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Abstract: In vitro and in vivo studies have shown that phycotoxins can impact intestinal epithelial
cells and can cross the intestinal barrier to some extent. Therefore, phycotoxins can reach cells
underlying the epithelium, such as enteric glial cells (EGCs), which are involved in gut homeostasis,
motility, and barrier integrity. This study compared the toxicological effects of pectenotoxin-2 (PTX2),
yessotoxin (YTX), okadaic acid (OA), azaspiracid-1 (AZA1), 13-desmethyl-spirolide C (SPX), and
palytoxin (PlTX) on the rat EGC cell line CRL2690. Cell viability, morphology, oxidative stress,
inflammation, cell cycle, and specific glial markers were evaluated using RT-qPCR and high content
analysis (HCA) approaches. PTX2, YTX, OA, AZA1, and PlTX induced neurite alterations, oxidative
stress, cell cycle disturbance, and increase of specific EGC markers. An inflammatory response for
YTX, OA, and AZA1 was suggested by the nuclear translocation of NF-κB. Caspase-3-dependent
apoptosis and induction of DNA double strand breaks (γH2AX) were also observed with PTX2, YTX,
OA, and AZA1. These findings suggest that PTX2, YTX, OA, AZA1, and PlTX may affect intestinal
barrier integrity through alterations of the human enteric glial system. Our results provide novel
insight into the toxicological effects of phycotoxins on the gut.
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1. Introduction

Phycotoxins, mainly produced by dinoflagellates, can accumulate in filter-feeding bivalves
and provoke human intoxications with clinical symptoms ranging from intestinal to neurological
effects [1]. On the basis of their physico–chemical properties and their biological effects, phycotoxins
are classified into different groups. Despite the fact that no human fatalities have been reported with
lipophilic toxins, the recurrent presence of both regulated and non-regulated lipophilic phycotoxins
(including emerging analogs) in shellfish remains a global concern for human health [2]. Among these
phycotoxins, pectenotoxin-2 (PTX2) and yessotoxin (YTX) have never been proven to be involved in
human intoxications, although toxic effects have been documented in rodents after oral exposure [3,4].
Okadaic acid (OA) is known to induce nausea, diarrhea, vomiting, and abdominal pain in humans [5].
Azaspiracid-1 (AZA1) provokes similar symptoms with nausea, vomiting, diarrhea, and stomach
cramps [6]. No human intoxication has been described so far from the cyclic imine 13-desmethyl
spirolide C (SPX) [1], although significant concentrations are regularly detected in shellfish [7]. Recently,
analogs of palytoxin (PlTX), an amphiphilic phycotoxin, have been detected in marine organisms of
the Mediterranean Sea [8] without any report of human intoxication through seafood consumption in
this area. However, PlTX has been involved in human intoxications in tropical and sub-tropical areas
inducing both neurological and gastro-intestinal symptoms with sometimes human fatalities due to
myocardial injury [8]. All these toxins have been shown to act through rather distinct targets. PTX2
inhibits actin polymerization [9,10]; OA is a potent serine/threonine protein-phosphatase inhibitor,
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which therefore may affect numerous cellular processes [11,12]; SPX is known as an antagonist of
muscarinic acetylcholine receptors [13]; and PlTX is a potent inhibitor of the Na+/K+ ATPase [14–16].
On the contrary, the targets for YTX and AZA-1 have not been clearly elucidated [17].

Since ingestion represents the main route of human exposure to phycotoxins, the intestine, one of
the first organs in contact with food contaminants, can be greatly affected, as underlined by the
gastro–intestinal symptoms observed in humans. Oral exposure of rodents has been associated with
intestinal damage such as intestinal microvilli disorder [18], dilatation of the small intestine [19],
and cell detachment with the separation of the lamina propria from the epithelium [20]. Moreover,
in vitro studies have demonstrated the toxicity of lipophilic phycotoxins on human intestinal epithelial
cells (IECs) [21–23].

The intestinal epithelial barrier (IEB) is a highly dynamic and specialized system composed of
several cell types such as enterocytes, goblet cells, endocrine cells, and M cells. Recent scientific
advances have pointed out that other cells, present in the mucosa, can interact with IECs. Among these
cells, enteric glial cells (EGCs), belonging to the enteric nervous system, are found from the ileum to
the colon [24]. Due to their close proximity [25,26], physiological crosstalk between EGCs and IECs
has been shown to be important for the regulation of homeostasis, gut functions, and intestinal barrier
permeability [27]. In vivo rodent models with EGC deletion showed a clear disruption of the IEB [28]
with intestinal inflammation [29], persistent diarrhea [30], and loss of barrier integrity [31,32]. EGCs
control IEC functions [33] through the release of mediators such as glial cell-derived neurotrophic factor
(GDNF), brain cell-derived neurotrophic factor (BDNF), S-nitrosoglutathione (GSNO), and 15dPJGP
prostaglandin derivate [34,35].

The ability of some phycotoxins to cross the IEB and/or alter its integrity [23,36,37] suggests
that cells beneath the epithelium, including EGCs, could be exposed to these toxins. Data in the
literature demonstrated that an AZA1 oral treatment of mice induced a peristalsis arrest [19], suggesting
alteration of the enteric nervous system. In vitro, the permeability of an IEC monolayer was affected
by OA through the secretion of neuropeptide Y by neuroblastoma cells [38]. However, to date no study
has investigated if phycotoxins can directly impact the enteric nervous system, and particularly EGCs.

In this context, we aimed to evaluate and compare the cellular responses of six phycotoxins
(PTX2, YTX, OA, AZA1, SPX, and PlTX) on the rat EGC cell line CRL2690. Neunlist et al. have shown
that there are no interspecies differences between rat and human EGCs and that similar interactions
with human IECs were observed [26]. Moreover, it has been underlined that the EGC2690 cell line
is close to primary rat glial cells regarding glial key markers [39]. We therefore investigated cell
viability, morphological cell changes, oxidative stress, inflammation, cell cycle, and specific glial
markers including glial fibrillary acidic protein (GFAP), calcium-binding protein (S100β), and nitric
oxide synthase (iNOS) using RT-qPCR and high content analysis (HCA) approaches.

2. Results

2.1. Cytotoxic and Morphological Effects of Phycotoxins

After a 24 h treatment of EGCs, a dose response curve was obtained with four toxins (Figure 1),
and IC50 were determined as follow: YTX = 14.5 ± 11.1 nM, OA = 75.9 ± 9.2 nM, AZA1 = 7.0 ± 7.5 nM,
and PlTX = 0.4 ± 0.1 nM. No significant cytotoxicity was observed following treatment with PTX2 and
SPX up to 64 nM and 127 nM, respectively.
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Figure 1. Cytotoxicity on enteric glial cells (EGCs) after a 24 h treatment with pectenotoxin-2(PTX2), 
yessotoxin (YTX), okadaic acid (OA), azaspiracid-1 (AZA1), 13-desmethyl spirolide C (SPX), and 
palytoxin (PlTX). Cytotoxicity was measured by the neutral red uptake assay (NRU). Values are 
presented as mean ± SEM and expressed as percentages relative to the vehicle control medium. Three 
independent experiments were performed. 

Morphological modifications were also observed (Figure 2). The EGCs from the vehicle control 
exhibited neurite branching characterized by a broad network. Different morphological 
modifications were induced depending on the toxin. Although no effect was detected with the 
neutral red uptake (NRU) assay, PTX2 induced neurite atrophy from 16 nM and was the only toxin 
where rapid effects on morphological modifications were observed (at 3 h; data not shown). From 10 
nM YTX exposure, neurite alterations were observed, with cells presenting few neurites at the 
highest concentration. From 32.5 nM, OA induced a concentration-dependent cell elongation as well 
as cell rounding. Neurite atrophy and cell shrinkage were observed with 2.4 nM AZA1 and above. 
No morphological effects were noticed with SPX treatment up to 127 nM. Above 0.3 nM PlTX 
exposure, cells depicted an irregular shape combined with a blebbing of the body cell and a loss of 
neurites. 

