&ﬁ marine drugs MBPY

Article

Phytoene Accumulation in the Novel Microalga
Chlorococcum sp. Using the Pigment Synthesis
Inhibitor Fluridone

Kelly Laje !, Mark Seger (%, Barry Dungan !, Peter Cooke 3, Juergen Polle %5 and
F. Omar Holguin 1*

1 Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003,

USA; klaje@nmsu.edu (K.L.); bdungan@nmsu.edu (B.D.)

AzCATI, School of Sustainable Engineering and the Built Environment, Arizona State University, Mesa,

AZ 85212, USA; msegerl@asu.edu

3 Core University Research Resources Laboratory, New Mexico State Univesrity, Las Cruces, NM 88003, USA;
phcooke@nmsu.edu

4 Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA;
JPolle@brooklyn.cuny.edu

5 The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

*  Correspondence: frholgui@nmsu.edu; Tel.: +575-646-5913

check for
Received: 26 February 2019; Accepted: 19 March 2019; Published: 22 March 2019 updates

Abstract: Carotenoids are lipophilic pigments found in plants and algae, as well as some bacteria,
archaea, and fungi that serve two functions—(1) as light harvesting molecules—primary carotenoids,
and (2) as antioxidants, acting against reactive oxygen species—secondary carotenoids. Because of
their strong antioxidant properties, they are also valuable for the development of anti-aging
and photo-protective cosmetic applications. Of particular interest is the carotenoid phytoene,
for its colorless and UV absorption characteristics. In this study, we targeted a reduction of
phytoene desaturase (PDS) activity with the pigment-inhibiting herbicide 1-methyl-3-phenyl-5-[3-
(trifluoromethyl)phenyl]pyridin-4-one (fluridone), which leads to the over-accumulation of phytoene
in the recently characterized microalgal strain Chlorococcum sp. (UTEX B 3056). After post-incubation
with fluridone, phytoene levels were measured at ~33 ug/mg cell tissue, as opposed to non-detectable
levels in control cultures. Hence, the novel microalga Chlorococcum sp. is a viable candidate for the
production of the high-value carotenoid phytoene and subsequent applications in cosmeceuticals, as
well as more obvious nutraceutical and pharmaceutical applications.
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1. Introduction

Microalgae are known to be potential sources of natural products, abundant and versatile in their
activity and applications. Of particular importance are the lipophilic pigments, carotenoids. Commonly
used in the food and nutraceuticals industry as colorants and dietary supplements, carotenoids have
received growing popularity in cosmetics in large part, due to their antioxidant properties [1-4].
Synthesized in chloroplasts, carotenoids are a part of the photosynthetic complex (primary carotenoids),
absorbing light in the 400-500 nm range, and also acting as a defense system in the presence of high
light intensity or oxidative stress (secondary carotenoids) [5-7]. Secondary carotenoids act to quench
singlet oxygen species and trap peroxyl radicals, protecting the cell from lipid peroxidation in both
plants and animals [8-12]. Studies have shown that carotenoids also possess anti-inflammatory
and immunomodulatory effects in animal tissues [8,13,14]. These qualities have made secondary
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carotenoids the subject of intense research surrounding anti-cancer therapies and heart disease, among
others [8,15,16].

