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Abstract: Sea anemone venom contains a complex and diverse arsenal of peptides and proteins of
pharmacological and biotechnological interest, however, only venom from a few species has been
explored from a global perspective to date. In the present study, we identified the polypeptides
present in the venom of the sea anemone Anthopleura dowii Verrill, 1869 through a transcriptomic
and proteomic analysis of the tentacles and the proteomic profile of the secreted mucus. In our
transcriptomic results, we identified 261 polypeptides related to or predicted to be secreted in the
venom, including proteases, neurotoxins that could act as either potassium (K+) or sodium (Na+)
channels inhibitors, protease inhibitors, phospholipases A2, and other polypeptides. Our proteomic
data allowed the identification of 156 polypeptides—48 exclusively identified in the mucus, 20 in
the tentacles, and 88 in both protein samples. Only 23 polypeptides identified by tandem mass
spectrometry (MS/MS) were related to the venom and 21 exclusively identified in the mucus, most
corresponding to neurotoxins and hydrolases. Our data contribute to the knowledge of evolutionary
and venomic analyses of cnidarians, particularly of sea anemones.
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1. Introduction

Sea anemones are among the oldest animals with the ability to produce venom, which is used
in defense, depredation, and intra-specific competition [1,2]. Unlike other venomous animals, sea
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anemones concentrate their venom in structures called cnidae, distributed across the different regions
of the polyp (tentacles, acrorhagi, actinopharynx, column, mesenterial filaments), but with major
abundances in the tentacles [3–5]. Among the polypeptides there are neurotoxins that block either
sodium (Na+) or potassium (K+) channels, type A2 phospholipases, metalloproteases, pore-forming
proteins, and protease inhibitors [1,4,6,7]. Neurotoxins can modify or block the Na+ and K+ channels,
respectively, resulting in the immobilization of prey, which could be useful for the study and treatment
of nervous system channelopathies [8,9]. The most frequently studied sea anemone toxin is the ShK
toxin from Stichodactyla helianthus [10]. This peptide has the ability to block the Kv1.3 channels of T
lymphocytes, inhibiting their activation and therefore acting as an immunosuppressant [11,12]. Other
toxins have shown activity on pain-related channels, such as the first sea anemone toxin specific
for the HERG channel (APETx1), toxin from sea anemone Anthopleura elegantissima, which inhibits
the acid-sensing ionic channel 3 (ASIC3), an acid pain sensor, and participates in inflammatory
pathways [13,14]. The analgesic polypeptides 1-3 (APHC1-3) from sea anemone Heteractis crispa inhibit
the pain vanilloid receptor (TRPV1), which is involved in conditions such as peripheral neuropathic
pain, epilepsy and cancer pain [15–17].

Phospholipases (PLA) participate in diverse processes such as cell membrane metabolism, dietary
lipid catabolism, and inflammatory processes [6]. PLA2 in venom has been associated with a variety
of pharmacological activities with neurotoxic, hypotensive, proinflammatory, platelet aggregation,
hemolytic, bactericidal, and myotoxic effects [18]. Protease inhibitors are a group of peptides and
proteins that have potential medical applications in cardiovascular, neurodegenerative, inflammatory,
and even immunological diseases, based on the control of proteolysis [19,20]. Several peptides with
protease inhibitory activity have been isolated from the mucus and extracts of the tentacles, acrorhagi,
and the total body of sea anemones [21].

The omics techniques, both proteomic and transcriptomic, have enabled further exploration of
the components of sea anemone venom from a few species [22–27], as well as in another venomous
animal species (scorpion, spider, conus snail, snake) [28–31]. Transcriptomic methods have been used
to investigate the differential expression of components of venom among tissues or certain stages
of development in a particular species of sea anemone [22,32–34]. In addition, they can be used
to identify components poorly represented in the venom, which cannot be identified by proteomic
and other methods requiring large sample concentrations. The amount of material necessary for
these studies is minimal and sometimes does not require the organism to be sacrificed. Proteomic
analyses provide information on the identification and quantification of the repertoire of overall
proteins of different anatomical regions or even secretions (mucus) of a sea anemone. The proteomic
profiles of secretions and cnidae isolated from sea anemones have increased the knowledge of the
protein composition and toxins present in their venom [23,35]. Moreover, these kinds of analyses
have identified the most representative components in mucus under stress conditions [24,27,36].
Transcriptomics and proteomics are both methods with limitations (e.g., transcriptions expression does
not identify regulatory processes or post-transcriptional modifications) [37]. Proteomic techniques
do not have the sensitivity to detect low abundant proteins [38]. However, transcriptomic–proteomic
integrative analyses enrich the biological information of organisms. Only two studies of sea anemones
have analyzed the transcriptome and proteome simultaneously [23,39]; this approach resulted in the
discovery of sequences potentially representing new unidentified families of toxins in Stichodactyla
haddoni, a species previously studied for a long time [23]. By using tandem mass spectrometry (MS/MS),
it is possible to identify part of a protein by de novo sequencing, but if the protein has not been
previously described, it is not possible to identify it correctly. Identification of the whole protein can be
performed only if the transcriptome is available. The combined use of transcriptome and proteome is a
powerful set of techniques for protein de novo identification.

In this work, we explored the venom of the sea anemone Anthopleura dowii Verrill, 1869 through
transcriptomic and proteomic analyses of the tentacle and the mucus proteome. Although partial
characterization of the venom from sea anemones has been reported, we are the first to report the
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transcriptome–proteome profiles of A. dowii. This species belongs to one of the most studied genera
of sea anemones and lives in shallow waters along the Pacific coast from México to Panama. Only
one study about the components of its venom has been completed using a total body extract [40].
The transcriptomic analysis and characterization of some toxins (pore forming toxins, Na+ and K+

voltage-gated channel toxins, protease inhibitors) of the genus Anthopleura have been reported [41–43].
Our results show a set of transcripts and proteomic data that reveal the presence of previously
unreported diversity of polypeptides present in A. dowii, such as neurotoxins that could act on Na+

or K+ channels, protease inhibitors, cytotoxic components, phospholipases A2, proteases, the CAP
superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins), lectins,
and several hydrolases. Our results show the complexity of the polypeptides present in the venom of
A. dowii and the versatility of the uses that these compounds could have in the pharmaceutical industry.

2. Results and Discussion

2.1. Venom Components Identified in the Transcriptome of the Tentacles of A. dowii

The sequencing and assembly of the tentacle transcriptome of the sea anemone A. dowii was
generated and subsequently deposited at the National Center for Biotechnology Information (NCBI)
database (BioProject: PRJNA329297, and SRA accession: SRP078992) [44]. We made the de novo
annotation of 62,880 sequence transcripts, with lengths between 227 and 15,115 bp. A total of 35,832
transcripts were classified in three categories, corresponding to the Gene Onthology (GO) database
using the program Blast2GO and the UniProt and RefSeq databases (Figure 1A): biological processes
(37.1%), cellular components (19.4%), and molecular function (51.6%). Our results show that most of
the transcripts were associated with biological processes (metabolic and cellular). Regarding molecular
function, the transcripts were mainly related to catalytic and binding activities, while in terms of cellular
components, most were classified as components from part of the cell or organelles, indicating that a
greater number of transcripts are related to intracellular functions (Figure 1A). In order to explore the
components of the venom from the transcriptome data and to generate a database to complement our
proteomic mucus and tentacle data, we selected transcripts with higher identity with protein databases
using a protein query (BLASTP) that were linked to components of the venom in our automatically
generated annotation, and analyzed their corresponding amino acid sequences in detail one by one.