Figure 1. Cytotoxicity on enteric glial cells (EGCs) after a 24 h treatment with pectenotoxin-2(PTX2),
yessotoxin (YTX), okadaic acid (OA), azaspiracid-1 (AZA1), 13-desmethyl spirolide C (SPX),
and palytoxin (PlTX). Cytotoxicity was measured by the neutral red uptake assay (NRU). Values are
presented as mean ± SEM and expressed as percentages relative to the vehicle control medium. Three
independent experiments were performed.

Morphological modifications were also observed (Figure 2). The EGCs from the vehicle control
exhibited neurite branching characterized by a broad network. Different morphological modifications
were induced depending on the toxin. Although no effect was detected with the neutral red uptake
(NRU) assay, PTX2 induced neurite atrophy from 16 nM and was the only toxin where rapid effects
on morphological modifications were observed (at 3 h; data not shown). From 10 nM YTX exposure,
neurite alterations were observed, with cells presenting few neurites at the highest concentration. From
32.5 nM, OA induced a concentration-dependent cell elongation as well as cell rounding. Neurite
atrophy and cell shrinkage were observed with 2.4 nM AZA1 and above. No morphological effects
were noticed with SPX treatment up to 127 nM. Above 0.3 nM PlTX exposure, cells depicted an irregular
shape combined with a blebbing of the body cell and a loss of neurites.
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Figure 2. Morphological modifications of EGCs after 24 h exposure to PTX2, YTX, OA, AZA1, SPX, 
and PlTX. Evaluation of cell morphology was carried out by phase contrast microscopy. Each image 
is representative of three independent experiments. Vehicle controls: 1.25% MeOH and 2.7% 
ultra-pure water (for PlTX only). Scale bar = 200 µm. 

2.2. Intermediate Filament GFAP and Cell Body Area 

After 24 h of treatment, a significant modification of GFAP levels was observed with all the 
toxins except SPX. A concentration dependent increase in GFAP was induced by PTX2, YTX, and 
AZA1 reaching 2.3-fold, 1.7-fold, and 1.8-fold, respectively, at the highest concentration (Figure 3). 
OA induced a significant increase in GFAP levels (1.6-fold) but only at the highest concentration. 
PlTX induced a decrease of GFAP levels (−38%) at the highest concentration (0.5 nM). PTX2 (from 4 
nM) provoked cell shrinkage and then significantly reduced cell body area of EGCs up to −40% at 64 
nM. YTX exposure showed a slight but non-significant reduction of the cell body area (−12% at 61 
nM). OA did not induce any modification of the cell body area. AZA1 also induced a decrease of the 
cell body area from 2.4 nM, reaching −22% at 19.3 nM. On the contrary, PlTX induced a +38% 
increase of the cell body area at 0.5 nM that is in accordance with the depicted blebbing of the cell 
body. No alteration of GFAP amounts and cell body area were observed with SPX treatment.  

Figure 2. Morphological modifications of EGCs after 24 h exposure to PTX2, YTX, OA, AZA1, SPX,
and PlTX. Evaluation of cell morphology was carried out by phase contrast microscopy. Each image is
representative of three independent experiments. Vehicle controls: 1.25% MeOH and 2.7% ultra-pure
water (for PlTX only). Scale bar = 200 µm.

2.2. Intermediate Filament GFAP and Cell Body Area

After 24 h of treatment, a significant modification of GFAP levels was observed with all the toxins
except SPX. A concentration dependent increase in GFAP was induced by PTX2, YTX, and AZA1
reaching 2.3-fold, 1.7-fold, and 1.8-fold, respectively, at the highest concentration (Figure 3). OA
induced a significant increase in GFAP levels (1.6-fold) but only at the highest concentration. PlTX
induced a decrease of GFAP levels (−38%) at the highest concentration (0.5 nM). PTX2 (from 4 nM)
provoked cell shrinkage and then significantly reduced cell body area of EGCs up to −40% at 64 nM.
YTX exposure showed a slight but non-significant reduction of the cell body area (−12% at 61 nM). OA
did not induce any modification of the cell body area. AZA1 also induced a decrease of the cell body
area from 2.4 nM, reaching −22% at 19.3 nM. On the contrary, PlTX induced a +38% increase of the cell
body area at 0.5 nM that is in accordance with the depicted blebbing of the cell body. No alteration of
GFAP amounts and cell body area were observed with SPX treatment.
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Figure 3. Glial fibrillary acidic protein (GFAP) levels and cell body area in EGCs after 24 h exposure 
to PTX2, YTX, OA, AZA1, SPX, and PlTX. GFAP levels (white) and cell body area (black) were 
carried out by Hight Content Analysis (HCA). Values are presented as mean ± SEM and expressed as 
fold change compared to the vehicle control set to 1. Three independent experiments were 
performed. *, **: values significantly different from the vehicle control (respectively P < 0.05 and P < 
0.01). 

2.3. Cell Cycle Analysis  

The cell cycle of EGCs was modified following 24 h treatment with 5 out of the 6 toxins (Figure 
4). However, with the exception of PTX2, the modifications were not statistically significant. 
Following treatment with PTX2, YTX, OA, and AZA1, the subG1 phase was 2.2- to 7.2-fold higher 
than the control depending on the toxin. PTX2 increased the proportion of both G2/M and polyploid 
cells concomitantly with a decrease in G0/G1 cells. At the highest concentration of YTX, a slight 
reduction in the number of G2/M cells and an increase of the number of cells in S and G0/G1 phases 
were observed. AZA1 exposure induced a reduction in the percentage of cells in S and G2/M phases. 
PlTX and SPX did not induce any significant modification of the cell cycle progression, except a 
slight decrease of cells in S phase for SPX at the highest dose. 
  

Figure 3. Glial fibrillary acidic protein (GFAP) levels and cell body area in EGCs after 24 h exposure to
PTX2, YTX, OA, AZA1, SPX, and PlTX. GFAP levels (white) and cell body area (black) were carried out
by Hight Content Analysis (HCA). Values are presented as mean ± SEM and expressed as fold change
compared to the vehicle control set to 1. Three independent experiments were performed. *, **: values
significantly different from the vehicle control (respectively P < 0.05 and P < 0.01).

2.3. Cell Cycle Analysis

The cell cycle of EGCs was modified following 24 h treatment with 5 out of the 6 toxins (Figure 4).
However, with the exception of PTX2, the modifications were not statistically significant. Following
treatment with PTX2, YTX, OA, and AZA1, the subG1 phase was 2.2- to 7.2-fold higher than the
control depending on the toxin. PTX2 increased the proportion of both G2/M and polyploid cells
concomitantly with a decrease in G0/G1 cells. At the highest concentration of YTX, a slight reduction in
the number of G2/M cells and an increase of the number of cells in S and G0/G1 phases were observed.
AZA1 exposure induced a reduction in the percentage of cells in S and G2/M phases. PlTX and SPX
did not induce any significant modification of the cell cycle progression, except a slight decrease of
cells in S phase for SPX at the highest dose.
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Figure 4. Cell cycle analysis of EGCs after 24 h exposure to PTX2, YTX, OA, AZA1, SPX, and PlTX. 
The classification of cells in the different cell cycle phases was determined using nuclear DAPI 
labelling and is expressed relative to the percentage of cells in each phase. Values are presented as 
mean ± SEM. Three independent experiments were performed. Vehicle controls were 1.25% of 
MeOH and 2.7% ultra-pure water (for PlTX only). *, **, ***: values significantly different from the 
vehicle control (respectively P < 0.05, P < 0.01 and P < 0.001). 