Carotenoids are either pure hydrocarbon molecules (carotenes) or oxygenated derivatives of
carotenes (xanthophylls), all of which are comprised of a 40 carbon atom chain. One conjugated
double bond is added with every carotenoid produced downstream of phytoene, in the synthetic chain,
having a direct impact on the antioxidant strength of the molecule [8,16,17]. Thus, carotenoids are of
particular importance for their potential as a natural source of antioxidants. The first carotenoid in
the terpenoid pathway is phytoene; a symmetric, linear branched carotenoid with nine conjugated
double bonds, produced from two C20 molecules of geranylgeranyl pyrophosphate (GGPP), and
catalyzed by the enzyme phytoene synthase (PSY) [17,18]. In plants and green algae, phytoene
progresses to phytofluene and C-carotene via phytoene desaturase (PDS). Subsequently, the carotenoid
biosynthesis pathway proceeds to the carotenes-lycopene, and by ring introduction, to «-carotene
and [3-carotene; and then further to the xanthophylls-lutein (from x-carotene) and zeaxanthin (from
[-carotene), respectively [5,16,18]. Secondary carotenoids are synthesized and accumulated during
unfavorable growth conditions, such as high irradiance and/or nutrient deprivation, in which
carotenoids contribute to cell protection (e.g., light absorption at a photosynthetic range beyond
the capacity of chlorophyll) [19,20]. Depending on the species of alga, these secondary carotenoids may
accumulate in carotene globules within the chloroplast [21,22] or in oil bodies in the cytosol, as seen
during astaxanthin production in Haematococcus pluvialis [23,24].

Phytoene absorbs light in the ultraviolet range, and is colorless in nature; qualities that add
to its value in cosmetic formulation as a skin protectant [13,25]. Current sources of phytoene come
from tomato extract [26,27] and the carotenogenic microalga Dunaliella bardawil [28-30]. However,
phytoene is difficult to accumulate in large quantities because, as a precursor molecule, it is used
in the downstream synthesis of other primary and secondary carotenoids [18]. Phytoene levels in
tomato (ripe) and D. bardawil (stress-induced) range from ~2-9 ug/g dry weight [31-33], and 8%
(80 mg/g) [28], respectively.

Previous studies successfully induced the over accumulation of phytoene through the use of
pigment synthesis inhibiting herbicides [29,31-33]. These bleaching herbicides target the enzyme
phytoene desaturase (PDS), responsible for the downstream production of carotenoids past the
metabolic step of phytoene production [34]. The inability to synthesize carotenoids that are essential
for structure and function of photosynthetic complexes results in chlorophyll degradation, and
ultimately, plant cell death [10,35-37]. At non-lethal doses, effective inhibition of PDS leads to the
over-accumulation of phytoene [23,29,31,32,35,38]. This has been demonstrated in the microalgae
D. bardawil and H. pluvialis, in which phytoene accumulation increased sharply as a result of exposure
to bleaching herbicides [29,31-33]. Chlamydomonas reinhardtii, H. pluvialis, and the cyanobacteria
Synechococcus have been studied extensively for norflurazon (5-amino-4-chloro-2-[3-(trifluoromethyl)phenyl]
pyridazin-3-one) and fluridone (1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]pyridine-4-one)
resistance mechanisms and mutagenesis, as well as herbicide inhibition activity [33,34,38—41].

In this study, our objective was to over-accumulate the carotenoid phytoene in a novel strain
of green microalga, Chlorococcum sp. (UTEX B 3056), a fresh-water algae that closely resembles
C. reinhardtii [42—44]. Chlorococcum exists as a unicellular, spheroidal organism, in either a vegetative
(non-motile) or a zoospore (bi-flagellate) state [42,43]. We chose to study this strain of Chlorococcum sp.
because it is highly carotenogenic, fast-growing, produces large quantities of biomass, and can be
cultivated outdoors in raceway-type ponds [42,45]. We optimized the concentration of fluridone to
facilitate the accumulation of phytoene without inducing bleaching and cell death. Furthermore, we
characterized the effects of phytoene accumulation on the carotenoid and fatty acid (FA) profiles of
cell extracts.
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2. Results

2.1. Strain Identification & Morphology

Briefly, sequencing of the 185 rDNA confirmed previous characterization of the ITS2 region by
Neofotis, et al., linking this alga to Chlorococcum sp. (Supplementary Figure S1) [42]. Neofotis, et al.
pointed out that query coverage is low with this species and that unambiguous identification of this
group at the species level, even with use of the ITS2 marker, is not definitive due to a lack of sequence
availability in the public databases [42]. Morphological characterization via bright field and scanning
electron microscopy agreed with molecular taxonomy; these images are provided in supplementary
materials (Supplementary Figure S2).

