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Abstract: Alginate lyases have been widely used to prepare alginate oligosaccharides in food,
agricultural, and medical industries. Therefore, discovering and characterizing novel alginate lyases
with excellent properties has drawn increasing attention. Herein, a novel alginate lyase FsAlyPL6 of
Polysaccharide Lyase (PL) 6 family is identified and biochemically characterized from Flammeovirga
sp. NJ-04. It shows highest activity at 45 °C and could retain 50% of activity after being incubated at
45 °C for 1 h. The Thin-Layer Chromatography (TLC) and Electrospray lonization Mass Spectrometry
(ESI-MS) analysis indicates that FsAlyPL6 endolytically degrades alginate polysaccharide into
oligosaccharides ranging from monosaccharides to pentasaccharides. In addition, the action pattern
of the enzyme is also elucidated and the result suggests that FsAlyPL6 could recognize tetrasaccharide
as the minimal substrate and cleave the glycosidic bonds between the subsites of -1 and +3.
The research provides extended insights into the substrate recognition and degradation pattern of
PL6 alginate lyases, which may further expand the application of alginate lyases.
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1. Introduction

Alginate is a linear acidic polysaccharide that constitutes the cell wall of brown algae [1]. It
consists of two uronic acids, namely the 3-p-mannuronate (M) and the -L-guluronate (G), which are
randomly arranged into different blocks [2]. The alginate has been widely used in food, agricultural and
medical industries due to its favorable properties and versatile activities. However, the applications
of alginate have been greatly limited by its disadvantages such as high molecular weight, low
solubility, and poor bioavailability. In addition, the alginate molecule could not get into the circulation
system due to its huge molecular structure. Therefore, it could not exhibit its physiological activities.
Alginate oligosaccharides, as the degrading products of alginate, are smaller with excellent solubility
and bioavailability than the polysaccharides. In addition, the physiological effects, such as anticoagulant,
antioxidant, and antineoplastic activities, can also be retained after degradation. Therefore, they
have been widely used as anticoagulants, plant growth accelerators and tumor inhibitors in food,
agricultural, and medical fields [3-5]. Therefore, it holds great promise to degrade the alginate to
prepare functional alginate oligosaccharides [6].

Alginate lyases could degrade alginate to oligosaccharides by (3-elimination mechanism and
therefore they belong to the Polysaccharides Lyase (PL) family [7]. Recently, alginate lyases have
drawn increasing attention for preparing alginate oligosaccharides with the advantages such as high
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efficiency and specificity and mild degrading conditions [8]. Up to now, numerous alginate lyases
have been isolated, identified, and characterized [9]. Unfortunately, only a few show high activity
and thermal stability, which are essential properties for industrial applications [10,11]. Previously, two
alginate lyases with excellent characteristics have been identified from the Flammeovirga sp. NJ-04.
In this study, a novel alginate lyase of PL 6 family has been cloned and characterized from the strain.
The biochemical properties and degrading pattern of the enzyme have been investigated and this
research would further expand the applications of alginate lyases in related fields.

2. Results and Discussion

2.1. Sequence Analysis of FsAlyPL6

The gene of FsAlyPL6 was cloned and analyzed from Flammeovirga sp. NJ-04. The open reading
frame (ORF) consisted of 2238 bps and encoded a putative alginate lyase of 745 amino acid residues with
a theoretical molecular mass of 83.09 kDa. According to the conserved domain analysis, the FsAlyPL6
contained an N-terminal catalytic domain (Met!-Asn3%) and a C-terminal domain (G1n367—Lys745).
Based on the sequence alignments shown in Figure 1, FsAlyPL6 shared the highest identity (45%) with
AlyGC (BAEMO00000000.1) from Glaciecola chathamensis SI8K6T, which indicated FsAlyPL6 is a new
member of family PL6. In addition, FsAlyPL6 contained three conserved regions “NG(G/A)E”, “KS”,
and “R(H/S)G” (marked in Figure 1), which are involved in substrate binding and catalytic activity [12].
The alginate lyases of PL6 family can be divided into three subfamilies, namely subfamilies 1, 2, and
3. In order to confirm the subfamilies of FsAlyPL6, the phylogenetic tree was used to compare the
sequence homology with alginate lyases from diverse subfamilies. As is shown in Figure 2, FsAlyPL6
clustered with representative enzymes of subfamily 1, which indicated FsAlyPL6 is a new member of
the subfamily 1 alginate lyase.