2.4. Apoptosis and Genotoxicity  

A concentration-dependent increase of active caspase-3 was observed for PTX2, YTX, and 
AZA1 (Figure 5). The maximum increase (between 1.6- and 1.8-fold) was similar for the 3 toxins but 
corresponded also to a 50% decrease in cell count compared to the vehicle control (Figure 5). OA 
exposure significantly increased active caspase-3 level amounts only at the highest concentration. 
SPX and PlTX did not affect the amount of caspase-3. The amount of γH2AX significantly increased 
at 16 nM PTX2 (1.3-fold) reaching 1.5-fold at 64 nM. No effect on γH2AX levels was observed with 
the other toxins. 

Figure 4. Cell cycle analysis of EGCs after 24 h exposure to PTX2, YTX, OA, AZA1, SPX, and PlTX. The
classification of cells in the different cell cycle phases was determined using nuclear DAPI labelling
and is expressed relative to the percentage of cells in each phase. Values are presented as mean ±
SEM. Three independent experiments were performed. Vehicle controls were 1.25% of MeOH and
2.7% ultra-pure water (for PlTX only). *, **, ***: values significantly different from the vehicle control
(respectively P < 0.05, P < 0.01 and P < 0.001).

2.4. Apoptosis and Genotoxicity

A concentration-dependent increase of active caspase-3 was observed for PTX2, YTX, and AZA1
(Figure 5). The maximum increase (between 1.6- and 1.8-fold) was similar for the 3 toxins but
corresponded also to a 50% decrease in cell count compared to the vehicle control (Figure 5). OA
exposure significantly increased active caspase-3 level amounts only at the highest concentration. SPX
and PlTX did not affect the amount of caspase-3. The amount of γH2AX significantly increased at
16 nM PTX2 (1.3-fold) reaching 1.5-fold at 64 nM. No effect on γH2AX levels was observed with the
other toxins.



Mar. Drugs 2019, 17, 429 7 of 24Mar. Drugs 2019, 17, x FOR PEER REVIEW 7 of 24 

 

1 n
M

2 n
M

4 n
M

8 n
M

16
 nM

32
 nM

64
 nM

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

* **
***

*** ***

**
*** ***

Fo
ld

 c
ha

ng
e

(c
om

pa
re

d 
to

 v
eh

ic
le

 c
on

tro
l)

%
 C

ell count

PTX2

0.9
 nM

1.9
 nM

3.8
 nM

7.6
 nM

15
.3 

nM

30
.5 

nM
61

 nM

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

** ***
***

*

Fo
ld

 c
ha

ng
e

(c
om

pa
re

d 
to

 v
eh

ic
le

 c
on

tro
l)

%
 C

ell count
YTX

0.5
 nM 1 n

M
2 n

M
4.1

 nM
8.1

 nM

16
.3 

nM

32
.5 

nM

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

*

Fo
ld

 c
ha

ng
e

(c
om

pa
re

d 
to

 v
eh

ic
le

 c
on

tro
l)

%
 C

ell count

OA

0.3
 nM

0.6
 nM

1.2
 nM

2.4
 nM

4.8
 nM

9.6
 nM

19
.3 

nM

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

*

*** ***

*

Fo
ld

 c
ha

ng
e

(c
om

pa
re

d 
to

 v
eh

ic
le

 c
on

tro
l)

%
 C

ell count

AZA1

2 n
M

4 n
M

7.4
 nM

15
.9 

nM

31
.8 

nM

63
.5 

nM

12
7 n

M

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

Fo
ld

 c
ha

ng
e

(c
om

pa
re

d 
to

 v
eh

ic
le

 c
on

tro
l)

%
 C

ell count

SPX

0.0
08

 nM

0.0
1 n

M

0.0
3 n

M

0.0
6 n

M

0.1
2 n

M

0.2
5 n

M
0.5

 nM

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

Fo
ld

 c
ha

ng
e

(c
om

pa
re

d 
to

 v
eh

ic
le

 c
on

tro
l)

%
 C

ell count

PlTX

Figure 5: Apoptosis and genotoxicity in EGCs after 24 h exposure to PTX2, YTX, OA, AZA1, SPX, 
and PlTX. Active caspase-3 (black) and γH2AX (white) were carried out by HCA. DAPI staining was 
used for cell count (blue). Active caspase-3 and γH2AX are expressed as fold change compared to the 
vehicle control set to 1. Cell count values are expressed as percentages of the vehicle control. Values 
are presented as mean ± SEM. Three independent experiments were performed. *, **, ***: values 
significantly different from the vehicle control (respectively P < 0.05, P < 0.01, and P < 0.001). 

2.5. NF-κB Nuclear Translocation. 

No effect on NF-κB nuclear translocation was shown following 3 h treatment with YTX, OA, 
AZA1, SPX, and PlTX (Figure 6A). With this short time treatment, no diminution of cell count was 
observed except with PlTX (50% decrease with 2 nM). However, for longer treatment times (8 h), a 
significant increase of NF-κB nuclear translocation was observed: up to 2-fold for YTX, 4-fold for 
OA, and 2.5-fold for AZA1 at the highest tested concentration. If no decrease of cell count was 
observed at 8 h for YTX and AZA1, a marked decrease was noticed following OA exposure.  

For PTX2, nuclear translocation of NF-κB was ambiguous as rapid cell rounding was suspected 
resulting in quantification artefacts. Therefore, we further investigated the translocation of NF-κB at 
3 h using confocal fluorescence microscopy. Contrary to the positive control (50 ng/mL TNFα) that 
clearly showed nuclear translocation, no difference between PTX2 up to 64 nM and the vehicle 
control was observed (Figure 6B). 

Figure 5. Apoptosis and genotoxicity in EGCs after 24 h exposure to PTX2, YTX, OA, AZA1, SPX,
and PlTX. Active caspase-3 (black) and γH2AX (white) were carried out by HCA. DAPI staining was
used for cell count (blue). Active caspase-3 and γH2AX are expressed as fold change compared to the
vehicle control set to 1. Cell count values are expressed as percentages of the vehicle control. Values
are presented as mean ± SEM. Three independent experiments were performed. *, **, ***: values
significantly different from the vehicle control (respectively P < 0.05, P < 0.01, and P < 0.001).

2.5. NF-κB Nuclear Translocation

No effect on NF-κB nuclear translocation was shown following 3 h treatment with YTX, OA,
AZA1, SPX, and PlTX (Figure 6A). With this short time treatment, no diminution of cell count was
observed except with PlTX (50% decrease with 2 nM). However, for longer treatment times (8 h),
a significant increase of NF-κB nuclear translocation was observed: up to 2-fold for YTX, 4-fold for OA,
and 2.5-fold for AZA1 at the highest tested concentration. If no decrease of cell count was observed at
8 h for YTX and AZA1, a marked decrease was noticed following OA exposure.