2.2. Microplate Bioassays

Chlorococcum sp. growth was analyzed in the presence of fluridone at serial concentrations via
UV spectrophotometric readings at the following wavelengths: 750 nm (overall growth), 680 nm
(chlorophyll content), 450 nm (carotenoid content) (Figure 1) [7]. Note that cultures were started
at an OD of 0.1 (day zero), and growth monitoring began the following day (day 1) (Figure 1).
The overall growth and chlorophyll/carotenoid content of the cultures was significantly impacted
at all concentrations of fluridone; thus, there appears to be no difference between the OD at each
wavelength amongst the trends (panels A-C, Figure 1) [7]. The graph representing 750/450 nm showed
highest growth /lowest carotenoid content in the 152 uM concentration. Upon experimental scale-up,
we chose to treat cultures with the two highest doses, 152 uM and 304 pM, to observe the effects of the
optimal concentration (152 uM), as well as the effects of a stronger dose (304 uM), on culture growth
and phytoene accumulation (panel D, Figure 1). Although 152 uM does not appear to be significantly
different between early and later time points in the 750/450 nm ratio, this is likely due to cell death and
pigment inhibition over the course of the treatment (panel D, Figure 1). A two way repeated measures
ANOVA, using the Holm-Sidak method, was performed to measure the significance of growth period
and concentration. Herbicidal effects were dosage dependent, with a statistically significant interaction
between day and concentration (P < 0.001). Asterisks denote treatments in which significance was
observed (panels A-C, Figure 1). However, it should be noted that 152 uM (panel A, Figure 1) and 38
uM (panels A-C, Figure 1) treatments have a p value of 0.007 and ~0.02, respectively, on day seven.
Significance is not noted in panel D (Figure 1), as there was no statistical significance observed between
treatments within a given day, unlike for panels A-C.

A Overall Culture Growth

Figure 1. Cont.
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Figure 1. Micro-plate bioassay growth charts of Chlorococcum sp. over a series of fluridone treatments
(A) Overall Culture Growth (750 nm); (B) Chlorophyll Content (680 nm); (C) Carotenoid Content
(450 nm); (D) Overall Growth:Carotenoid Content Ratio used to determine optimal fluridone

concentration (750:450 nm). * n = 4 for all samples; excluding day 6-304 uM, where n = 3. Asterisks

indicate statistical significance in panels A—C. Significance in panel D not applicable.
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2.3. Phytoene Quantification

Results in Panel B, Figure 1 (chlorophyll absorbance) indicate that algal growth begins to slow
after day 4, and statistically significant differences in growth between treated and untreated cultures
(panels A-C, Figure 1) are observed at day 7 and beyond. The statistical significance that occurs at days
7-9 indicates treated cultures were not growing as optimally as the control. Hence, we chose to harvest
cell tissue for phytoene analysis when cultures were in optimal growth (day 4). Carotenoid extraction
and subsequent HPLC analysis of 25 mL cultures Chlorococcum sp. incubated with 152 uM and 304 uM
fluridone revealed the accumulation of phytoene at approximately 33 pg/mg of phytoene per dry cell
weight when harvested on day four, as well as a reduction in downstream carotenoid production at
both concentrations (Table 1). At the fourth-day harvest, there was no notable increase of phytoene
accumulation when increasing the fluridone dose from 152 uM and 304 uM. (Table 1). Differences in
phytoene levels became apparent when cell tissue was harvested after a nine-day incubation period.
Phytoene quantification of this tissue revealed a reduction in the amount of phytoene accumulated in
cultures treated with 304 uM as compared to 152 uM fluridone, at only 4.6 ng/mg, versus 14.6 ug/mg,
respectively (Table 1). Carotenoid content at both harvest periods was reduced in fluridone-treated
cultures by approximately half that seen in non-treated cultures ~40 ug/mg (treated cultures) vs.
70 pg/mg (controls), and ~70 pg/mg (treated cultures) vs. 145 pug/mg (controls), at the four-day and
nine-day harvest, respectively (Table 1). Final carotenoid levels were within a standard deviation
between concentrations.