A total of 261 transcripts were identified and classified into 25 groups according to probable
functions, which were estimated based on their sequence homology at the amino acid level with
peptides and proteins from the UniprotKB databases (Figure 1B, Supplementary Table S1). Most of
the components corresponded to metalloproteases (28%), inhibitors of proteases (13%), toxins acting
on ion channels regulated by K+ (9%), proteases of serine (7%), prothrombin activators (Factor 5/8
C domain proteins) and acetylcholinesterases (at 6% each), type A2 PLA and members of the CAP
superfamily (5% each), and glycosidases (4%) (Figure 1B). In general, the main components identified
in the transcriptome corresponded to proteolytic enzymes. A similar trend has also been observed
in the transcriptomes of other sea anemones [23,25], other cnidarians and even in other phyla of
venomous animals [45–48].
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Figure 1. The transcriptome of Anthopleura dowii Verrill, 1869: (A) proportion and number of contigs 
assigned to the Gene Ontology (GO) term categories; (B) putative toxins identified in the 
transcriptome by the Protein Basic Local Alignment Search Tool (BLASTP) search against UniProtKB. 
The chart represents the relative abundance of different transcripts identified as venom components. 
The number of homologues identified for each putative toxin is shown in parentheses after the family 
name. 

2.2. Venom Components Identified in the Proteome of the Tentacle and Mucus of A. dowii. 

Proteins obtained from the mucus and tentacles of the sea anemone were processed by triplicate 
using LC-MS/MS to obtain information on the venom components. The protein complexity of both 
samples was analyzed qualitatively in a 12% SDS-PAGE gel [49]. The electrophoretic profile of the 
tentacle and mucus samples showed polypeptides from 10 to more than 250 kDa (Figures 2A).  

Figure 1. The transcriptome of Anthopleura dowii Verrill, 1869: (A) proportion and number of contigs
assigned to the Gene Ontology (GO) term categories; (B) putative toxins identified in the transcriptome
by the Protein Basic Local Alignment Search Tool (BLASTP) search against UniProtKB. The chart
represents the relative abundance of different transcripts identified as venom components. The number
of homologues identified for each putative toxin is shown in parentheses after the family name.

2.2. Venom Components Identified in the Proteome of the Tentacle and Mucus of A. dowii

Proteins obtained from the mucus and tentacles of the sea anemone were processed by triplicate
using LC-MS/MS to obtain information on the venom components. The protein complexity of both
samples was analyzed qualitatively in a 12% SDS-PAGE gel [49]. The electrophoretic profile of the
tentacle and mucus samples showed polypeptides from 10 to more than 250 kDa (Figure 2A).
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Figure 2. Protein complexity of the mucus and tentacle samples of Anthopleura dowii Verrill, 1869. (A) 
Electrophoretic profile of the mucus (M) and tentacle (T) samples analyzed with SDS-PAGE on 12% 
polyacrylamide gel. (B) Distribution of the components identified in the mucus and tentacle 
proteomes with respect to their molecular weight. (C) Venn diagram representing the distribution of 
the number of proteins identified (156 proteins) by LC-MS/MS in both biological samples. 

A total of 183,634 spectra were obtained and used for the identification of putative proteins 
related to the venom of A. dowii. A total of 141 polypeptides (6383 spectra) with molecular weights 
5–531 kDa (Figure 2B) and two or more unique peptides in their sequence were identified in at least 
two of the three mucus and tentacle samples tested (Supplementary Table S1 and Table S2). A manual 
inspection of the data was carried out by decreasing the restriction of the number of unique peptides 
identified by protein sequence to one, but only cases in which a single peptide showed high coverage 
of the identified protein were considered. This allowed us to identify a greater number of 
polypeptides with sequence similarity to neurotoxins that act on voltage-regulated sodium channels 
(Nav). The identification of these components was supported by the UniProt peptide search tool [50]. 

Finally, a total of 156 proteins identified in the database were obtained, of which 56.4% were 
identified in both the mucus and tentacle, 30.8% were present exclusively in the mucus, and 12.8% 
only in the tentacle (Figure 2C). In order to associate our proteomic data with probable biological 
activities, the 156 previously identified proteins were compared with the protein database 
functionally described by UniProt/Swiss-Prot (the manually curated section) and UniProt/ TrEMBL 
(Computer Translation of the EMBL/GenBank nucleotide sequence data) using the BLASTP tools and 
peptide search [50]. In addition, we used our transcriptomic data as a database for the identification 
of venom components. All of the identified proteins were classified based on their amino acid 
sequence similarity in the GO categories "cellular components", "biological processes", and 
"molecular functions" (Figure 3). 

Our results predicted a high proportion of the identified polypeptides being located in the 
cytoplasm, cytoskeleton, and cytosol. Several of these proteins correspond to metabolic processes, 
cell structure maintenance, signaling, and transport. A high proportion of different enzymes were 
identified in the tentacle and mucus. The highest number of proteins predicted to be localized in the 
extracellular space by secretion was identified in the mucus samples (38%). However, only 15% of all 
polypeptides identified exclusively in the mucus were related to a toxic function (Figure 3). 
Polypeptides, such as disulfide isomerase proteins, peptidyl-glycine, alpha-amidating 
monooxygenase (PAM), heat shock proteins of subfamilies 60, 70, and 90, peroxirredoxins, catalases, 

Figure 2. Protein complexity of the mucus and tentacle samples of Anthopleura dowii Verrill, 1869. (A)
Electrophoretic profile of the mucus (M) and tentacle (T) samples analyzed with SDS-PAGE on 12%
polyacrylamide gel. (B) Distribution of the components identified in the mucus and tentacle proteomes
with respect to their molecular weight. (C) Venn diagram representing the distribution of the number
of proteins identified (156 proteins) by LC-MS/MS in both biological samples.

A total of 183,634 spectra were obtained and used for the identification of putative proteins related
to the venom of A. dowii. A total of 141 polypeptides (6383 spectra) with molecular weights 5–531 kDa
(Figure 2B) and two or more unique peptides in their sequence were identified in at least two of the
three mucus and tentacle samples tested (Supplementary Tables S1 and S2). A manual inspection of
the data was carried out by decreasing the restriction of the number of unique peptides identified
by protein sequence to one, but only cases in which a single peptide showed high coverage of the
identified protein were considered. This allowed us to identify a greater number of polypeptides
with sequence similarity to neurotoxins that act on voltage-regulated sodium channels (Nav). The
identification of these components was supported by the UniProt peptide search tool [50].

Finally, a total of 156 proteins identified in the database were obtained, of which 56.4% were
identified in both the mucus and tentacle, 30.8% were present exclusively in the mucus, and 12.8% only
in the tentacle (Figure 2C). In order to associate our proteomic data with probable biological activities,
the 156 previously identified proteins were compared with the protein database functionally described
by UniProt/Swiss-Prot (the manually curated section) and UniProt/ TrEMBL (Computer Translation
of the EMBL/GenBank nucleotide sequence data) using the BLASTP tools and peptide search [50].
In addition, we used our transcriptomic data as a database for the identification of venom components.
All of the identified proteins were classified based on their amino acid sequence similarity in the GO
categories “cellular components”, “biological processes”, and “molecular functions” (Figure 3).