For PTX2, nuclear translocation of NF-κB was ambiguous as rapid cell rounding was suspected
resulting in quantification artefacts. Therefore, we further investigated the translocation of NF-κB at
3 h using confocal fluorescence microscopy. Contrary to the positive control (50 ng/mL TNFα) that
clearly showed nuclear translocation, no difference between PTX2 up to 64 nM and the vehicle control
was observed (Figure 6B).
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Figure 6. NF-κB nuclear translocation in EGCs after exposure to PTX2, YTX, OA, AZA1, SPX, and 
PlTX. (A) NF-κB-p65 nuclear translocation after 3 h (white) or 8 h (black) exposure was carried out by 
HCA. DAPI staining was used for cell count. NF-κB-p65 nuclear translocation was expressed as fold 
change compared to the vehicle control set to 1. Cell count values after 3 h (grey line) or 8 h (black 
line) exposure are expressed as percentages of the vehicle control. Values are presented as means ± 
SEM. Three independent experiments were performed. *, **: values significantly different from the 
vehicle control (respectively P < 0.05 and P < 0.01). (B) NF-κB-p65 (red) and nucleus (blue) after 3 h 
exposure to TNFα (50 ng/mL) and PTX2 (64 nM) were observed by confocal imaging. Scale bar = 20 
µm. 

2.6. Oxidative Stress 

At 4 h treatment, none of the toxins induced oxidative stress except PlTX for which the increase 
(4-fold at 1 nM) was correlated with a decrease in cell count (Figure 7). At 24 h treatment, PTX2, YTX, 
and OA increased oxidative stress up to 3-, 1.8-, and 2-fold, respectively, at the highest 
concentration. A slight but non-significant increase was also noticed for AZA1 at 19.5 nM. Overall, 
oxidative stress was correlated to a decrease of cell count. SPX exposure up to 127 nM did not induce 
oxidative stress in EGCs whatever the time and concentration of exposure.  

Figure 6. NF-κB nuclear translocation in EGCs after exposure to PTX2, YTX, OA, AZA1, SPX, and PlTX.
(A) NF-κB-p65 nuclear translocation after 3 h (white) or 8 h (black) exposure was carried out by HCA.
DAPI staining was used for cell count. NF-κB-p65 nuclear translocation was expressed as fold change
compared to the vehicle control set to 1. Cell count values after 3 h (grey line) or 8 h (black line)
exposure are expressed as percentages of the vehicle control. Values are presented as means ± SEM.
Three independent experiments were performed. *, **: values significantly different from the vehicle
control (respectively P < 0.05 and P < 0.01). (B) NF-κB-p65 (red) and nucleus (blue) after 3 h exposure
to TNFα (50 ng/mL) and PTX2 (64 nM) were observed by confocal imaging. Scale bar = 20 µm.

2.6. Oxidative Stress

At 4 h treatment, none of the toxins induced oxidative stress except PlTX for which the increase
(4-fold at 1 nM) was correlated with a decrease in cell count (Figure 7). At 24 h treatment, PTX2, YTX,
and OA increased oxidative stress up to 3-, 1.8-, and 2-fold, respectively, at the highest concentration.
A slight but non-significant increase was also noticed for AZA1 at 19.5 nM. Overall, oxidative stress
was correlated to a decrease of cell count. SPX exposure up to 127 nM did not induce oxidative stress
in EGCs whatever the time and concentration of exposure.
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Figure 7. Oxidative stress in EGCs after exposure to PTX2, YTX, OA, AZA1, SPX, and PlTX. 
Measurement of the fluorescent DCF product after 4 h (white) or 24 h (black) exposure was carried 
out by HCA. Hoescht staining was used for cell count. ROS production was expressed as fold change 
compared to the vehicle control set to 1. Cell count values after 4 h (grey line) or 24 h (black line) 
exposure are expressed as percentages of the vehicle control. Values are presented as mean ± SEM. 
Four independent experiments were performed. *, **, ***: values significantly different from the 
vehicle control (respectively P < 0.05, P < 0.01, and P < 0.001). 

2.7. S100β and iNOS Production 

After 24 h treatment, a significant increase of S100β amount was observed with PTX2, YTX, OA, 
and AZA1 reaching 1.5-fold to 2.1-fold depending on the toxin and concomitantly with a decrease of 
cell count (Figure 8). No effect was detected with SPX and PlTX, despite an important decrease of 
cell count for PlTX at the highest concentration. The responses for iNOS amount were very similar to 
S100β for PTX2, YTX, OA, and AZA1 with increases reaching 1.5-fold to 2.2-fold depending on the 
toxin (Figure 9). iNOS levels were not affected by SPX and PlTX. 

Figure 7. Oxidative stress in EGCs after exposure to PTX2, YTX, OA, AZA1, SPX, and PlTX. Measurement
of the fluorescent DCF product after 4 h (white) or 24 h (black) exposure was carried out by HCA.
Hoescht staining was used for cell count. ROS production was expressed as fold change compared
to the vehicle control set to 1. Cell count values after 4 h (grey line) or 24 h (black line) exposure
are expressed as percentages of the vehicle control. Values are presented as mean ± SEM. Four
independent experiments were performed. *, **, ***: values significantly different from the vehicle
control (respectively P < 0.05, P < 0.01, and P < 0.001).

2.7. S100β and iNOS Production

After 24 h treatment, a significant increase of S100β amount was observed with PTX2, YTX, OA,
and AZA1 reaching 1.5-fold to 2.1-fold depending on the toxin and concomitantly with a decrease
of cell count (Figure 8). No effect was detected with SPX and PlTX, despite an important decrease of
cell count for PlTX at the highest concentration. The responses for iNOS amount were very similar to
S100β for PTX2, YTX, OA, and AZA1 with increases reaching 1.5-fold to 2.2-fold depending on the
toxin (Figure 9). iNOS levels were not affected by SPX and PlTX.
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was carried out by HCA. DAPI staining was used for cell count (blue). S100β was expressed as fold 
change compared to the vehicle control set to 1. Cell count values are expressed as percentages of the 
vehicle control. Values are presented as mean ± SEM. Three independent experiments were 
performed. *, **, ***: significantly different from the vehicle control (respectively P < 0.05, P < 0.01, 
and P < 0.001). 
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Figure 9. iNOS response in EGCs after 24 h of phycotoxin exposure (nM). The measurement of iNOS 
was carried out by HCA. DAPI staining was used for cell count (blue). iNOS was expressed as fold 
change compared to the vehicle control set to 1. Cell count values are expressed as percentages of the 
vehicle control. Values are presented as mean ± SEM. Three independent experiments were 
performed. *, **, ***: significantly different from the vehicle control (respectively P < 0.05, P < 0.01, 
and P < 0.001). 

2.8. Modulation of Gene Expression Following Treatment with PTX2, YTX, and AZA1. 

We selected the three toxins, PTX2, YTX, and AZA1, for additional investigation on the 
expression of key genes involved in viability, morphology, cell cycle, inflammation, oxidative stress, 
and gliomediators. Table 1 presents only the statistically significant results and the whole dataset is 
included as supplementary information (Supplementary Materials Table S2). An up-regulation of 
genes associated with cell mortality was observed with a 1.6-fold increase of BNIP3 at 2 nM YTX and 
1.5 nM AZA1, and 1.6-fold increase of GABARAP at 1.5 nM AZA1. CASP3 was significantly 
decreased with PTX2 at the highest dose (−52% at 4 nM). FOS, a gene involved in apoptotic response, 
was increased at the highest concentration for YTX and AZA1. Complementary to FOS, BCL2 was 

