4 and Stereochemistry of Napyradiomycins. *Journal of Antibiotics* **1987**, *40*, 1213-1219.
- Cheng, Y.B.; Jensen, P.R.; Fenical, W. Cytotoxic and Antimicrobial Napyradiomycins from Two Marine-Derived Streptomyces Strains. *European Journal of Organic Chemistry* 2013, 3751-3757, doi:10.1002/ejoc.201300349.
- Fukuda, D.S.; Mynderse, J.S.; Baker, P.J.; Berry, D.M.; Boeck, L.D.; Yao, R.C.; Mertz, F.P.; Nakatsukasa, W.M.; Mabe, J.; Ott, J., et al. A80915, A New Antibiotic Complex Produced by Streptomyces aculeolatus – Discovery, Taxonomy, Fermentation, Isolation, Characterization, and Antibacterial Evaluation. *Journal of Antibiotics* 1990, 43, 623-633, doi:10.7164/antibiotics.43.623.
- 8. Soria-Mercado, I.E.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. Antibiotic terpenoid chlorodihydroquinones from a new marine actinomycete. *Journal of Natural Products* **2005**, *68*, 904-910, doi:10.1021/np058011z.
- 9. Soria-Mercado, I.E.; Jensen, P.R.; Fenical, W.; Kassel, S.; Golen, J. 3,4a-Dichloro-10a-(3-chloro-6-hydroxy-2,2,6-trimethylcyclohexylmethyl)-6 ,8-dihydroxy-2,2,7-trimethyl-3,4,4a,10a-tetrahydro-2H-benzo g chromene-5 ,10-dione. *Acta Crystallographica Section E-Crystallographic Communications* **2004**, *60*, O1627-O1629, doi:10.1107/s1600536804020094.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).