Our results predicted a high proportion of the identified polypeptides being located in the
cytoplasm, cytoskeleton, and cytosol. Several of these proteins correspond to metabolic processes,
cell structure maintenance, signaling, and transport. A high proportion of different enzymes were
identified in the tentacle and mucus. The highest number of proteins predicted to be localized in
the extracellular space by secretion was identified in the mucus samples (38%). However, only 15%
of all polypeptides identified exclusively in the mucus were related to a toxic function (Figure 3).
Polypeptides, such as disulfide isomerase proteins, peptidyl-glycine, alpha-amidating monooxygenase
(PAM), heat shock proteins of subfamilies 60, 70, and 90, peroxirredoxins, catalases, Cu-Zn superoxide
dismutase, and Cu2+ monooxygenase, have been identified in the mucus of cnidarians [27,36,45,51]
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and other venomous animals, such as snakes and wasps [52,53]. The specific functions of these
proteins in the venom are not known, but due to their ubiquitous character and their participation in
similar processes in other non-venomous organisms, they are considered "housekeeping" proteins that
participate in similar processes for many prokaryotic cells, including human cells. We identified some
of these polypeptides in the tentacle and mucus proteomes, including some that were annotated as
secreted proteins (Supplementary Table S1).
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Figure 3. Annotation of the proteins identified in the mucus and tentacles by Shotgun-proteomics.
The charts represent the relative abundance of proteins identified in the mucus (48 proteins), tentacles
(20 proteins), or in both samples (88 proteins). They are classified in the three main Gene Ontology
(GO) categories: cellular component, biological process, and molecular function. The annotation of the
proteins is based on the amino acid sequence homology with respect to the proteins annotated in the
UniProtKB database using BLASTP and the QuickGO tool.

In order to identify the venom components, we performed a selection, considering the secreted
proteins and their identification in other venomous cnidarians and non-cnidarians. Our results show
23 polypeptides related to the venom of A. dowii. Of the polypeptides identified as part of the venom,
19 were found in the mucus samples (Table 1); from these, 17 polypeptides were from the anemone Na+

channel inhibitory toxin family, the Kuniz-type/Kv2, family, protease inhibitors, chitinases, or proteases.
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Table 1. Venom components identified in the proteomes of the sea anemone mucus and tentacles.

Putative Conserved Domain Detected a Uniprot Accession b Protein Name c ID-Transcript Sample M/T d Organism % Coverage M/T e

Sea anemone sodium channel inhibitory
toxin family. Type I subfamily

P0DL52 Delta-actitoxin-Avd1e 1 Unidentified M/- Anemonia viridis 17/-

P0C1F0 Delta-actitoxin-Ael1b Unidentified M/- Anthopleura
elegantissima 100/-

P0C5G1 Delta-actitoxin-Axm1f Unidentified M/- Anthopleura
xanthogrammica 45/-

P0C1F1 Delta-actitoxin-Ael1c Unidentified M/- Anthopleura
elegantissima 100/-

P01530 Delta-actitoxin-Axm1a c22149_g1 M/- Anthopleura
xanthogrammica 29/-

Venom Kunitz-type family. Sea anemone
type 2 potassium channel toxin subfamily P86862 KappaPI-actitoxin-Ael3a c14874_g1 M/- Anthopleura

elegantissima 26/-

Serpin family. Ov-serpin subfamily Q52L45 Leukocyte elastase inhibitor c27265_g1 M/- Xenopus laevis 3/-

Thyroglobulin_1 P81439 Equistatin Unidentified M/- Actinia equina 9/-

Aerolysin family P09167 Aerolysin-like Unidentified M/- Aeromonas hydrophila 1/-

Peptidase S1 family
A7RW61 Predicted protein Unidentified M/- Nematostella vectensis 5/-
A7S5Y0 Predicted protein c28983_g1 M/- Nematostella vectensis 7/-

B8V7S0 CUB and peptidase
domain-containing protein 1 Unidentified M/- Acropora millepora 3/-

Peptidase_M12A A7SQR7 Metallo-
endopeptidase Unidentified M/- Nematostella vectensis 3/-

Peptidase_ M14 T2M3L7 Carboxypeptidase A4 c39288_g1 M/- Hydra vulgaris 7/-

Glycosyl hydrolase 18 family
A0A1T4JGY1 Chitinase-C enzyme Unidentified M/- Nematostella vectensis 8/-
A0A1T4JH12 Chitinase-A enzyme Unidentified M/- Nematostella vectensis 15/-
A0A1T4JH12 Chitinase-A enzyme Unidentified M/- Nematostella vectensis 15/-

Glycosyl hydrolase 20 family A7RSQ4 Predicted protein c30078_g1_i1 M/- Nematostella vectensis 3/-

Factor 5/8 C-Domain Proteins A7RK24 Predicted protein Unidentified M/- Nematostella vectensis 6/-

Peptidase_M1 A7RUV9 Aminopeptidase Unidentified M/T Nematostella vectensis 3/3

Peptidase_M17 A7SGM8 Predicted protein c27931_g1_i1 M/T Nematostella vectensis 8/6

Peptidase_M20 A7RZC0 Predicted protein c31795_g1_i2 M/T Nematostella vectensis 11/9

Peptidase C2 family T1E719 Calpain-1 catalytic subunit-like
protein. c27362_g1_i1 M/T Crotalus horridus 5/5

a, b, c Data obtained from the UniprotKB database. d,e M = mucus, T = tentacle, M/- = only present in mucus, and M/T = present in mucus and tentacle. % coverage = amino acid residues
identified in a protein sequence that were detected by MS in the sample.
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The tentacles represent a specialized anatomical region to capture prey and defense for sea
anemones [5]. Therefore, we would expect to find toxic polypeptides in the proteome profile of
the tentacles. However, none of the polypeptides identified in the tentacles were directly related to
toxins. Two causes might explain the lack of toxins in our tentacle samples: (1) the greatest abundance
of proteins unrelated to venom in the tentacle sample which would be hindering the identification
of toxins and low abundant polypeptides by MS/MS; and (2) the tentacles might have discharged
their cnida by stress manipulations [5] before the dissection. Our method to obtain the mucus was
to stimulate the discharging of the cnida, identifying sequences of toxin polypeptides. Although
our data showed a significant amount of “housekeeping” proteins in the mucus samples and a null
identification of toxins in the tentacle proteome, our comparative strategy of protein profiles made
it possible to differentiate between the proteins that could be components of venom and those that
are not. This difference of polypeptides identified between one sample and another may also be due
to the production of mucus with a high quantity of cnidae and diversity in interspecific competition
conditions, as observed in the sea anemone Haliplanella luciae (currently Diadumene lineata) [54]. Despite
the recent technological advancements in proteomic methods, transcriptomic sequencing is more
efficient [55] and can identify gene sequences of toxins in the tentacles.

The proteomic and transcriptomic profiles allowed us to obtain the first general analysis of the
diversity of polypeptides in the tentacles and secretion of the sea anemone A. dowii. According to this
information, we predict that the venom is composed of neurotoxins, enzyme inhibitors, and several
hydrolase-type enzymes (Table 1), which are described below.

2.3. Polypeptides Related to the Venom and its Identification in the Proteome and Transcriptome of A. dowii

Here, we briefly describe the families of polypeptides directly related to the venom,
its representation in the proteome and the transcriptome, and its homology with other toxins already
described in other cnidarian and non-cnidarian organisms.

2.3.1. Sodium Voltage-Gated (NaV) Channel Toxins

Among the components with probable toxic activity, there were five polypeptides identified
exclusively in the mucus with a relationship in their amino acid sequence to members of the family of
toxins inhibiting the Na+ channel of the sea anemone, Type I subfamily (Table 1). We identified in our
transcriptome only one transcript with 100% identity with the mature toxin Delta-actitoxin-Axm1a from
Anthopleura xanthogrammica and Delta-actitoxin-Ael1b of A. elegantissima (Supplementary Figure S1E).
Both toxins bind specifically to site 3 of the Nav channels, delaying inactivation [56]. A fourteen-residue
peptide found in all of the mucus samples analyzed in this work showed 17% sequence coverage with
the Delta-actitoxin-Avd1e sequence of Anemonia viridis. This toxin has a strong effect on crustaceans
and insects (it inhibits the Nav channel of Drosophila melanogaster (DmNav1)) [57].