Figure 8. S100β response in EGCs after 24 h of phycotoxin exposure (nM). The measurement of S100β
was carried out by HCA. DAPI staining was used for cell count (blue). S100β was expressed as fold
change compared to the vehicle control set to 1. Cell count values are expressed as percentages of the
vehicle control. Values are presented as mean ± SEM. Three independent experiments were performed.
*, **, ***: significantly different from the vehicle control (respectively P < 0.05, P < 0.01, and P < 0.001).
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Figure 9. iNOS response in EGCs after 24 h of phycotoxin exposure (nM). The measurement of iNOS 
was carried out by HCA. DAPI staining was used for cell count (blue). iNOS was expressed as fold 
change compared to the vehicle control set to 1. Cell count values are expressed as percentages of the 
vehicle control. Values are presented as mean ± SEM. Three independent experiments were 
performed. *, **, ***: significantly different from the vehicle control (respectively P < 0.05, P < 0.01, 
and P < 0.001). 
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We selected the three toxins, PTX2, YTX, and AZA1, for additional investigation on the 
expression of key genes involved in viability, morphology, cell cycle, inflammation, oxidative stress, 
and gliomediators. Table 1 presents only the statistically significant results and the whole dataset is 
included as supplementary information (Supplementary Materials Table S2). An up-regulation of 
genes associated with cell mortality was observed with a 1.6-fold increase of BNIP3 at 2 nM YTX and 
1.5 nM AZA1, and 1.6-fold increase of GABARAP at 1.5 nM AZA1. CASP3 was significantly 
decreased with PTX2 at the highest dose (−52% at 4 nM). FOS, a gene involved in apoptotic response, 
was increased at the highest concentration for YTX and AZA1. Complementary to FOS, BCL2 was 

Figure 9. iNOS response in EGCs after 24 h of phycotoxin exposure (nM). The measurement of iNOS
was carried out by HCA. DAPI staining was used for cell count (blue). iNOS was expressed as fold
change compared to the vehicle control set to 1. Cell count values are expressed as percentages of the
vehicle control. Values are presented as mean ± SEM. Three independent experiments were performed.
*, **, ***: significantly different from the vehicle control (respectively P < 0.05, P < 0.01, and P < 0.001).

2.8. Modulation of Gene Expression Following Treatment with PTX2, YTX, and AZA1

We selected the three toxins, PTX2, YTX, and AZA1, for additional investigation on the
expression of key genes involved in viability, morphology, cell cycle, inflammation, oxidative stress,
and gliomediators. Table 1 presents only the statistically significant results and the whole dataset
is included as supplementary information (Supplementary Materials Table S2). An up-regulation
of genes associated with cell mortality was observed with a 1.6-fold increase of BNIP3 at 2 nM YTX
and 1.5 nM AZA1, and 1.6-fold increase of GABARAP at 1.5 nM AZA1. CASP3 was significantly
decreased with PTX2 at the highest dose (−52% at 4 nM). FOS, a gene involved in apoptotic response,
was increased at the highest concentration for YTX and AZA1. Complementary to FOS, BCL2 was
decreased for YTX at the highest concentration. The expression of cell cycle genes was significantly
affected by two toxins. YTX induced decreases in CDK1(−78%), CDK2 (−42%), and CCNA2 (−77%)
expression at the highest concentration. Similarly, AZA1 (at 1.5 nM) induced a down regulation of
CDK1 (−66%), CDK2 (−27%), and CCNA2 (−57%). PTX2 induced a trend of decrease for CDK1 gene
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expression at 4 nM. Modification of the expression of genes involved in inflammation was observed
with the 3 toxins. PTX2 significantly induced an up regulation of 1.4-fold of MAPK8 and MYD88
expression, respectively, at 2 nM and 4 nM. YTX induced a significant increase of chemokine CCL2
(up to 2.2-fold at 2 nM) as well as significant down regulations of receptor IL1R1 (−53% at 4 nM),
RHOA (−22% at 2 nM), and FZD4, an anti-inflammatory signaling receptor, (−59%). AZA1 induced a
significant increase of MAPK8 (1.5-fold at 0.38 nM), CCL2 (up to 2.5-fold at 1.5 nM), and TLR4 (1.8-fold
at 1.5 nM). For genes related to oxidative stress, PTX2 induced a decrease of CAT expression (−25% at
4 nM), while AZA1 induced a significant increase of NFE2L2 (1.5-fold at 1.5 nM). Exposure to PTX2
resulted in the up regulation of gliomediator genes: BDNF and GNDF expression increased up to 5.2
and 2.7-fold, respectively, at the highest concentration, although this was not statistically significant.
YTX induced a significant 1.5-fold increase of GDNF. For channel and glioreceptor genes, our results
showed a 50% decrease of GJA1 with 4 nM YTX. GFRA1 expression, a receptor of GDNF, was 1.4-fold
increased with 2 nM PTX2, 1.3-fold with 4 nM YTX, and 1.4-fold with 0.38 nM AZA1. LPA1, a gene
coding for adrenergic receptor, was increased up to 1.7-fold with 4 nM PTX2.

Table 1. Gene expression in EGCs after 24 h exposure to PTX2, YTX, and AZA1. The analysis of gene
expression was carried out by RT-qPCR. The resulting fold changes were calculated normalized to the
reference gene GAPDH and the solvent-treated control. The heatmap shows the relative fold change
values (red: up regulated and blue: down regulated) as well as statistical analysis of three independent
experiments. *, **, ***: significantly different from the vehicle control (respectively P < 0.05, P < 0.01,
and P < 0.001). a: significant concentration effect (P < 0.05).

Mar. Drugs 2019, 17, x FOR PEER REVIEW 11 of 24 

 

decreased for YTX at the highest concentration. The expression of cell cycle genes was significantly 
affected by two toxins. YTX induced decreases in CDK1(−78%), CDK2 (−42%), and CCNA2 (−77%) 
expression at the highest concentration. Similarly, AZA1 (at 1.5 nM) induced a down regulation of 
CDK1 (−66%), CDK2 (−27%), and CCNA2 (−57%). PTX2 induced a trend of decrease for CDK1 gene 
expression at 4 nM. Modification of the expression of genes involved in inflammation was observed 
with the 3 toxins. PTX2 significantly induced an up regulation of 1.4-fold of MAPK8 and MYD88 
expression, respectively, at 2 nM and 4 nM. YTX induced a significant increase of chemokine CCL2 
(up to 2.2-fold at 2 nM) as well as significant down regulations of receptor IL1R1 (−53% at 4 nM), 
RHOA (−22% at 2 nM), and FZD4, an anti-inflammatory signaling receptor, (−59%). AZA1 induced a 
significant increase of MAPK8 (1.5-fold at 0.38 nM), CCL2 (up to 2.5-fold at 1.5 nM), and TLR4 
(1.8-fold at 1.5 nM). For genes related to oxidative stress, PTX2 induced a decrease of CAT 
expression (−25% at 4 nM), while AZA1 induced a significant increase of NFE2L2 (1.5-fold at 1.5 
nM). Exposure to PTX2 resulted in the up regulation of gliomediator genes: BDNF and GNDF 
expression increased up to 5.2 and 2.7-fold, respectively, at the highest concentration, although this 
was not statistically significant. YTX induced a significant 1.5-fold increase of GDNF. For channel 
and glioreceptor genes, our results showed a 50% decrease of GJA1 with 4 nM YTX. GFRA1 
expression, a receptor of GDNF, was 1.4-fold increased with 2 nM PTX2, 1.3-fold with 4 nM YTX, 
and 1.4-fold with 0.38 nM AZA1. LPA1, a gene coding for adrenergic receptor, was increased up to 
1.7-fold with 4 nM PTX2. 

Table 1. Gene expression in EGCs after 24 h exposure to PTX2, YTX, and AZA1. The analysis of gene 
expression was carried out by RT-qPCR. The resulting fold changes were calculated normalized to 
the reference gene GAPDH and the solvent-treated control. The heatmap shows the relative fold 
change values (red: up regulated and blue: down regulated) as well as statistical analysis of three 
independent experiments. *, **, ***: significantly different from the vehicle control (respectively P < 
0.05, P < 0.01, and P < 0.001). a: significant concentration effect (P < 0.05). 