Panel A, Figure 2 shows phytoene eluting at approximately twenty-seven minutes, absorbing
at 284 nm in cultures that had been harvested on day 4 of treatment with 152 uM fluridone, and a
relatively low amount of carotenoid production is observed. Chromatograms for controls (cultures
without fluridone) contained no peak for phytoene (panel B, Figure 2) and exhibited downstream
carotenoid products (i.e., lutein, zeaxanthin, and (3-carotene).

Table 1. Total phytoene and carotenoids in Chlorococcum sp. with fluridone at 304 uM and 152 uM.
n =3, N.D. = not detected, SEM = standard error of the means.

Total Phytoene (ug/mg) Total Carotenoids (ug/mg)
Day 4 Harvest
Treatments (uM) MEAN SEM MEAN SEM
304 33.8 + 1.7 40.4 + 11.5
152 33 + 0.3 38.6 + 1.1
0 N.D. + N.D. 70.1 + 7.5
Day 9 Harvest
Treatments (uM) MEAN SEM MEAN SEM
304 4.6 + 0.9 68.3 + 4.9
152 14.6 + 0.6 66.1 + 4.8

0 N.D. + N.D. 145.1 + 72
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Figure 2. HPLC 3D chromatograms of cellular extracts from Chlorococcum sp., day 4 harvest (A) exposed
to fluridone (152 uM). Note that phytoene was detected eluting at ~27 min. (B) the absence of phytoene
without the addition of fluridone. Lutein, zeaxanthin, 3-carotene and chlorophyll a/b are also denoted.

2.4. Fatty Acid Analysis

The fatty acid profile of cellular extracts obtained on day 4 from Chlorococcum sp. were
analyzed for the observation of any potential downstream effects on fatty acid desaturase enzymes,
in which previous studies have shown herbicides with this mode of action have exhibited inhibitory
effects [23]. The FAs C16:0 and C16:3 remained relatively conserved within concentrations and controls,
comparatively speaking. (panel A, Figure 3). However, the mono and poly-unsaturated FAs showed a
slight increase in the presence of fluridone, from ~11 pg/mg (controls) to ~12 ug/mg (+ fluridone),
and from ~8 pg/mg (controls) to ~11 pug/mg (+ fluridone), in C16:1 and C16:2, respectively (panels A
& B, Figure 3). The increase in abundance of the aforementioned FAs was similar in both fluridone
treatments (panels A & B, Figure 3). The abundance of the mono-unsaturated and poly-unsaturated
FAs C18:1 cis/trans, C18:2 cis, and C18:3 in cultures incubated with 152 uM and 304 uM fluridone were
not significantly different from that of the control cultures or between concentrations; <0.5 ug/mg
difference (panel A, Figure 3). C18:0 concentration increased slightly in cultures incubated at 152 pM:
from ~1.5 pg/mg (304 uM), to ~2.5 ug/mg (152 uM) (panel A, Figure 3). A two-way analysis of
variance (ANOVA), using the Holm-Sidak method, was performed to determine any significance
between FA levels, fluridone treatment, and treatment concentration (152 pM vs. 304 uM). Statistical
significance has been noted for FA abundance between herbicide treatments and controls. However,
statistical significance was not observed when comparing the two treatment concentrations. In other
words, we did not see a significant change in the effect of 152 uM over 304 uM and the resulting
FA abundance, overall. It should be noted, though, that C18:0 abundance was significantly different
between the two concentrations, as an exception to the former statement. P < 0.001. Note: *n =3
for all samples; excluding C16:2, where n = 2. Total FAME concentrations are also outlined in the
supplementary material, Supplementary Table S2 (S3).
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Figure 3. Fatty acid methyl ester (FAME) analysis of cellular extracts obtained on the day 4
harvest period from Chlorococcum sp. (A) total FA content, (B) relative abundance of saturated,
monounsaturated, and polyunsaturated FAs.