2.3.2. Type 2 Potassium Voltage-Gated (Kv) Channel Toxins Subfamily

Twelve transcripts encoding members of the Kunitz/Kv2 family of toxins (Supplementary Figure
S1) were identified in the tentacle transcriptome, while only one member of this family was identified
in the mucus proteome (Table 1). The precursors of this subfamily of Kv channel toxins are formed by
a signal peptide and a region of the mature protein composed of 58–60 amino acid residues, including
six Cys residues forming three disulfide bonds [6,9]. Among the discovered transcripts, five showed
an identity in the region of the mature protein with KappaPI-AITX-Ael3a from A. elegantissima, ranging
from 37.9–80.3%. This same group of transcripts was also compared to KappaPI-AITX-Avd3d from
Anemonia sulcata and showed high percentages of identity in the region of the mature protein, ranging
from 42.6–59.2%. Another bifunctional toxin within this family is KappaPI-SHTX-Shd2a from S. haddoni,
to which our transcripts also showed between 54.0%–35.1% sequence identity. Protease inhibitors have
been proposed to protect toxins from proteolytic degradation that could trigger a defense mechanism
in their prey [58]. In the case of sea anemones, it has also been proposed that the inhibitors could
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function in both defensive and offensive processes [1]. Two serine protease inhibitors homologous to
those in the snakes Walterinnesia aegyptia and Daboia russelii were also found in the transcriptome of
A. dowii (Supplementary Figure S1). The PI-AITX-Axm2a and PI-AITX-Aeq3c peptides from A. aff.
xanthogrammica and Actinia equina, respectively, have strong inhibitory activity on trypsin and plasmin.
However, they have no activity on K+ channels [43,59]. We identified three transcripts with 54.2–78.3%
sequence identity to the aforementioned toxins (Supplementary Figure S1). Three other transcripts
showed 39.3–54.1% sequence identity to the precursors of protease inhibitors isolated from snakes,
the Kunitz-type serine protease inhibitor DrKIn-II from D. russelii and the Kunitz-type serine protease
inhibitor 1 (cVamTi) from Vipera ammodytes ammodytes (Supplementary Figure S1).

2.4. Protease Inhibitors

In addition to the inhibitors belonging to the venom Kunitz-type family, whether or not they were
from the anemone type 2 Kv channel toxin subfamily, other types of inhibitors have been identified
in sea anemones, such as elastase inhibitors and inhibitors with thyroglobulin domains type 1 [21].
Inhibitors of proteases from the serpin and Equistatin-like families were also identified in the mucus
proteome and tentacle transcriptome of A. dowii (Table 1). Three transcripts corresponding to the family
of serpins serine protease inhibitors of high molecular weight (300–500 amino acids) were identified
and showed 38–41% identity to the mature protein, with members of this protein family present in the
clawed frogs Xenopus tropicalis and Xenopus laevis (Supplementary Figure S2). Equistatin is a cysteine
endopeptidase inhibitor that can be isolated from the total body extract of Ac. equina [60]. It has a
sequence of 199 amino acid residues distributed in three domains of thyroglobulin type 1 [61], that are
characterized by six conserved Cys residues and are related to the control of proteolytic degradation.
Sequence analysis comparing Equistatin with other cysteine protease inhibitors suggests that the
N-terminal domain is related to its inhibitory region, whereas the second domain is related to the
inhibition of the aspartic protease and cathepsin D [62,63]. In this study, three Equistatin homologs
were found in the transcriptome and one in the mucus proteome of A. dowii mucus proteome (Table 1
and Supplementary Figure S2): c17929_g1 only showed domains 2 and 3, c17929_g1 and c32564_g1
presented domains 1 (N-terminal domain) and 2, but domain 3 (which has an unknown function) was
incomplete. None of the transcripts showed a sequence corresponding to an identified signal peptide,
and the alignments showed low overall identity percentages, since they differed from Equistatin in the
number of amino acids (Supplementary Figure S2).

An interesting amino acid sequence obtained from a transcript showed 40% identity with a
membrane glycoprotein of 110 kDa (Supplementary Figure S2), which presented in its sequence as
multiple repeats of epidermal growth factor-like and serine-protease inhibitor-like domains. This
protein, called RECK (reversion-inducing cysteine-rich protein with Kazal motifs), has the ability to
inhibit extracellular matrix metalloproteases (MMP-9) [64]. The negative regulation of this protein by
oncogenic signals facilitates tumor invasion and metastasis. Other studies have shown that RECK can
attenuate the migration of human mesenchymal stem cells (hMSCs) by mechanisms other than tumor
cells [65]. The hMSCs are capable of differentiating into various cell types, representing promising
tools for multiple clinical applications, including the regeneration of tissues damaged by endogenous
or transplanted hMSCs.

A transcript that showed 75% identity in the region of the mature protein with PI-actitoxin-Avd5a
(an elastase inhibitor) was found in our transcriptome (Supplementary Figure S2); the residues of Cys
as well as those that form the reactive link were highly conserved. In addition, a peptide with Kazal
domain identified in the transcriptome of A. dowii showed 41.5% identity with the turripeptide LoI9.1
of the sea snail Lophiotoma olangoensis (Supplementary Figure S2).

2.5. Proteases

Among the proteases identified in the proteome of A. dowii are metalloproteases, whose activities
result from the presence of a bivalent ion, typically Zn2+. It has been proposed that the role of
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metalloproteinases in snake venom could be to facilitate the diffusion of neurotoxins through tissue
damage caused by the degradation of the extracellular matrix of the prey. The venom has even
been related to hemorrhagic, necrotic, inflammation, and tissue damage events observed in the
prey [66,67]. We identified five families of metalloproteases in the proteome of A. dowii. From those,
M12A (Astacin-like) and M14 (carboxypeptidase A) were only present in the mucus (Table 1), whereas
M1 (aminopeptidase), M17 (aminopeptidase), and M20 (dipeptidase) were present in both the mucus
and tentacles (Supplementary Table S2). Members of the M12A family have been reported in the
venom of spiders of the genus Loxosceles [68], in the jellyfish Stomolophus meleagris [69] and Chironex
fleckeri [70], and in the nematocyst content of Nematostella vectensis [35]. The A4 carboxypeptidases of
the M14 family (with predominantly digestive functions) are secreted in soluble form after proteolytic
activation, and some members of the family (M14 and M1) have been identified in the proteomes of
the cnidarians Chrysaora fuscescens and Hydra vulgaris [45,71]. We suggest that M1, M17, and M20 are
present in the mucus of A. dowii as a result of the autolysis of sea anemone cells during the process of
obtaining the mucus, but are not secreted components [35].

The metalloprotease families identified in our transcriptomic data were M2, M10A, M12A, M12B,
M13, M14, and M28; the most abundant enzymes were homologous to endothelin converters (ECE),
which belong to the M13 family (Supplementary Table S1 and Figure S3). Another important group
of transcripts were homologs of the nematocyst expressed protein 6 (NEP-6), a zinc-dependent
metalloprotease of the astacin family (M12A) identified in N. vectensis [35]. Homologs to mammalian
disintegrin and metalloproteases with thrombospondin motifs (within the M12B family) and
carboxypeptidases within the M2, M14, and M28 families were also identified in the transcriptome
(Supplementary Table S1 and Figure S3). Recently, transcripts encoding for members of the M12A
family were identified in substantial proportions in the sea anemones S. haddoni and S. helianthus [23,25].

Members of the serine proteases family (S1 family) present in snake venoms act on components of
the coagulation cascade, affecting the hemostatic system of their prey [72]. Although their role in the
venom of cnidarians has not been described in detail, their proteolytic activity could be related to the
activation of other proteases in the venom, the activation of toxin precursors, and the cleavage of proteins
from the prey with pre-digestive purposes. Three serine proteases were identified exclusively in the
mucus of A. dowii, and only one of them was identified in the transcriptome which showed similarity
to the CUB domain (C1r/C1s, Uegf, Bone morphogenetic protein 1) and peptidase domain-containing
protein 1 of the hard coral Acropora millepora (Table 1 and Supplementary Table S1). Other members of
families S1, S8, S9B, and S10 were also identified in the transcriptome (Supplementary Table S1).