 

 

Biological 

function 

  PTX2 (nM)   YTX (nM)   AZA1 (nM) 

Gene 1 2 4  1 2 4  0.38 0.75 1.5 

Viability 

BNIP3 
     

** 
    

* 

CASP3 
  

*** 
        

GABARAP 
          

* 

FOS 
     

* * 
  

* * 

BCL2 
      

* 
    

Morphology GFAP a a a 
        

Cell cycle 

CDK1 
    

* *** *** 
  

* ** 

CDK2 
     

* ** 
  

** ** 

CCNA2 
    

** *** *** 
   

* 

Inflammation 

IL1R1 
      

** 
    

MAPK8 
 

* 
      

* 
  

CCL2 
     

* 
   

* * 

MYD88 
  

** 
        

RHOA 
      

* 
    

TLR4 
          

* 

FZD4 
      

* 
    

0.2 1 6 

Biological Function PTX2 (nM) YTX (nM) AZA1 (nM)
Gene 1 2 4 1 2 4 0.38 0.75 1.5

Viability

BNIP3 ** *
CASP3 ***

GABARAP *
FOS * * * *
BCL2 *

Morphology GFAP a a a

Cell cycle
CDK1 * *** *** * **
CDK2 * ** ** **

CCNA2 ** *** *** *

Inflammation

IL1R1 **
MAPK8 * *

CCL2 * * *
MYD88 **
RHOA *
TLR4 *
FZD4 *

Oxidative stress
CAT

NFE2L2 **

Gliomediator
BDNF
GDNF *

Channel and
receptor

GJA1 **
GFRA1 * * * * * *
LPA1 *

3. Discussion

Our results show that PTX2, YTX, OA, AZA1, and PlTX cause morphological alterations of EGCs,
particularly through disturbance of the neurite network, suggesting that communication between glial
cells and other cell types may be affected. Indeed, the network of neurites is highly involved in several
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interactions, such as binding and transmission of mediators [33,40]. Similar to the morphological
alterations observed in EGCs, PTX2, YTX, OA, AZA1, and PlTX have previously been shown to disrupt
the cytoskeleton in various mammalian cells through the disturbance of F-actin network in different
cell types [38,41–46]. As observed in our study, AZA1 was previously shown to decrease the number of
neurites in BE(2)-M17 cells [47] and induced an irreversible neurite rearrangement in mouse primary
neurons after 48 h of treatment [48]. Similarly to our result, no cytoskeletal alterations have been
observed with SPX on various cell lines [49]. Among the five toxins, only PTX2 induced a decrease of
cell body area in EGCs without any effect on cell viability. Similar observations were reported with
PTX2 on an epithelial rat liver cell line (Clone 9) at 24 h treatment [50]. The morphological changes of
EGCs were consistent with variations in GFAP levels, an intermediate filament protein as a key marker
of glial cell morphology. As a hallmark feature of glial stress, GFAP level is increased by cell injuries
and its level correlates with the functional state of EGCs [31,51]. A decrease of GFAP intensity was
observed with PlTX, which could be a consequence of the increase of body cell area through blebbing
as the increase of cellular area would lead to a decrease of the GFAP intensity per cm2.

No significant modifications were observed with PTX2, YTX, and AZA1 for calpain genes (CAPN1
and CAPN2), a protease involved in GFAP degradation, which reinforces the hypothesis that GFAP was
not adversely affected. Interestingly, gene expression analysis indicated no significant modifications
for GFAP except a slight decrease with PTX2. However, the discrepancy between gene expression
and protein staining could be related to the slow turn-over of GFAP in glial cells (in vitro half-life of
3–4 days) [52,53], which may explain why we did not observe any decrease of GFAP protein with PTX2.
It is noteworthy that a GFAP increase was observed in inflamed regions of the intestine [51,54,55] and
that cytokine stimulation could control GFAP up-regulation in enteric glial cells [51].

In agreement with our results, intestinal inflammation has been induced by various phycotoxins:
presence of infiltrated lymphocytes detected in the gut submucosa of mice after YTX exposure [56],
the presence of neutrophils in the lamina propria [19] as well as infiltration of inflammatory cells in
lung and liver [20] described with AZA1 and induction of an inflammatory response with OA and
AZA1 in various cell lines [22,57,58].

Besides, NF-κB nuclear translocation, a transcription factor involved in the inflammatory
response [59], as well as expression of inflammation genes were induced in EGCs with YTX and AZA1.
As reported by Nezami et al., abdominal pain is a manifestation of inflammation of the enteric nervous
system due to the secretion of inflammatory cytokines and mediators [60]. Therefore, the pain observed
after OA and AZA1 intoxication could be related to an inflammatory response. Although PTX2 did not
affect NF-κB translocation as previously reported [61], a significant increase in the expression of genes
involved in inflammatory processes were observed, suggesting that PTX2 might induce inflammation
through another pathway than NF-κB.

In addition, our data showed that toxins can alter key functions of EGCs as both S100β and
iNOS levels were increased concomitantly after OA, PTX2, YTX, and AZA1 exposure. S100β,
which is induced by activation of the RAGE receptor and MyD88 protein [31], was described to
enhance iNOS expression [62,63] and lead to inflammation through the NF-κB pathway [62,64,65],
induction of cytoskeletal modifications [66,67], and apoptosis [68]. Up regulation of S100β was
described as an adaptive response to the stress of EGCs [63]. iNOS also acts as an inflammation
mediator [69–71]. Furthermore, the production of iNOS contributes to glial dysfunctions, increasing
oxidative stress [72–74]. While our study is the first one exploring S100β and iNOS responses after
phycotoxin exposure, Franchini et al. previously observed an increase of S100 protein in Purkinje cells
after an intraperitoneal injection of YTX [75].

Our data revealed that PTX2, YTX, OA, and AZA1 induced apoptosis in EGCs supported by the
activation of caspase-3 and the increase of subG1 cells, particularly for PTX2. Caspase-3 activation has
been described in other mammalian cells with PTX2 [76], YTX [77,78], OA [47,79,80], and AZA1 [81,82].
Nevertheless, the level of γH2AX, a marker of DNA double strand breaks, was induced only with PTX2.
Shin et al. (2011) have previously shown that PTX2 induced apoptosis and DNA breaks following actin
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disruption in MCF-7 cells [83]. We suggest that apoptosis occurred later with YTX, OA, and AZA1,
or that DNA repair was more efficient. A slight decrease of cells in G2/M combined with a slight
increase of cells in G0/G1 was induced with YTX that could be a reflection that cells were entering
into a repairing state. Although DNA repair involvement has been shown with OA [84] and YTX [85],
further investigation is needed to explain these differences.

In addition to a subG1 increase, PTX2 induced an arrest of EGCs in G2/M and an increase of
polyploid cells. The G2/M blockage by PTX2 has been reported with other mammalian cells [86,87] and
it has been proposed to be a consequence of the disturbance of actin polymerization [88]. Frizzo et al.
have reported that a large amount of S100β can inhibit microtubule elongation, causing a rapid
disassembly and cell cycle perturbations [67]. Therefore, the increased levels of S100β observed with
PTX2 could be linked to G2/M arrest.

Previous studies have shown that the production of iNOS induces oxidative stress by NO
production [72–74]. NO production results in apoptosis, mitochondrial respiration failure, and glial
degeneration mediated through covalent S-nitrosylation of proteins that affect their activities. The
level of oxidative stress was significantly increased in PTX2-, YTX-, OA-, and AZA1-treated EGCs.
In agreement with our results, PTX2, YTX, and OA were shown to increase ROS production described
in a variety of mammalians cell lines [89–93]. Although AZA1 induced some oxidative stress in EGCs
(not statistically-significant), Vale and Hjornevik did not report ROS production in rat PC12 cell line
and in primary cultures of cerebellar granule cells with AZA1 [94,95]. To summarize, our observations
in EGCs suggest the involvement of the S100β–iNOS-oxidative stress pathway in EGCs following
PTX2, YTX, OA, and AZA1 exposure.