2.2. Expression and Purification of FsAlyPL6

The gene of FsAlyPL6 was ligated into pET-21a(+) and then the recombinant plasmid was
transformed into E. coli BL21 (DE3) for heterologously expression. The recombinant FsAlyPL6 was then
purified by Ni-NTA sepharose affinity chromatography and analyzed by SDS-PAGE (Figure 3). A clear
band (about 80 kDa) can be observed in gel, which was consistent with the theoretical molecular
mass of 83.09 kDa. Three kinds of substrates (sodium alginate, polyM, and polyG) were employed
to determine the substrate specificity of FsAlyPL6. As shown in Table 1, FsAlyPL6 exhibited higher
activity towards sodium alginate (483.95 U/mg) and it showed lower activity towards to polyM
(221.5 U/mg). However, it showed the lowest activity towards to polyG (19.35 U/mg). Accordingly,
FsAlyPL6 is a polyMG-preferred lyase like most of PL6 family alginate lyases with the exceptions of
Patl3640 from Pseudoalteromonas atlantica T6éc and Pedsa0631 from Pedobacter saltans [13]. Both of them
preferred polyG to polyMG blocks. In addition, TsAly6A from Thalassomonas sp. LD5 [14], OalS6 from
Shewanella sp. Kz7 [15], OalCé6 from Cellulophaga sp. SY116 [16], and AlyF from Vibrio sp. OUOQ2 [17]
are all characterized as polyG-preferred alginate lyases. The kinetic parameters of FsAlyPL6 towards
sodium alginate, polyM, and polyG were calculated based on the hyper regression analysis. As shown
in Table 1, the K;, values of FsAlyPL6 towards sodium alginate, polyM, and polyG were 0.50 mg/mL,
1.52 mg/mL, and 1.62 mg/mL, respectively. FsAlyPL6 had a lower K}, value towards sodium alginate
than to polyM and polyG. Accordingly, FsAlyPL6 exhibited higher affinity towards MG-block than to
M-block and G-block. The k. values of FsAlyPL6 towards sodium alginate, polyM and polyG were
33.98571,17.66 57!, and 4.98 s71, respectively. It indicated that FsAlyPL6 had higher catalytic efficiency
towards MG-block than to the other two blocks.
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Figure 1. Multiple amino acid sequences alignment of AlyPL6 and other alginate lyases of PL6 family:
AlyGC (BAEM00000000.1) from Glaciecola chathamensis S18K6T, polysaccharide lyase (ABD79298.1)
from Saccharophagus degradans 2—40, and TsAly6A (MF958451) from Thalassomonas sp. LD5. Three boxes
enclose conserved regions. Residues in FsAlyPL6, which are responsible for the enzymatic activity
Ca?t binding and catalysis, are marked in triangle, dots, and stars, respectively.
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Figure 2. Phylogenetic analysis of FsAlyPL6 with other alginate lyases of PL6 family based on
amino acid sequence comparisons. The species names are indicated along with accession numbers of
corresponding alginate lyase sequences. Bootstrap values of 1000 trials are presented in the branching
points. The subfamilies 1, 2, and 3 are marked with stars, dots, and triangle, respectively.
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Figure 3. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified
FsAlyPL6. Lane M protein: restrained marker (Thermo Scientific, Waltham, MA, USA); lane 1:

purified FsAlyPLeé.
Table 1. Specificity and kinetics of FsAlyPL6.
Substrate Sodium Alginate PolyM PolyG
Activity (U/mg) 483.95 2215 19.35
Ky (mg/mL) 0.50 1.52 1.62
Vinax (nmol/s) 1.36 0.71 0.20
keat (s71) 33.98 17.66 498
keat/Km (mL-s~1-mg™1) 62.91 11.58 3.08