Cysteine proteases were also identified in the proteomes of A. dowii. Calpains are cysteine
peptidases that act as heterodimers and are located intracellularly. We identified a protein like calpain-1
catalytic subunit in the mucus and tentacle, as well as in the transcriptome (Table S1).

2.6. Glycosyl-Hydrolases

Three members of the glycosyl-hydrolase 18 family (chitinase enzyme) and one of the
glycosyl-hydrolase 20 family (beta-N-acetylhexosaminidase activity) were found exclusively in
the mucus samples. Chitinases have been identified in wasp venom [73] and in the saliva of
cephalopods [48,74]. However, the activity of these enzymes is related to digestive processes, and
they show hemolytic activity in octopus’ saliva [74]. This could suggest that their presence in sea
anemone secretions could primarily function in the extra-oral digestion of prey, with a secondary role
in the mechanism of tissue or necrotic damage intoxication. Marine arthropods are constituents of the
diet of sea anemones [27], and thus the role of metalloproteases and chitinases could be essential for
pre-digestive purposes. No transcripts corresponding to the chitinases present in the mucus samples
were identified. Another enzyme identified in the mucus and transcriptome of A. dowii was the
beta-N-acetylhexosaminidase (Table 1 and Supplementary Figure S6). This type of protein has also
been identified in the proteome of the venom of the jellyfish Chrysaora fuscescens [45].
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2.7. Putative Venom Components Identified Exclusively in the Transcriptome of A. dowii.

RNAseq methods make it possible to identify putative toxins in cases in which it is difficult to
obtain the venom or when some toxins are poorly represented in the venom (e.g., isoforms). Using
existing information on the components of the venom of sea anemones, as well as that obtained from
our data analyses, we now describe a set of sequences of peptides and proteins with pharmacological
potential exclusively identified in the transcriptome of the tentacle of A. dowii. To reduce the potential
error that could be generated by the analysis on the homology of the transcriptome, we performed a
detailed analysis of the amino acid sequences predicted from the transcripts, using global alignments
against functionally described protein sequences from the databases (Swiss-Prot and TrEMBL) to
evaluate their percentage of global identity, rather than just local patterns. This strategy has been
implemented in previous transcriptomic studies of venomous animals [75–77]. In the following
sections, we describe these polypeptides and their homology with other toxins that have already been
experimentally evaluated.

2.7.1. Potassium Channel Toxins (KTx)

Type 1 KTx Family

Peptides belonging to the sea anemone type 1 KTx family have up to 34–37 amino acid
residues and three disulfide bonds formed by six Cys residues [1,6]. Members of this toxin
family have been characterized from the venom of sea anemones within the families Actiniidae,
Hormathiidae, Stichodactylidae, and Thalassianthidae. The most representative member of this family
is Kappa-stichotoxin-She3a (ShK), isolated from S. helianthus, which can block the activation and
proliferation of memory T lymphocytes [78,79]. In the transcriptome of A. dowii, we identified a
sequence (c23125_g1_i1) whose precursor showed a mature sequence of 36 amino acids, including six
Cys residues, which is characteristic of this Kv family of toxins. Eight residues were identified between
the second and third Cys, and thus this sequence can be classified as subtype 1b. The mature protein
region showed only 31.6% identity to the sequence of Kappa-Styicotoxin-She3a, and 83.3% identity
to the Kappa-actitoxin-Aeq4a toxins of Ac. equina (Table 2) and the Kappa-actitoxin-Avd6a from An.
sulcata (Supplementary Figure S1); these proteins inhibit the Kv1/KCNA channel [80] and block the
Kv1.2/KCNA2 channel [81], respectively.

Type 3 KTx Family

This family of toxins consists of peptides between 40 and 42 residues with three disulfide bonds.
They do not show activity on the Kv1 type channel, but they block Kv3 type channels and ether-à-go-go
channels (ERG, Kv10.1, hERG, Kv11.1). Some members of this KTx family even act on acid-sensitive ion
channels (ASIC3), which are voltage-regulated neuronal Na+ channels [9,13,82,83]. The sea anemone
type 3 KTx family contains a defensin-4 domain, suggesting potential antimicrobial activity. In addition
to its activity, this toxin family is a blocker of the Kv3.4 channel [84] and it has also shown the capacity
to decrease the cytopathic effects caused by the hepatitis virus (MHV-A59) in mouse liver cells. Another
interesting feature of this toxin family is its activity on ether-á-go-go channels, which are overexpressed
in most human tumors [8].

We identified 11 transcripts of this family in A. dowii (Supplementary Figure S1). The transcript
c29930_g1_i1 showed 71.4% identity with Pi-AITX-Ael2b from A. elegantissima (Table 2), which potently
blocks ASIC3 homotrimers and heterotrimers from the acid-sensitive ion channel containing ASIC3
(composed with isoforms of ASIC1 and ASIC2). Pi-AITX-Ael2b is in preclinical studies as a new
analgesic for the treatment of chronic inflammatory pain [85]. The transcript c30503_g2_i3 showed
52.1% identity with the DeltaKappa-AITX-Avd4b from An. sulcata (Table 2), which inhibits Kv3 type
channels (Kv3.1/KCNC1, Kv3.2/KCNC2, and Kv3.4/KCNC4) [84].
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Table 2. Putative neurotoxins identified exclusively in the transcriptome of A. dowii Verrill, 1869.

ID-Transcript Aminoacid SEQUENCE a E-value
PSI-BLAST

Protein Identity
(%) b Protein Family UniProtKB

Accession

c23125_g1_i1

MNSKLVIVFLLCAILVVSVTS
RRVRTWDDFERDQDYEEEPA
PYGKRACKDNYSAATCKDV
KKNNNCGSEKYATNCAKT

CGKC

2e-14 Kappa-actitoxin-
Avd6a (83.3)

Sea anemone type 1
potassium channel

toxin family. Type 1b
subfamily.

Q9TWG1

c29930_g1_i1

MSYQRFLFLVVVASLIATSLA
VPKDLEERGTTCSCGNTKGI
YWFFLKTCPSDRGYTGSCN

YFFGICCYPVD

1e-17 Pi-AITX-Ael2b
(71.4)

Sea anemone type 3
(BDS) potassium

channel toxin family.
P61542

c30503_g2_i5

MAAKSVLMMLAIFMALLLLANG
EEAQGEVRIKARALSCNCGKEDN
APSGDWWLWRSSCPGGYGYTS

SCNAGFGNICCLPRG

7e-06 DeltaKappa-AITX-
Avd4b (52.1)

Sea anemone type 3
(BDS) potassium

channel toxin family.
P59084

c33344_g1

MKTLVVFLVVAVIVVNA
YRIKEEYEDEMAPELERRACKKK
WNECTRDSDCCDEKGWANQ
KLQCLQQCDEGGCLEYRQCL

FHSGLQRK

3e-20 Kappa-actitoxin-
Bcs4a (72.0)

Sea anemone type 5
potassium channel

toxin family.
C0HJC4

a Amino acid sequence corresponding to the precursor, predicted from the cDNA sequence. The signal peptide
region is underlined, the propeptide is shown in cursive letters, and the mature peptide in bold. b The percentage of
identity was calculated with the LALIGN Server program, and only the region of the mature peptide was considered
in the calculation.