2.5. Intracellular Oil Body Visualization

Confocal fluorescence microscopy indicated non-uniformity /streaking of the chlorophyll (red
fluorescence) in fluridone treated cultures, as opposed to control cultures, which showed fuller/more
uniform chlorophyll fluorescence throughout the cell (panels C & E, Figure 4). This might indicate
chloroplastic degradation in cultures incubated with fluridone. We also observed a minor increase in
the number of oil bodies formed in cultures treated with both concentrations of fluridone, characterized
by yellow fluorescent droplets within zoospores (smaller cells) and dormant aplanospores (larger cells)
(panels C & E, Figure 4). Note that the dormant aplanospores are large cysts containing oil bodies that
fluoresce yellow when observed microscopically [46]; whereas, the large cells that did not fluoresce
yellow are simply cells undergoing multiple fission—a process whereby a mitotic cell gives rise to
several daughter cells [47]. Dormant aplanospores and cells undergoing multiple fission are labeled
in the differential interference contrast images (DIC)-panels B, D, & F, Figure 4, as the corresponding
images to panels A, C, & E, Figure 4. DIC images were taken to better define intracellular bodies
(panels B, D, & F, Figure 4). Further study is needed to elucidate the intracellular location of phytoene,
and whether it is accumulated in o0il bodies or elsewhere within the cells.
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Figure 4. Confocal fluorescence images (left); corresponding DIC images (right) of Chlorococcum
sp.—panels (A,B) without fluridone, (C,D) with 152 uM fluridone, (E,F) with 304 uM fluridone.
Arrows in panels (A,C,E) point either to cells with oil bodies (yellow fluorescence) or chlorophyll (red
fluorescence); arrows in panels (B,D,F) point to dormant aplanospores (containing oil bodies), and
multiple fission cells (double-headed arrows).
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3. Discussion

3.1. Strain Identification & Microplate Bioassays

Chlorococcum sp. identity was confirmed molecularly (DNA) and morphologically [41]. Microplate
inhibition bioassays were used to determine appropriate herbicide concentration for optimal phytoene
desaturase inhibition, adapted from Franz, et al. [48]. Phytoene absorbs at approximately 280 nm,
whereas carotenoids downstream of phytoene absorb in the 400 nm to 500 nm range. Therefore,
cultures that showed highest overall biomass accumulation as determined by measuring the optical
density at 750 nm, coupled with lowest carotenoid development, measured at 450 nm, were indicative
of the optimal herbicide concentration at which greatest PDS inhibition was achieved without cell
death. As such, 152 uM fluridone was chosen as the optimal concentration to achieve carotenoid
inhibition without severely limiting growth (panel D, Figure 1). Cultures were also treated with 304 uM
fluridone upon experimental scale-up to observe any notable differences between the concentrations,
of which no significant differences in the overall accumulation of phytoene were seen (Table 1).

Similar studies found that the pigment synthesis inhibitor norflurazon caused an 80% decrease
of the secondary carotenoid (3-carotene in the alga D. bardawil at a concentration of 0.1 uM, with
concurrent accumulation of phytoene [29]. Other studies have found concentrations of norflurazon
ranging from 0.02 uM to 0.3 uM and 100 uM to be effective concentrations for PDS inhibition in the
algae H. pluvialis and D. bardawil, respectively, with substantial accumulation of phytoene in both
species [23,31,32]. However, unlike similar studies where cultures were treated with pigment synthesis
inhibitors during a carotenogenic state [28], we have chosen to treat during exponential growth phase
for the purpose of achieving maximum biomass during phytoene accumulation. A study into the
inhibitory effects of fluridone on E. coli expressed PDS from the cyanobacterium Synechococcus (PCC
7492), as well as purified Synechococcus PDS, revealed a concentration of 0.3 uM and 3.5 uM to cause
50% inhibition of carotenoid production, respectively [38]. Chalifour, et al. discovered that a range of
temperatures influences the inhibitory effects of the herbicides norflurazon and fluridone in the model
alga C. reinhardtii [35]. It was found that 1.25 uM fluridone had the greatest impact on secondary
carotenoid formation at a temperature of 25 °C; whereas, secondary carotenoid formation was affected
to a lesser extent at lower temperatures [35].

