New Linear Precursors of cIDPR Derivatives as Stable

Analogs of cADPR: A Potent Second Messenger with Ca²⁺-

Modulating Activity Isolated from Sea Urchin Eggs

Stefano D'Errico ^{1,2}, Emy Basso ^{3,4}, Andrea Patrizia Falanga ⁵, Maria Marzano ¹, Tullio Pozzan ^{3,4,6}, Vincenzo Piccialli ⁷, Gennaro Piccialli ^{1,2}, Giorgia Oliviero ^{5,*}and Nicola Borbone ¹

- ¹ Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy
- ² ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, 20126 Milano, Italy
- ³ Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biomediche, Istituto di Neuroscienze (Sezione di Padova), viale Giuseppe Colombo 3, 35131 Padova, Italy
- ⁴ Dipartimento di Scienze Biomediche, Università degli Studi di Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
- ⁵ Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131 Napoli, Italy
- ⁶ Istituto Veneto di Medicina Molecolare, via Orus 2, 35129 Padova, Italy
- ⁷ Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 26, 80126 Napoli, Italy
- * Correspondence: golivier@unina.it (G.O.); Tel.: +39-081-679896

¹ H- and ³¹ P-NMR spectra of compound 8a	S 1
¹ H- and ³¹ P-NMR spectra of compound 8b	S2
¹ H- and ³¹ P-NMR spectra of compound 8c	S 3
¹ H- and ³¹ P-NMR spectra of compound 9a	S4
¹ H- and ³¹ P-NMR spectra of compound 9b	S5
¹ H- and ³¹ P-NMR spectra of compound 9c	S6
¹ H- and ³¹ P-NMR spectra of compound 10a	S 7
¹ H- and ³¹ P-NMR spectra of compound 10b	S 8
¹ H- and ³¹ P-NMR spectra of compound 10c	S 9
¹ H- and ³¹ P-NMR spectra of compound 11a	S10
¹ H- and ³¹ P-NMR spectra of compound 11b	S 11
¹ H- and ³¹ P-NMR spectra of compound 11c	S12

¹ H- and ³¹ P-NMR spectra of compound 12a	S 13	
¹ H- and ³¹ P-NMR spectra of compound 12b	S 14	
¹ H- and ³¹ P-NMR spectra of compound 12c	S15	
¹ H- and ³¹ P-NMR spectra of compound 13a	S 16	
¹ H- and ³¹ P-NMR spectra of compound 13b	S 17	
¹ H- and ³¹ P-NMR spectra of compound 13c	S 18	
¹ H- and ³¹ P-NMR spectra of compound 14a	S19	
¹ H- and ³¹ P-NMR spectra of compound 14b	S20	
¹ H- and ³¹ P-NMR spectra of compound 14c	S21	
¹ H- and ³¹ P-NMR spectra of compound 16	S22	
¹ H- and ³¹ P-NMR spectra of compound 18	S23	
¹³ C-NMR spectrum of compound 8a	S24	
¹³ C-NMR spectrum of compound 8b	S25	
¹³ C-NMR spectrum of compound 8 c	S26	
¹³ C-NMR spectrum of compound 9a	S27	
¹³ C-NMR spectrum of compound 9b	S28	
¹³ C-NMR spectrum of compound 9 c	S29	
¹³ C-NMR spectrum of compound 10a	S 30	
¹³ C-NMR spectrum of compound 10b		S 31
¹³ C-NMR spectrum of compound 10c	S32	
¹³ C-NMR spectrum of compound 11a	S 33	
¹³ C-NMR spectrum of compound 11b		S34

¹³ C-NMR spectrum of compound 11c	S35	
¹³ C-NMR spectrum of compound 12a	S36	
¹³ C-NMR spectrum of compound 12b		S37
¹³ C-NMR spectrum of compound 12c	S38	
¹³ C-NMR spectrum of compound 13a	S39	
¹³ C-NMR spectrum of compound 13b		S40
¹³ C-NMR spectrum of compound 13c	S41	
¹³ C-NMR spectrum of compound 14a	S42	
¹³ C-NMR spectrum of compound 14b		S43
¹³ C-NMR spectrum of compound 14c	S44	
¹³ C-NMR spectrum of compound 16	S45	
¹³ C-NMR spectrum of compound 18	S46	
Figure 3	S47	

Figure 3. Average area (left panel) and peak values (right panel), above the baseline, in response to 20 mM caffeine addition, or to caffeine added 5 min after the addition of 1 μ M of the indicated compound. Box size 25-75 percentile, red square: mean values, red bar: median, whiskers: standard deviation, each symbol represents an individual cell. Only cells responding to caffeine were included in this calculation. P 0.05