2.3. Biochemical Characterization of FsAlyPL6

The optimal temperature of FsAlyPL6 is 45 °C and it retains more than 90% of maximal activity
after being incubated at 45 °C for 1 h (Figure 4A). Compared with other PL6 family alginate lyases,
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FsAlyPL6 exhibits preferable thermal characteristics than most PL6 family alginate lyases. For example,
AlyF of Vibrio OU02 showed the maximal activity at 30 °C [17] and AlyGC from G. chathamensis SISK6T
has an optimal temperature of 30 °C [12]. OalC6 of Cellulophaga sp. SY116 exhibits highest activity at
40 °C and retains about 80% of highest activity after being incubated at 40 °C for 1 h [16]. In addition,
FsAlyPL6 retains 95% activity after being incubated at 35 °C for 60 min and inactivated gradually
with temperature increased (Figure 4B). This remarkable characteristic indicated FsAlyPL6 possesses
great potential in industrial applications for preparation alginate oligosaccharides. The optimal pH of
FsAlyPL6 is 9.0 and it retains about 90% activity incubated at pH 9.0-10.0 for 12 h (Figure 4C,D), which
indicated FsAlyPL6 is an alkaline-stable lyase. To the best of our knowledge, few alginate lyases of
PL6 family are alkaline-stable lyases, and most of them exhibit the maximal activities around neutral
pH values such as OalC6 of Cellulophaga sp. SY116 has an optimal pH of 6.6 and it retains only 60%
of its maximal activity after being incubated at pH 6.0 for 6 h [16]. The OalS6 from Shewanella sp.
Kz7 exhibits maximal activity at pH 7.2 and retains 80% after being hatched at pH 6.0-8.0 for 24 h [15].
The influences of metal ions on enzyme activity were also investigated. As shown in Table 2, like
TsAly6A from Thalassomonas sp. LD5 [14], the activity of FsAlyPL6 can be activated by Ca?* and Mg?™.
FsAlyPLS6 is inhibited by various divalent metal ions such as Cu?*, Zn%* and Ni?*, which is similar to
OalS6 from Shewanella sp. Kz7 [15].
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Figure 4. Biochemical characterization of FsAlyPL6: (A) The optimal temperature and thermal stability
of FsAlyPL6; (B) the thermal-induced denaturation of FsAlyPL6; (C) the optimal pH of the FsAlyPL6;
(D) the pH stability of FsAlyPL6.

Table 2. Cont.

Reagent Relative Activity (%)
Control 100.00 = 2.97
K* 93.26 +2.23
Na* 118.57 + 1.08
Ca?* 104.33 + 1.12
Mg?* 102.31 +2.78

Co%* 22.14 +1.32




Mar. Drugs 2019, 17, 323 60of 11

Table 2. Effects of metal ions on activity of FsAlyPL6.

Reagent Relative Activity (%)
Zn%+ 24.88 + 3.57
Cu2* 15.28 £ 1.20
Ni2+ 50.19 + 3.93
MnZ* 6.46 + 0.60
Fe3+ 26.55 +1.21

2.4. Action Pattern and Substrate Docking of FsAlyPL6 Product Analysis

To elucidate the action mode of FsAlyPL6, the degradation products of three substrates for
different times (0—48 h) were analyzed by TLC (Figure 5). As the degrading process continues, three
kinds of substrates are degraded into oligosaccharides with lower degrees of polymerization (DPs)
(2-5) and monosaccharide, which indicated that FsAlyPL6 can cleave the glycosidic bonds within
the substrates in an endolytic manner. The ESI-MS results indicated that degradation products of
FsAlyPL6 towards the three different substrates include monosaccharide, and oligosaccharides with
different DPs (2-5) can be detected (Figure 6A—C). Most of PL6 family enzymes are endo-type alginate
lyases, which produce oligosaccharides with DPs (2—4). However, the Patl3640 from Pseudoalteromonas
atlantica Téc [13], Pedsa0631 from Pedobacter saltans [13], OalS6 from Shewanella sp. Kz7 [15], and OalC6
from Cellulophaga sp. SY116 degrade the substrates into monosaccharides in an exolytic manner [16].
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Figure 5. TLC analysis of degrading products of FsAlyPL6 towards alginate (A), polyM (B), and polyG
(©). Lane M, the oligosaccharide standard; lanes 0-11, the samples taken by 0 min, 5 min, 10 min, 15
min, 30 min, 60 min, 2 h, 6 h, 12 h, 24 h, and 48 h, respectively.
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Figure 6. ESI-MS analysis of products of FsAlyPL6 towards alginate (A), polyM (B), and polyG (C).