3.2. Phytoene Quantification

The insignificant increase of phytoene accumulation between 304 uM and 152 uM concentrations
of fluridone at day four (Table 1) was likely due to the inhibition of downstream carotenoid synthesis,
and therefore, the inability to maintain the photosynthetic complex at a fluridone concentration greater
than 152 uM, resulting in increased cell death. This tentative conclusion is supported in previous
studies where photosynthetic complexes I and II, particularly system II, are negatively impacted and
experience some form of inhibition in the presence of pigment-synthesis inhibitors—fluridone and/or
norflurazon [28,49,50]. Therefore, when carotenoid synthesis is inhibited, the photosynthetic complex
degrades [10,35-37]. Phytoene levels were further reduced at the nine-day time point. Therefore, we
suspect that the strongest concentration of fluridone applied for this study (304 uM), in conjunction
with a longer incubation period (9 days), leads to increased cell death and an overall reduction in
phytoene accumulation/carotenoid development. For future study, it would be wise to measure
phytoene content, cell viability, and photosynthetic inhibition using Fv/Fm measurements, on a daily
basis to draw better conclusions that may refute or support these statements.

Decreased carotenoid production coupled with a significant peak for phytoene, as seen in panel
A, Figure 2, is a result of successful PDS inhibition by the herbicide fluridone. Results observed
in Figure 2 are consistent with previous studies where inhibition of PDS by the pigment synthesis
inhibitors fluridone and norflurazon resulted in the over-accumulation of phytoene. One study showed
that phytoene constituted 60% of total carotenoid content in norflurazon treated H. pluvialis [23,32].
Large amounts of phytoene accumulation in the alga D. bardawil have been reported in two separate
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studies through the use of the inhibitor norflurazon [29,31]. Norflurazon has been a popular choice for
PDS inhibition; thus, there is a need for further research into the inhibition capabilities of fluridone for
the purpose of carotenoid regulation and potential phytoene accumulation.

3.3. FAME Analysis & Confocal Fluorescence Microscopy

We speculate that the increase in the unsaturated FAs C16:1 and C16:2 may be due to oil body
formation as a response to induced stress (panel A, Figure 3). The literature describes inhibition of
FA desaturase enzyme activity by pigment synthesis inhibitors, resulting in decreased levels of lipids,
especially the mono-unsaturated and poly-unsaturated FAs [23,35]. The observed increase in C16:1 and
C16:2 FAs in this study suggests that the applied concentrations of fluridone did not result in inhibition
of FA desaturases, however was likely an effect of lipid remodeling during triacylglycerol synthesis
and oil body formation. However, research has shown that, in the alga C. reinhardtii, temperature
and inhibitor dosage play a large role in the amount of FA desaturase inhibition when exposed to a
pigment synthesis inhibitor [35]. Zhekisheva et al. observed the simultaneous decrease in total FA
and oleic FA content with increasing concentrations of norflurazon [23]. Notably, C18:0 abundance is
markedly and significantly decreased in cultures treated with 304 uM. This same phenomenon was
not observed in cultures treated with 152 uM, nor were there any statistically significant differences in
the abundance of FAs downstream of C18:0 when compared to controls (no treatment), or in either
treatment concentration. As previously mentioned, we suspect these observations are the result of cell
death at higher concentrations of fluridone. As in the case of phytoene concentration, future studies
should include daily FAME analysis and live cell counts to better understand the effects of various
concentrations of fluridone on the metabolic profile and overall lifespan of Chlorococcum sp.

