Supplementary Files:

Experimental and Computational Study to Reveal the Potential of Non-Polar Constituents from *Hizikia fusiformis* as Dual Protein Tyrosine Phosphatase 1B and α -Glucosidase Inhibitors

Su Hui Seong ^{1,†}, Duc Hung Nguyen ^{2,†}, Aditi Wagle ¹, Mi Hee Woo ^{2,*}, Hyun Ah Jung ^{3,*} and Jae Sue Choi ^{1,*}

- ¹ Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea; seongsuhui@naver.com (S.H.S.), aditiwagle05@gmail.com (A.W.)
- ² College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea; duchung1982fushico@gmail.com (D.H.N.)
- ³ Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
- * Correspondence: woomh@cu.ac.kr (M.H.W.); jungha@jbnu.ac.kr (H.A.J.); choijs@pknu.ac.kr (J.S.C.); Tel.: +82-53-850-3620 (M.H.W); +82-63-270-4882 (H.A.J.); +82-51-629-5845 (J.S.C.)
- ⁺ These authors contributed equally to this work.

Contents

Figure S1. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **13**.

Figure S2. HMBC-NMR spectrum of compound 13.

Figure S3. COSY-NMR spectrum of compound 13.

Figure S4. HSQC-NMR spectrum of compound 13.

Figure S5. HR-ESI-MS data of compound 13.

Figure S6. FT-IR spectrum of compound 13

Figure S7. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **1**.

Figure S8. EI-MS data of compound 1.

Figure S9. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **2**.

Figure S10. EI-MS data of compound 2.

Figure S11. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **3**.

Figure S12. EI-MS data of compound **3**.

Figure S13. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **4**.

Figure S14. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **5**.

Figure S15. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **6**.

Figure S16. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound 7.

Figure S17. EI-MS data of compound 7.

Figure S18. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **8**.

Figure S19. EI-MS data of compound 8.

Figure S20. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of

compound 9.

Figure S21. EI-MS data of compound 9.

Figure S22. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **10**.

Figure S23. EI-MS data of compound 10.

Figure S24. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **11**.

Figure S25. EI-MS data of compound 11.

Figure S26. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **12**.

Figure S27. EI-MS data of compound 12.

Figure S28. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **14**.

Figure S29. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **15**.

Figure S30. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **16**.

Figure S31. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **17**.

Figure S32. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **18**.

Figure S33. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **19**.

Figure S34. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **20**.

Figure S35. ¹³C (100 MHz in CD₃OD)- and ¹H (400 MHz in CD₃OD)-NMR spectrum of compound **21**.

Table S1. Molecular weight and molecular formula of isolated compounds.

Figure S1. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound **13**.

Figure S2. HMBC-NMR spectrum of compound 13.

Figure S3. COSY-NMR spectrum of compound 13.

Figure S4. HSQC-NMR spectrum of compound 13.

Figure S5. HR-ESI-MS data of compound 13.

Figure S6. FT-IR spectrum of compound 13.

Figure S7. ¹³C (100 MHz in CDCl₃)- and ¹H (400 MHz in CDCl₃)-NMR spectrum of compound 1.

Figure S8. EI-MS spectrum of compound 1.

Figure S9. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **2**.

Figure S10. EI-MS spectrum of compound 2.

Figure S11. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **3**.

Figure S12. EI-MS spectrum of compound 3.

Figure S13. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **4**.

Figure S14. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound 5.

Figure S15. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **6**.

Figure S16. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound 7.

Figure S17. EI-MS spectrum of compound 7.

Figure S18. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **8**.

Figure S19. EI-MS spectrum of compound 8.

Figure S20. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **9**.

Figure S21. EI-MS spectrum of compound 9.

Figure S22. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **10**.

Figure S23. EI-MS spectrum of compound 10.

Figure S24. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **11**.

Figure S25. EI-MS spectrum of compound 11.

Figure S26. ¹³C (100MHz in CDCl₃)- and ¹H (400MHz in CDCl₃)-NMR spectrum of compound **12**.

Figure S27. EI-MS spectrum of compound 12.

Figure S28. ¹³C (100MHz in CD₃OD)- and ¹H (400MHz in CD₃OD)-NMR spectrum of compound 14.

Figure S29. ^{13}C (100MHz in CD₃OD)- and ^1H (400MHz in CD₃OD)-NMR spectrum of compound 15.

Figure S30. ^{13}C (100MHz in CD₃OD)- and ^1H (400MHz in CD₃OD)-NMR spectrum of compound 16.

Figure S31. ${}^{13}C$ (100MHz in CD₃OD)- and ${}^{1}H$ (400MHz in CD₃OD)-NMR spectrum of compound 17.

Figure S32. ¹³C (100MHz in CD₃OD)- and ¹H (400MHz in CD₃OD)-NMR spectrum of compound 18.

Figure S33. ¹³C (100MHz in CD₃OD)- and ¹H (400MHz in CD₃OD)-NMR spectrum of compound 19.

Figure S34. ¹³C (100MHz in CD₃OD)- and ¹H (400MHz in CD₃OD)-NMR spectrum of compound 20.

Figure S35. ¹³C (100MHz in CD₃OD)- and ¹H (400MHz in CD₃OD)-NMR spectrum of compound **21**.

Compounds	Molecular	Observed molecular weight	Exact molecular weight
	formula		
1	$C_{16}H_{30}O_2$	254 ª	254.2245
2	$C_{16}H_{32}O_2$	256 ª	256.2402
3	C18H34O2	282 ª	282.2558
4	C29H48O2	428 ª	428.3654
5	C29H48O	412 ª	412.3705
6	C29H48O2	428 ª	428.3654
7	$C_{17}H_{28}O_2$	264 ª	264.2089
8	$C_{18}H_{30}O_2$	278 ª	278.2245
9	C20H32O2	304 ª	304.2402
10	$C_{18}H_{28}O_2$	276 ª	276.2089
11	C20H30O2	302 ª	302.2245
12	C17H28O2	264 ª	264.2089
13	C34H54O9	607.3820 [M + H] ^{+ b}	607.3846 (C34H55O9)
14	C19H22O6	_ c	346.1416
15	C19H24O7	_ c	364.1522
16	C13H18O6	_ c	270.1103
17	$C_{11}H_{16}O_3$	219.0992 [M + Na] ^{+ b}	219.0997 (C11H16NaO3)
18	$C_{42}H_{62}O_{16}$	_ c	822.4037
19	$\overline{C_{43}H_{64}O_{16}}$	c	836.4194
20	C15H22O4	c	266.1518
21	C ₈ H ₁₁ NO	c	137.0840

Table S1. Molecular weight and molecular formula of 21 isolated compounds.

^a Observed from EI-MS.

^b Observed from ESI-MS.

^a Structures were elucidated based on the NMR data.