The three-dimensional model of the FsAlyPL6 was constructed by PHYRE2 and the tetrasaccharide
(MMMM) was docked into the FsAlyPL6. Because the sequence similarity between FsAlyPL6 and
AlyGC was high (45%), the protein model was successfully constructed with 100% confidence.
As shown in Figure 7A, the overall structure of FsAlyPL6 was predicted to fold into a “twin tower-like”
structure (Figure 7A), which is similar to the structure of AlyGC (Figure 7B). However, AlyGC
is an exo-type alginate lyase and FsAlyPL6 degrade alginate into oligosaccharide in an endolytic
manner. The key residues for substrate recognition were identified by the sequence alignment and
protein—substrate interactions. As shown in Figure 7C, the residues Ry39, Rog3, K218, E213, and Y33, are
were highly conserved and involved in the interaction between the protein and substrates in subsites
-1, +1, 42 and +3, respectively (Figure 8A,B). Based on the docking and (3-elimination mechanism,
the residues K15 and Rp3g acted as the Bronsted base and Brensted acid, respectively, in the cleavage
reaction of FsAlyPL6 on alginate, which is consistent with the residues of AlyGC (Figure 8B).
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Figure 7. (A) Overall structure of FsAlyPL6; (B) the structural comparison of FsAlyPL6 (green) and
AlyGC (yellow); (C) sequence alignments of FsAlyPL6 and AlyGC.

B

Figure 8. (A) Stereo view of the alginate tetrasaccharide (MMMM) bound to the tunnel-shaped active
site of FsAlyPL6. (B) The presentation of catalytic residues responsible for binding and catalyzing
the substrate.

3. Materials and Methods

3.1. Materials and Strains

Sodium alginate (M/G ratio: 77/23) was purchased from Sigma-Aldrich (St. Louis, MO, USA).
PolyG and polyM (purity: about 95%; M/G ratio: 3/97 and 97/3, respectively) were purchased from
Qingdao BZ Oligo Biotech Co., Ltd. (Qingdao, China). Flammeovirga sp. NJ-04 was isolated from the
South China Sea and conserved in our laboratory. It was cultured at 35 °C in 2216E medium (Difoc).
Escherichia coli DH5« and E. coli BL21 (DE3) were used for plasmid construction and as the hosts for



Mar. Drugs 2019, 17, 323 9of 11

gene expression, respectively. These strains were cultured at 37 °C in Luria-Bertani (LB) broth or on LB
broth agar plates (LB broth was supplemented with 1.5% agar and contained 100 pg/mL ampicillin).

3.2. Cloning and Sequence Analysis of Alginate Lyase

As previously reported, a gene cluster for degrading alginate has been identified within the genome
of the strain Flammeovirga sp. NJ-04 [10]. According to the sequence of the putative alginate lyase gene
sequence (WP_044204792.1), a pair of special primers was designed as described in Supplementary
Materials. For gene expression, the alginate lyase gene FsAlyPL6 was subcloned and then ligated
into pET-21a(+) expression vector. The theoretical molecular (Mw) and isoelectric point (pI) were
calculated using Compute pI/Mw tool (https://web.expasy.org/compute_pi/). Molecular Evolutionary
Genetics Analysis (MEGA) Program version 6.0 (Center for Evolutionary Medicine and Informatics,
The Biodesign Institute, Tempe, AZ, USA) was applied to construct a phylogenetic tree through a
neighbor-joining method based on alginate lyase protein sequences of PL6 family. The Vector NTI
(Invitrogen, Thermo Scientific, Waltham, MA, USA) was used to obtain multiple sequence alignment.
The homology modeling and docking was built by Protein Homology/analogY Recognition Engine V
2.0 (Structural Bioinformatics Group, Imperial College, London, Britain).

3.3. Hereologous Expression and Purification of the Recombinant Enzyme

The recombinant plasmid pET-21a(+)-FsAlyPL6 was transformed into E. coli BL21 (DE3). It was
then cultured in an LB medium (containing100 pg/mL of ampicillin) at 37 °C by shaking at 200 rpm
for 5 h, followed by being induced with 0.1 mM IPTG at 25 °C for 36 h when ODgq reached 0.6.
The purification of FsAlyPL6 was performed as follows. The cells were harvested by centrifugation
and then sonicated in lysis buffer (50 mM Tris-HCl with 300 mM NaCl, pH 8.0). The cell homogenate
that contained recombinant protein were purified by using a His-trap column (GE Healthcare, Uppsala,
Sweden). SDS on 12% (w/v) resolving gel was applied to detect the purity of the recombinant protein.