Type 5 Ktx Families

This family of toxins is composed of only three members: NvePTx1 from N. vectensis,
U-MTTX-Msn2a from Metridium senile, and Kappa-AITX-Bcs4a from Bunodosoma caissarum, which
has been functionally characterized. Kappa-AITX-Bcs4a inhibits the Kv channels Kv1.2/KCNA2,
Kv1.6/KCNA6, and Kv1.3/KCNA3 in human cells [86]. Only one member of this family was identified
in the transcriptome of A. dowii (Table 2). This sequence (c33344_g1) showed a 72% identity in the
region of the mature protein with the Kappa-AITX-Bcs4a peptide and the sequence of the precursor
showed a pre-pro-protein organization (Supplementary Figure S1).

2.7.2. Phospholipases A2 (PLA2)

Five percent of the transcripts that we identified as components of the venom were precursors of
probable PLA2 (Figure 1B). Three identified transcripts showed similarity to A2-AITX-Ucs2a from
Urticina crassicornis [87]. The transcript c54261_g1_i1 presented 59.0% identity to A2-AITX-Ucs2a and a
similar cysteine pattern (Table 3 and Supplementary Figure S7).

Three other transcripts showed similarity with the phospholipase A2-HRTX-Apt1a of the former
sea anemone Adamsia palliata (currently Calliactis palliata, found in both the acontia and the tentacles) [88]
and with acid phospholipase A2 D (svPLA2) of the cobra Naja sputatrix, which is classified as a Group
I member of the vertebrate PLA2s (Supplementary Figure S7). The transcript c3686_g1_i1 showed
41.9% identity with the cobra svPLA2, which has PLA2 activity and the ability to inhibit muscarinic
acetylcholine receptors (mAChR/CHRM) [89].

Interestingly, we discovered a transcript (c26312_g1) which coded for a probable PLA2, with
34.4% and 33.3% identity with members of the Group III expressed in the venomous glands of the
lizard Heloderma suspectum and the bee Xylocopa appendiculata circumvolans, respectively (Table 3 and
Supplementary Figure S7).

Another group of PLA2s identified was the group XII of secretory phospholipase A2; one transcript
showed 31.8% identity and 64.1% similarity in the region of the mature protein with PLA2s of house
mouse Mus musculus and Homo sapiens (Supplementary Figure S7). Homologs to human lysosomal
phospholipase (LPLA2) with transacylase activity and PLA2, independent of calcium, were identified,
showing 42% identity between their amino acid sequences and those corresponding to the mature
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protein [90] (Supplementary Figure S3). LPLA2 catalyzes the formation of 1-O-acyl-N-acetylsulfingosine
and the concomitant release of a lysophospholipid, is classified within Group XV of PLA2, and may be
present in lysosomes and in the extracellular region [91].

Table 3. Putative phospholipases A2 identified exclusively in the transcriptome of A. dowii Verrill, 1869.

ID-Transcript Aminoacid Sequence a E-value
PSI-BLAST

Protein Identity
(%) b Protein Family UniProtKB

Accession

c54261_g1

MMMMKKKSTTTLIVLLGMAFLVEG
LSLNNLEDDKRMNVKTGDGRAEKR
NLWQFGNMIKCATGRDAGDYNG
YGNYCGWGGSGVPVDGVDRCCQ
AHDRCYDNHDSCNPKTNYYSYSK
SGKHPSCTISCGDSTQNDQCERN
VCSCDKVAAECFARNNYNNANKH

6e-57 A2-AITX-Ucs2a
(59.0)

Phospholipase
A2 family. A7LCJ2

c3686_g1_i1

MGALKLLVLLAVVACVAC
TSLDLGKLKKKSLSKALKTQVHTRARR
SLYEFYKMITCETGRSWQDYNLYG
CFCGKGGTGTPVDALDQCCFDHD
ECYSQAAASVCPWPLQIYLDSYWH
KNCSECDASKNSACEQALCECDSK
AARCFKNNKWDPQYDDYPQEKCA

3e-22

Neutral
phospholipase
A2 muscarinic
inhibitor (41.9)

Phospholipase
A2 family.
Group I

subfamily.

Q92084

c26312_g1

MDSYVSKIFVILAVILHASLCQA
MYDWKTKTFIRKDNSKLVVPGTKW
CGKGNNAMSFDDLGEHRETDLCC
REHDHCPTYILPFQRRFGILNLYPSH
LSLCSCEMKLYNCLWNVTSHVAVAV
GRMYFNVLRVPCFHLVEKKVCKERS
FDWWKFKYVCKKYGVEVKGQTFMP
KRFHKQLQVQPSNWNATANGTM

1e-30

Phospholipase
A2 isozymes

PA3A/PA3B/PA5
(34.4)

Phospholipase
A2 family.
Group III
subfamily.

P16354

a Amino acid sequence corresponding to the precursor, and predicted from the cDNA sequence. The signal peptide
region is underlined, the pro-peptide is shown in cursive font and the mature peptide is shown in bold. UniProtKB
Accession numbers used for GO-analysis. b Percentage of identity was calculated with the LALIGN Server program,
and only the region of the mature polypeptide was considered in the calculation.

2.7.3. Other Proteins Identified in the Transcriptome

We identified 15 transcripts that coded for probable acetylcholinesterases, some of which bore
similarity to the acetylcholinesterase of the snake Bungarus fasciatus (Supplementary Table S1 and Figure
S9). Other identified transcripts corresponded to probable phosphodiesterases, phospholipases B,
lysozomal acid lipases (Supplementary Figure S9), alpha-amylases, and hyaluronidases (Supplementary
Table S1).

Peptides and proteins with antibiotic properties have been identified in several species of venomous
animals [92–94]. A group of five transcripts that coded for polypeptides sized between 232–500 amino
acid residues showed similarities with members of the BPI (bactericidal permeability-increasing
proteins)/LBP (lipopolysaccharide-binding proteins)/PLUNC (palate, lung, and nasal epithelium
clone) family (Supplementary Figure S8). Members of the BPI/LBP family are proteins involved in
host defense against bacteria and are homologous to the cholesterol ester transfer protein (CETP)
and the phospholipid transfer protein (PLTP), both involved in the transport of lipids in blood
plasma [95–97]. Our transcripts showed similarity to the human LBP, which binds to the lipid A moiety
of bacterial lipopolysaccharides (LPS), a glycolipid present in the outer membrane of all Gram-negative
bacteria [98].

A transcript encoding a polypeptide of 151 amino acid residues had 41.2% identity with the
amino acid sequence of the bacteriolytic enzyme lysozyme c-1 from the mosquito Anopheles gambiae
(Supplementary Figure S8) [99].

Transcripts corresponding to L-amino oxygenases (LAOO) were also identified in the transcriptome
of A. dowii and showed 43.8% similarity to those identified in the venomous glands of the snakes
Bungarus multicinctus and Calloselasma rhodostoma (Supplementary Figure S8). These enzymes catalyze
the oxidative deamination of aromatic and hydrophobic L-amino acids, thereby generating hydrogen
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peroxide, which contributes to the various harmful effects of LAOOs, such as hemorrhage, edema,
hemolysis, and apoptosis.

Other groups of peptides identified in venomous animals are type C lectins, veficolins,
three-finger toxins, TCTP (translationally-controlled tumor protein), members of the CAP superfamily
(Cysteine-Rich Secretory Proteins (CRISP), Antigen 5 (Ag5), and Pathogenesis-Related (PR-1)),
and acrohargin I (Supplementary Figure S10). We identified 13 transcripts with close similarity
to members of the CAP family. Six of them were homologous to lectin (a protein that is part of the
organic matrix of the coral Acr. millepora [100], and the remaining seven transcripts bore similarity to
five antigen allergens of the wasps Microctonus hyperodae and Polistes dominula (Supplementary Table
S1).