Gliomediators such as GDNF and BDNF produced by EGCs are involved in preserving intact
epithelial lining and promoting regeneration of IECs [96,97]. We observed that PTX2 and YTX treatment
increased the expression of some gliomediator genes, but this observation should be confirmed at the
protein level. As previously described [98,99], the increase of GDNF and BDNF gene expression with
PTX2 and YTX seems to be a protective response of EGCs in order to counteract the increased caspase-3,
S100β, and iNOS levels [100]. Indeed, GDNF and BDNF are known as important endogenous factors
for the regulation of apoptosis in EGC cells [98,99]. Although we did not investigate the effects of
OA on the expression of gliomediators, Louzao et al. reported the capacity of OA to induce the
neuropeptide Y (NPY) in SH-SY5Y neuroblastoma cells [38]. NPY inhibits electrolyte secretion and is
promoted by GDNF in the enteric nervous system [101].

In contrast to these four toxins, PlTX did not show any increase of active caspase-3, γH2AX, S100β,
iNOS, nuclear translocation of NF-κB, nor modifications of the cell cycle in EGCs. Previous studies
have already pointed out the absence of caspase activation but rather the induction of the cell death in
a necrosis-like manner by PlTX in various cells [44]. The rapid cell death of EGCs (beginning at 3 h of
exposure) and the increase of cell body area with PlTX are in favor of a necrotic process. Disturbance
of ion flux by PlTX [21] provokes a change of osmotic pressure and an increase of the cytoplasmic area
leading to necrosis [14,102]. As PlTX did not increase glial specific markers, early oxidative stress may
be induced independently of the S100β–iNOS pathway. The early ROS production is probably not
cell-type dependent since Pelin et al. have observed the same response in human keratinocytes [103].

Among the six toxins tested in our study, SPX showed a distinct lack of response on EGCs as
none of the endpoints investigated was affected by SPX exposure. The absence of cytotoxicity by SPX
was also reported using a large range of cell lines [49]. SPX is documented to inhibit both muscarinic
(mAChr) and nicotinic acetylcholine receptors (nAChr) [104]. Recent studies showed that EGCs
support enteric neurons through the expression of a large number of neurotransmitter receptors, such
as mAChr [33,101], especially both M3 and M5 subtypes [105]. Although SPX induced the inhibition of
M3 mAChr, it did not alter the level of M3 mAChR protein, and its toxicity seems mainly mediated by
nicotinic rather than muscarinic AChR [106,107]. These observations strengthen the absence of effects
of SPX on EGCs in our study but did not exclude that effects on enteric neurons could occur and then
affect neurotransmission, for example.
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We have highlighted that each toxin induced a different response in EGCs, as described in previous
studies, evoking singular mechanisms of action [22,108]. Table 2 summarizes the results obtained
in EGCs and illustrates the complexity of toxicological responses induced by each toxin. Figure 10
resumes our observations on EGCs for each toxin and highlights which effects are common or specific.
PTX2, YTX, OA, and AZA1 globally induced the same effects on EGCs but only PTX2 activated the
gliomediators expression. Instead of the other toxins, SPX did not impact EGCs while PlTX induced a
rapid cytotoxicity.

4. Materials and Methods

4.1. Chemicals

Penicillin, streptomycin, fetal bovine serum (FBS), and Dulbecco’s Modified Eagle’s Medium
with high glucose (DMEM) were purchased from Gibco (Cergy-Pontoise, France). Bovine serum
albumin (BSA), Tween 20, Triton X-100, and neutral red were supplied by Sigma-Aldrich (Saint Quentin
Fallavier, France). OA, PTX2, YTX, AZA1, and SPX were purchased from the National Research
Council Canada (Halifax, NS, Canada) and were dissolved in methanol (MeOH). PlTX was supplied
by Wako Chemicals GmbH (Neuss, Germany) and dissolved in ultra-pure sterile water.

4.2. Cell Culture and Toxin Exposure

The rat enteric glial cell line (EGC) (CRL2690) was obtained from the American Type Culture
Collection (Manasas, VA, USA). Cells were grown in DMEM supplemented with 10% FBS, 50 IU/mL
penicillin, and 50 µg/mL streptomycin at 37 ◦C and 5% CO2. Cells were used at passages from
38 to 58. For subculture, cells were seeded in 75 cm2 culture flasks and passaged twice a week.
For experiments, cells were seeded at 30,000 cells/cm2 in 96-well plates for cytotoxicity and HCA assays,
and at 40,000 cells/cm2 in 12-well plates for qPCR assay. The day after seeding, cells were exposed to
toxins in FBS free medium. Two vehicle controls (2.7% sterile water for PlTX, 1.25% MeOH for the
other toxins) were included in each experiment.

4.3. Cell Morphology and Neutral Red Uptake Assay

After 24 h of treatment with toxins, cell morphological changes were observed by phase contrast
microscopy (Leica Microsystems, Wetzlar, Germany), and the neutral red uptake (NRU) assay was
performed as previously described [22]. Absorbance was measured at 540 nm with a microplate
reading spectrofluorometer (Fluostar OPTIMA, BMG Labtech, Champigny sur Marne, France). Three
independent experiments were performed, and for each experiment, the median of the three technical
replicates was expressed relative to that of the vehicle control. When possible, the IC50 was determined
using GraphPad Prism Software (La Jolla, CA, USA).

4.4. High Content Analysis Multiparametric Toxicity Assays Oxidative Stress

After 4 and 24 h of toxin treatment, cells were incubated at 37 ◦C for 60 min with 10 µM
CM-H2DCFDA (Thermo Scientific, Waltham, MA, USA) in DMEM, and then for 10 min with 3 µg/mL
Hoescht 33,342 (Sigma-Aldrich) in DMEM. Fluorescence was monitored with an Arrayscan VTI HCS
Reader (Thermo Scientific) associated with a live cell chamber. The Target Activation module of the
BioApplication software was used to quantify the oxidized DCF in the cytoplasm. Cell count was
performed using Hoescht labelling. Hydrogen peroxide (H2O2) (70 µM, Gifrer Barbezat, Decines,
France) was used as the positive control. Four independent experiments were performed, and for each
experiment, the average intensity of the three technical replicates was expressed relative to that of the
vehicle control.
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Table 2. Summary of in vitro toxicity of six phycotoxins on the rat EGC cell line CRL2690. Cell viability, morphological cell changes, oxidative stress, inflammation,
cell cycle, and gliomediator expression were evaluated using RT-qPCR and high content analysis (HCA) approaches. n.e.: no effect. +, ++, +++: low, moderate,
and high effect, respectively. n.t.: not tested.

Toxins
MORPHOLOGY VIABILITY CELL

CYCLE
OXIDATIVE

STRESS INFLAMMATION GLIOMEDIATORS

Microscopy GFAP IC50 (nM) Caspase-3 γH2AX Phases Oxidative Marker NF-κB S100β iNOS Gliomediator Genes

PTX2 neurites
alteration ++ n.e. ++ ++

subG1 ↗

G2/M↗
+++

(24 h)
n.e.

(3 h) ++ ++
BDNF↗
GDNF↗

YTX neurites
alteration ++ 14.5 ++ n.e. subG1 ↗

G2/M↘
++

(24 h)
+

(8 h) ++ ++ GDNF↗

OA cell
rounding + 75.9 + n.e. subG1 ↗

+
(24 h)

++
(8 h) + + n.t.

AZA1 neurites
alteration ++ 7.0 ++ n.e. subG1 ↗

G2/M↘
+

(24 h)
++

(8 h) ++ ++ n.e.