3.4. Substrate Specificity and Enzymatic Kinetics

The reaction was performed using 20 pL FsAlyPL6 (4 pg) mixed with 180 puL 0.8% alginate,
polyM, and polyG respectively. The enzyme activity was measured using the ultraviolet absorption
method [11]. One unit was defined as the amounts of enzyme required to increase absorbance at
235 nm (extinction coefficient: 6150 M~!-cm™!) by 0.1 per min. The kinetic parameters of the FsAlyPL6
towards alginate, polyM, and polyG were investigated by measuring the enzyme activity with these
substrates at different concentrations (0.4-10 mg/mL). Velocity (V), Ky;, and V;ax values were calculated
as previously reported [10]. The radio of Vi, versus enzyme concentration ([E]) was used to calculate
the turnover number (kat) of the enzyme.

3.5. Biochemical Characterization of the Recombinant Enzyme FsAlyPL6

The effects of temperature on the enzyme activity were determined by testing the activity
at different temperatures (35 °C to 60 °C). The thermal stability was characterized by measuring
the residual activity after the purified FsAlyPL6 was incubated at 35-60 °C for 1 h. Furthermore,
the thermally induced denaturation was also determined by measuring the residual activity after
incubating the enzyme at 35-50 °C for 0-60 min. To investigated the optimal pH of the FsAlyPL6,
1% alginate mixed with different buffers at 45 °C (50 mM phosphate—citrate (pH 4.0-5.0), 50 mM
NaH,;PO4-Nap,HPO4 (pH 6.0-8.0), 50 mM Tris-HCl (pH 7.0-9.0), and glycine-NaOH (pH 9.0-12.0))
were used as the substrates and the purified enzyme incubated with these substrates under standard
conditions. Moreover, the pH stability was evaluated based on the residual activity after being
incubated with indifferent buffers (pH 4.0-12.0) for 20 h. The effects of metal ions on the enzymatic
activity were performed by incubating the FsAlyPL6 with substrates that contained various metal
compounds with a final concentration of 1 mM. The reaction performed under standard tested
conditions and the substrates blend without any metal ion was taken as the control.
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3.6. Action Pattern and Degradation Product Analysis

In order to elucidate the action pattern of the FsAlyPL6, the thin-layer chromatography (TLC) was
applied to analyze the degrading products of FsAlyPL6 towards sodium alginate, polyM and polyG.
The reaction and treatment of the samples were performed as previously reported [10]. In order
to investigate the composition of the degrading products, ESI-MS was employed as follows: The
supernatant (2 uL) was loop-injected to an LTQ XL linear ion trap mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) after centrifugation. The oligosaccharides were detected in a
negative-ion mode using the following settings: ion source voltage, 4.5 kV; capillary temperature,
275-300 °C; tube lens, 250 V; sheath gas, 30 arbitrary units (AU); and scanning the mass range,
150-2000 my/z.

3.7. Molecular Modeling and Docking Analysis

Protein Homology/analogY Recognition Engine V 2.0 was applied to construct the
three-dimensional structure of FsAlyPL6 according to the known structure of alginate lyase AlyGC
from Glaciecola chathamensis S18K6T (PDB: 5GKD) with a sequence identity of 45%. The molecular
docking of the FsAlyPL6 and MMMM was performed using Molecular Operating Environment (MOE,
Chemical Computing Group Inc., Montreal, QC, Canada). The ligand-binding sites were defined using
the bound ligand in the homology models. PyMOL (http://www.pymol.org) was used to visualize and
analyze the modeled structure and to construct graphical presentations and illustrative figures.

4. Conclusions

In this study, we reported a new PL family alginate lyase FsAlyPL6 from the marine Flammeovirga
sp. NJ-04. It preferred to degrade the polyMG block and showed highest activity at 45 °C and could
retain 50% of activity after being incubated at 45 °C for 1 h. The FsAlyPL6 endolytically degraded
alginate polysaccharide and released oligosaccharides with DPs of 1-5. In addition, it could recognize
tetrasaccharide as the minimal substrate and cleave the glycosidic bonds between the subsites of —1
and +3 to release oligosaccharides. The research provides extended insights into the degradation
pattern of PL6 alginate lyases and further expands the application of alginate lyases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/6/323/s1,
Table S1: The primers for cloning the gene of FsAlyPLe6.
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