A single transcript encoding a homologous translationally controlled tumor protein (TCTP) was
identified in the transcriptome of A. dowii (Supplementary Figure S10). This protein is related to several
biological processes, such as cell cycle progression, cell growth and differentiation, gene regulation,
stress responses, and immune response [101]. The deduced amino acid sequence of one of our transcripts
showed a 32–34% identity with probable three-finger neurotoxins acting on nicotinic acetylcholine
receptors; however, it had two additional Cys residues, compared with Kappa-6-bungarotoxin and the
Lynx1 toxins (Supplementary Figure S10).

Proteins with epidermal growth factor (EGF)-like domains and Factor 5/8 C-domain proteins have
been identified in transcripts of sea anemones. Recently, it was reported that a significant number
of transcripts corresponding to the 5/8 C-domain factor are present in S. haddoni [23], however, their
presence in venom was not shown. We identified two peptides in the mucus of A. dowii corresponding
to probable proteins with these domains; these peptides represented only 6% and 1% of coverage
of the totally the amino acid sequences (Table 1). The transcriptomic data indicated the presence of
transcripts that code for polypeptides with these domains (Supplementary Table S1); however, their
presence in the venom and exclusively in the mucus still needs to be verified.

3. Materials and Methods

3.1. Venom and Tentacle Sample Preparation for Proteomic Analysis

Individuals of A. dowii were collected at low tide in the intertidal zone of the coasts of Ensenada
Baja California, México. Identification of the species was previously carried out [40], examining the
morphology of the polyp, cnidae, and two mitochondrial markers (partial 12S rDNA and 16S rDNA)
were amplified and sequenced following standard protocols for the group [102,103]. Eight individuals
of variable size were placed together in a beaker in the presence of a minimum volume of phosphate
buffer saline (PBS) 1X, pH 7.0 buffer and protease inhibitors (Complete Roche) plus 1 mM dithiothreitol
(DTT). The specimens were completely immersed in the buffer for 1.5 h at 4 ◦C, and with the help of
a metal spatula, gentle rubs were made on the whole body of the anemones every 10 min (3 min of
stimulation and 7 min of rest) to induce the release of secretion (mucus).

Because not all individuals exposed their tentacles, it is possible that only some of them discharged
the nematocysts from this area. The agglomeration of the organisms by the restricted space, in addition
to the mechanical stimulation with the spatula, generated stress, causing the anemones to discharge the
nematocysts and release the venom. The secretion obtained (mucus) was frozen at −20 ◦C and thawed
before use. The tentacles of three individuals were dissected (from 8–10 tentacles per individual) and
used to extract total protein. The tissue was mixed in 2 mL of homogenization medium with protease
inhibitors (400 mM mannitol, 10% (w/v) glycerol, 5% (w/v) polyvinylpyrrolidone-10, 0.5% (w/v) bovine
serum albumin, 1 mM phenylmethylsulfonyl fluoride (PMSF), 30 mM Tris, 2 mM dithiothreitol, 5 mM
EGTA, 5 mM MgSO4, 0.5 mM butylated hydroxytoluene, 0.25 mM dibucaine, 1 mM benzamidine,
and 26 mM K+ metabisulfite, adjusted to pH 8 with NaOH) before the samples were frozen in liquid
nitrogen. With the help of a pistil masher, the tissue was disbanded until a homogeneous extract was
obtained. The samples were kept cold throughout the process.
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The extract obtained was centrifuged at 6644× g for 10 min at 4 ◦C, and the supernatant was
recovered. Part of the mucus sample was thawed and centrifuged at 8000× g for 10 min at 4 ◦C to
remove the aggregates. The total protein obtained from the tentacle and mucus samples was quantified
by the Bradford method [104], and the electrophoretic profile was analyzed by SDS-PAGE on 12%
polyacrylamide [49]. Tentacle and mucus samples were prepared by triplicate for proteomic analysis
by LC-MS/MS; each of the replicates with 40 µg of total protein was calibrated to 100 µL with sterile
tetra-dialysate water and added to 100 µL buffer TE (10 mM Tris / HCl pH 7.6, 1 mM EDTA pH 8,
sodium deoxycholate 0.1%), and precipitated with 100 µL TCA (trichloroacetic acid) at 72% for 3 h
at 4 ◦C. The samples with TCA were centrifuged at 7705× g for 20 min at 4 ◦C, the supernatant was
discharged, and the pellet was subjected to an additional precipitation step with 1 mL of 90% acetone
and incubated for 12 h, −30 ◦C. Samples with acetone were centrifuged at 8436× g for 20 min at 4 ◦C,
and the supernatant was discarded by aspiration. The residual acetone was removed from the pellets
by vacuum drying for 20 min in a spin vacuum (Savant) without heat and then stored at −80 ◦C
until use.

3.2. In solution Protein Digestion and LC-MS/MS Analysis

Previously precipitated protein samples were resuspended in 10 µL of 6 M urea buffer, reduced
by the addition of reduction buffer (10 mM DTT, 100 mM ammonium bicarbonate) for 30 min at
40 ◦C, and subsequently alkylated by the addition of iodoacetamide, 55 mM and 100 mM ammonium
bicarbonate for 20 min at 40 ◦C. The samples were diluted in 2 mM urea, and 10 µL of trypsin in solution
was added (5 ng/µL trypsin, sequencing grade, Promega (Madison, WI, USA), 50 mM ammonium
bicarbonate). The digestion was performed at 37 ◦C for 18 h and stopped with 5% formic acid (FA).

Before LC-MS/MS, the digested samples were resolubilized with 10 µL of formic acid (FA) 0.2% in
with shaking for 15 min. Desalting of samples was carried out using C18 ZipTip pipette tips (Millipore,
Billerica, MA, USA). The eluted samples were dried under vacuum and resolubilized under stirring
for 15 min in 10 µL of acetonitrile 2%, formic acid (FA) 1%, and then were subsequently applied to the
LC-MS system. The LC column was a C18 reversed phase column packed with a high-pressure packing
cell. A 15 cm long, 75 µm i.d. Self-Pack PicoFrit fused silica capillary column (New Objective, Woburn,
MA) was packed with the C18 Jupiter 5 µm 300 Å reverse-phase material (Phenomenex, Torrance, CA).
This column was installed on the Easy-nLC II system (Proxeon Biosystems, Odense, Denmark) and
coupled with the LTQ Orbitrap Veils (ThermoFisher Scientific, Bremen, Germany) equipped with a
Proxeon nanoelectrospray ion source.

The buffers used for chromatography were 0.2% FA (buffer A) and 100% acetonitrile/0.2% FA
(buffer B). During the first 12 min, 5 µL of sample was loaded into the column at a flow rate of
600 nL/min; subsequently, the gradient went from 2% to 40% buffer B in 30 min and then from 40–80%
buffer B in 5 min at a flow rate of 600 nL/min. LC-MS/MS data acquisition was accomplished using a
thirteen scan event cycle comprised of a full scan MS for scan event 1 acquired in the Orbitrap. The
mass resolution of the MS was set to 60,000 (at m/z 400) and was used to trigger the twelve additional
MS/MS events acquired in parallel in the linear ion trap for the top twelve most intense ions. The mass
over charge ratio ranged from 360 to 2000 for MS scanning with a target value of 1,000,000 charges and
from ~1/3 of the parent m/z ratio to 2000 for MS/MS scanning with a target value of 10,000 charges.
The data-dependent scan events used maximum ion fill times of 100 ms and 1 microscan, respectively.
Target ions already selected for MS/MS were dynamically excluded for 15 s. Nanospray and S-lens
voltages were set to 1.5 kV and 50 V, respectively. The capillary temperature was set to 225 ◦C. The
MS/MS conditions were a normalized collision energy of 35 V, an activation q of 0.25, and an activation
time of 10 ms.