SPX n.e n.e. n.e. n.e. n.e. n.e. n.e. n.e.
(3 h) n.e. n.e. n.t.

PlTX blebbing - 0.4 n.e. n.e. n.e. ++
(4 h)

n.e.
(3 h) n.e. n.e. n.t.
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Figure 10. Schematic representation of the effects of PTX2, YTX, OA, AZA1, SPX, and PlTX induced on the rat EGC cell line CRL2690 illustrating the common and
unique responses of each toxin. (A) Common effects and unique effects of PTX2, YTX, OA, and AZA1 on EGCs. (B) Effects of SPX on EGCs. (C) Effects of PlTX
on EGCs.



Mar. Drugs 2019, 17, 429 17 of 24

4.5. Cell Cycle Analysis, Inflammation, Genotoxicity, Apoptosis, and Glial Cell Markers

The immunofluorescence detection of the different markers was performed as previously
described [109] with the following modifications. Antibodies were purchased from Abcam (Cambridge,
UK) and BD Pharmingen Biosciences (Franklin Lakes, NJ, USA), and diluted as follows: mouse
anti-GFAP (1/100, BD-556328), rabbit anti-active caspase-3 (1/1000, ab13847), mouse anti-γH2AX ser139
(1/1000, ab26350), rabbit anti-NF-κB-p65 (1/1000, ab16502), rabbit anti-S100β (1/350, ab52642), mouse
anti-iNOS (1/350, ab49999), goat anti-mouse IgG H&L Alexa Fluor® 555 (1/1000, ab150114), and goat
anti-rabbit IgG (H&L) Alexa Fluor® 647 (1/1000, ab150079). Labeling was performed after 24 h of
treatment with the toxins except for NF-kB, for which a shorter time of exposure (3 and 8 h) was chosen.

Cells were classified in the different cell cycle phases through DAPI (Sigma-Aldrich) labelling
using the Cell Cycle Analysis module of the BioApplication software. Results were expressed relative
to the total cell number. Cytochalasin B (4.5 µg/mL, Sigma-Aldrich) was used as the control for G2/M
phase calibration. The Target Activation module of the BioApplication software was used to quantify
γH2AX (DNA double strand breaks) in the nucleus, and active caspase-3 (apoptosis), iNOS, and S100β
(glial cell markers) in the cytoplasm. Methylmethanesulfonate (MMS 400 µM, Acros Organics, Fairlawn,
NJ, USA) and cytomix (50 ng/mL TNFα (BD Pharmingen Biosciences) + 50 ng/mL Il1β (Sigma-Aldrich)
+ 50 ng/mL IFN-γ (Thermo Fisher, Walthan, MA, USA)) were used as positive controls for γH2AX and
iNOS, respectively.

NF-κB-p65 nuclear translocation was analyzed using the Compartmental Analysis module. TNFα
(50 pg/mL) was used as a positive control. Intermediate filament GFAP was described as a key marker
of glial cell functions [63]. The Neurite Detection module was used to quantify both GFAP in the
cytoplasm and body cell area.

For each well, 8 fields (20× magnification) were analyzed. Cell counts were performed using
nuclear DAPI labelling. Three independent experiments were performed and, for each experiment,
the median intensity of three technical replicates was expressed relative to that of the vehicle control.
For NF-κB-p65 nuclear translocation, the (nuclear–cytoplasm) difference of intensity was determined
and expressed relative to that of the vehicle control.

4.6. Confocal Microscopy Imaging

After 3 h of treatment with 64 nM PTX2, immunostaining of NF-κB-unit p65 was performed
as described above. Analysis was performed using an inverted laser-scanning confocal microscope
SP8 DMI 6000 CS (Leica Microsystems, Wetzlar, Germany). Images were analyzed with the LAS AF
3.3.0.10134 software (Leica Microsystems, Wetzlar, Germany) and assembled using the ImageJ software.

4.7. RT-qPCR

After 24 h of treatment with PTX2 (1, 2, and 4 nM), YTX (1, 2, and 4 nM), and AZA1 (0.38, 0.75,
and 1.5 nM) (dose corresponding at the IC20), total RNA was isolated, quantified, and assessed for
integrity as previously described [110]. A negative extraction control was included for contamination
assessment. Reverse transcription (RT) was performed with 1 µg of total RNA using the Transcriptor
Universal cDNA Master kit (Roche, Mannheim, Germany) according to the manufacturer’s instructions.
Reaction volume was set to 20 µL and RT was performed at 55 ◦C for 10 min prior to a stopping
step for 5 min at 85 ◦C. Negative RT control of RNase-free water and a no-reverse transcription
control (replacement of reverse transcriptase by RNase-free water) were included for assessing,
respectively, external contamination and absence of DNA occurring during RNA extraction. The
sequences of targeted genes were obtained from the National Center for Biotechnology Information
GenBank sequence database (https://www.ncbi.nlm.nih.gov/). For primers, design and in silico analyses
for their specificity were performed together using the Primer Basic Local Alignment Search Tool
(http://www.ncbi.nlm.nih.gov/tools/primer-blast) with, for each gene, at least one primer designed on
an exon–exon junction when possible. All primers were purchased from Sigma-Aldrich. Additional

https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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information on target genes and oligonucleotide primers are listed in Supplementary Materials Table
S1. Quantitative PCR was performed with a LightCycler® 480 (Roche) in 384-well plates. Reactions
were carried out on two technical replicates in a total volume of 5 µL containing 1X LightCycler 480
SYBRGreen I Master (Roche), 300 nM of each primer, and 2.5, 0.6, or 0.2 ng cDNA, depending of
the target gene. Negative quantitative PCR controls of RNase-free water were included in each run
for contamination assessment. The thermal cycling conditions were 95 ◦C for 5 min, followed by 45
amplification cycles of denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 10 s, and polymerization at
72 ◦C for 10 s. In order to check the specificity of each amplicon, the melting curve was assessed from
60 ◦C to 95 ◦C with a slow temperature ramp (0.06 ◦C/s) and 10 acquisitions per 1 ◦C. LightCycler® 480
software was used for quantitative analysis. Calibration curves were established for each gene from a
serial two-fold dilution of a reference sample (pool of cDNA samples). According to these calibration
curves, for each sample, mean relative amounts of mRNA of the targeted genes were calculated and
then normalized to that of the reference gene. Using NormFinder software, the gene GAPDH was
chosen as a reference gene since it did not exhibit any significant variation of expression among the
samples. The normalized means were used for statistical analyses and values were presented as
arbitrary units. Three independent experiments were performed.

4.8. Statistics

GraphPad Prism software was used for statistical analyses. An analysis of variance (ANOVA) was
performed, and, when the effect of concentration was significant (P < 0.05), the values were compared
to the control using the Dunnett’s test. Differences were significant at P < 0.05. The values presented
are means ± SEM.

5. Conclusions

In conclusion, our data provide novel insight on the toxicity of phycotoxins on glial cells present
along the gastro–intestinal tract. This study demonstrated that EGCs are sensitive to most of the tested
phycotoxins, with the exception of SPX.

Globally, our results suggest that the response of phycotoxins on the intestinal epithelium may
involve the enteric nervous system and that EGCs may play a role in the symptoms induced by OA,
AZA1, and PlTX in humans. Although no effects have been reported in humans from PTX2 and YTX,
these toxins could affect EGCs. Further toxicological investigations are required to elucidate the role of
EGCs in the acute toxicity of phycotoxins.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/7/429/s1,
Table S1: Summary of primers used for qPCR analysis, Table S2: Relative gene expression in EGCs after 24 h
exposure to PTX2, YTX and AZA1.
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