3.3. Peptide Identification and Functional Annotation of Proteomics Data

Tandem mass spectra were extracted using Mascot Daemon version 2.5.1. (Matrix Science,
London, UK). Charge state deconvolution and deisotoping were not performed. All MS/MS spectra
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were analyzed using Mascot. Mascot was set up to search the NCBI_Sea_Anemone_txid6103 (Order
Actiniaria) database (unknown version, 52295 entries), assuming the digestion enzyme trypsin. Mascot
was searched with a fragment ion mass tolerance of 0.60 Da and a parent ion tolerance of 10.0 PPM.
O+18 of pyrolysine and carbamidomethyl of cysteine were specified in Mascot as fixed modifications.
The oxidation of methionine was specified in Mascot as a variable modification.

Scaffold (version Scaffold_4.8.3, Proteome Software Inc., Portland, OR, USA) was used to validate
the MS/MS based peptide and protein identifications. Peptide identifications were accepted if
established at a probability greater than 95.0%. Protein identifications were accepted if established at a
probability greater than 99.0% and contained at least two or more unique peptides in at least two of
three biological replicates, unless otherwise stated peptides. Protein probabilities were assigned by the
Protein Prophet algorithm [105] with Scaffold delta-mass correction. Proteins that contained similar
peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the
principles of parsimony.

To improve the annotation of the identified proteins, the manual curation of each was carried
out with the UniProtKB database (https://www.uniprot.org/; period June–July 2018). The functional
assignment, the cellular location and the biological processes related to the identified proteins were
obtained from UniProt using the QuickGO Gene Ontology online program (https://www.ebi.ac.uk/

QuickGO/;GO version: 2018-08-05). For some sequences corresponding to peptide toxins, the restriction
was modified to a single peptide present in two of the three biological replicates, thus maintaining the
percentage probability of identification for peptides and proteins established for Scaffold. Additionally,
the proteins identified in the proteomes that related to components of the venom were compared with
the sequences of proteins obtained from the tentacle transcriptome of A. dowii.

3.4. Functional Annotation of Assembled Transcriptome and Identification of Genes of Putative Toxins

In a previous publication [44], we reported the assembly of transcriptome from the tentacles of
two specimens of A. dowii. The length distribution from the assembly was analyzed, and sequences
smaller than 227 bp were discarded. After this filter, 62,880 contigs with sequence lengths between
227–15,115 bp were maintained. These contigs were used to perform the functional annotation
using the Trinotate software (https://trinotate.github.io/) [106], and their similar sequences searched
with BLASTX (https://blast.ncbi.nlm.nih.gov/Blast.cgi) against the protein databases UniProt and
RefSeq with an e-value cut-off of 1E-5. The prediction of the open reading frames (ORFs) and the
amino acid sequences corresponding to the annotated transcripts were obtained with TransDecoder
(http://transdecoder.github.io/). The amino acid sequences of the ORFs were used to identify protein
domains in the Pfam database (http://pfam.xfam.org). The prediction of signal peptides, propeptides,
and transmembrane domains was made with SignalP (http://www.cbs.dtu.dk/services/SignalP/),
ProP (http://www.cbs.dtu.dk/services/ProP/) and tmHMM (http://www.cbs.dtu.dk/services/TMHMM/),
respectively. Classification of the contigs into the different Gene Ontology (GO) categories was
completed with the program Blast2GO and the information obtained from the UniProt/Swiss-Prot and
RefSeq databases, and the results were plotted using the WEGO (Web Gene Onthology Annotation
Plot) program (http://wego.genomics.org.cn/).

The transcripts that coded for putative components from the venom were selected from our
functional annotation, considering the keywords of the BLASTX outputs, such as toxin, venom,
and nematocyst. The amino acid sequences of these transcripts were manually reanalyzed with
PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool), comparing them with
the UniProt/Swiss-Prot database. Polypeptides with sequence similarity with components of the
venom of cnidarians or other phyla were classified in families of putative toxins or components of the
venom according to the prediction by sequence homology in the databases (UniProt/Swiss-Prot).
The relative abundances of the transcripts calculated for each component of the venom were
quantified and graphically represented in Origin (OriginLab Software). The sequences of the putative
components of the A. dowii venom were aligned in ClustalX 2.1 against the sequences that showed
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the best score, the lowest e-value, the highest local identity percentage, and the highest percentage
of coverage obtained in the alignments local with BLASTP. The global percentages of similarity
and identity for the alignments made in ClustalX 2.1 were calculated with the Lalign program,
considering only the mature region of the peptides and proteins encoded by the selected transcripts
(https://embnet.vital-it.ch/software/LALIGN_form.html) [107].

4. Conclusions

In general, we observed that the quantity, and especially the diversity, of probable toxins in our
transcriptome was considerably greater than that found in the mucus proteome, a similar result found
in other species of sea anemones [23] and other venomous animals [45,75]. These differences can be a
consequence, for example, of not all transcripts being translated into proteins and some toxins having
a very low representation and/or proportion in the venom, preventing them from being detected by
proteomic methods. This could explain the low presence of the Kuniz-type/Kv2 subfamily toxins and
the null detection of subfamilies 1, 3, and 5 in the mucus. However, these four families of toxins,
which act on K+ channels, were the most abundant group of neurotoxins identified in the tentacle
transcriptome of A. dowii (Figure 1B, Supplementary Table S1 and Figure S1). Although several families
of metalloproteases were identified in the proteomes, the most abundant group of proteases in the
transcriptome (40.5%, 30 transcripts) was represented by members of the M13 family (Supplementary
Table S1), which were not identified in the proteomes.

Some toxins identified in the mucus proteome (e.g., most NaTx and chitinases) were not identified
in the transcriptome. Our transcriptomic data identified a single transcript encoding a member of
the anemone NaTx inhibitory toxin family (the type I subfamily), which maintains 100% identity
in the region of the mature peptide with the Delta-actitoxin-Axm1a of A. xanthogrammica (Table 1
and Supplementary Figure S1). Members of this family of neurotoxins have been identified by
immunolocalization in secretory cells other than nematocytes [108], and transcripts corresponding to this
toxin have also been identified in tissues other than the tentacles in other anemone species [23,109,110].

The differential expression of venom components depending on the function of each anatomical
region has been well documented for some species of sea anemones [22,109,110] and could explain
why the transcripts corresponding to the NaTx and chitinases of the mucus were not identified in the
tentacle transcriptome. The complexity, per se, that represents the venom production system in sea
anemones is a fundamental factor that must be considered in the design of experimental strategies
and analyses. Consideration of this factor will allow us to differentially explore the components of the
venom and will provide information on their role in venom production.

Bioprospecting of the components of sea anemone venom using proteomic or transcriptomic tools
has increased in recent years, however, only in a few cases, both methods have been used to explore
the toxic components of sea anemone venom [23,39]. Our strategy included a proteomic comparison
of components in the tissue and secretions of A. dowii, which were compared with the information
generated in the transcriptome of the tentacle, so that a better identification of the components of the
venom could be made. Our data allowed us to suggest that the venom of A. dowii is made up of toxins
that act on voltage-regulated Na+ and K+ channels, cytotoxins, and a diverse group of hydrolases
(proteases, chitinases, and phospholipases). In addition, our transcriptomic data consisted of a set of
transcripts that coded for peptides and proteins, which could be potential candidates in the design of
therapeutic and biotechnological tools.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/8/436/s1,
Figure S1–S10: Multiple alignments of amino acid sequences corresponding to putative components of the venom
of Anthopleura dowii Verrill, 1869, Table S1: Sequences and proteins and peptides annotation in the tentacle
transcriptome, and in the tentacle and mucus proteomes of Anthopleura dowii Verrill, 1869, Table S2: Report of
protein samples MS/MS data of the mucus and tentacle.
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