We further investigated oil body formation and phytoene accumulation via confocal fluorescence
microscopy to determine a relationship between the two, if any. It has been reported that secondary
carotenoid formation, specifically 3-carotene and astaxanthin, and the accumulation/storage thereof,
is directly related to overall FA content and oil body formation [23,29,35,51,52]. The increase in oil
bodies within dormant aplanospores seen in fluorescence images, as well as the slight increase
in C16:1 and C16:2 FAs in cultures treated with fluridone, may be explained as either a stress
response to the herbicide, and/or an accumulation site for phytoene, as is seen in H. pluvialis for
the storage of astaxanthin [23,24,46]. Therefore, FAME and fluorescence microscopy results should be
considered together.

Fluorescence microscopy provided further insights into the effects of fluridone on the
photosynthetic apparatus. We speculate that the chloroplastic bifurcation observed in panels C
& E, Figure 4 occurs as a result of carotenoid inhibition. Chalifour et al. 2014 found a decrease in
chlorophyll a/b content and photosynthetic capacity of C. reinhardtii when exposed to norflurazon and
fluridone. This is not surprising, as carotenoid inhibition with bleaching herbicides results in a loss of
the ability to maintain and protect the photosynthetic complex. Therefore, when carotenoid synthesis
is inhibited, the photosynthetic complex degrades [10,35-37].

Although informative, the precise location of phytoene cannot be determined, conclusively,
using the methods discussed above. Further investigation utilizing spatial and molecular signature
tools, such as Raman spectroscopy, are needed to better understand the site and mechanism of
phytoene accumulation.

4. Conclusions

The pigment synthesis inhibitor fluridone was effective in the over-accumulation of phytoene
in the novel microalga Chlorococcum sp. Our observations indicate that higher concentrations of
the inhibitor fluridone do not result in an increase of phytoene; therefore, lower concentrations
of the inhibitor may be a more efficient and effective choice for producers utilizing this method.
However, PDS mutagenesis for enhanced phytoene production may be even more effective than
the use of pigment synthesis inhibitors. Thus, genomic sequencing of Chlorococcum sp., followed by
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bioinformatics research, is necessary to understand PDS expression in this strain, and how targeted
mutagenesis may proceed from those findings. Based on these conclusions, Chlorococcum sp. should be
considered a valuable candidate in the production of high-value carotenoids for cosmetics, and other
biomedical studies for which carotenoids are relevant.

5. Materials and Methods

5.1. Cultivation

Cultivation of Chlorococcum sp. (UTEX B 3056) was performed in sterile BD Falcon™ Tissue
Culture Flasks with vented caps from BD Biosciences (Erembodegem, BE), grown in BG11 media at
24 °C in an incubator with 1% CO; and atmosphere illuminated with cool white fluorescent lamps
(22uE per s 'm~2). The composition of the liquid medium is as described by the UTEX Culture
Collection of Algae (The University of Texas at Austin, Austin, TX, USA).

5.2. Strain Identification

Molecular characterization and identification were performed on the genomic DNA extracted
from Chlorococcum sp. DOE 0101 using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories;
Carlsbad, CA, USA). Regions of the 185 rDNA and the RuBisCo Large subunit were amplified
from genomic DNA by polymerase chain reaction (PCR) using universal primer sets 185 rDNA
(Forward —GTCAGAGGTGAAATTCTTGGATTTA, Reverse—AAGGGCAGGGACGTAATCAACG)
and the RuBisCo Large subunit (Forward—AACCTTTCATGCGTTGGAGAGA, Reverse—CCTG
CATGAATACCACCAGAAGCQ) and the GoTaq® colorless master mix (Promega; Madison, WI,
USA) according to the manufacturer’s instructions. The PCR reactions were performed on a
Mastercycler gradient machine (Eppendorf, Wesbury, NY, USA). The PCR program consisted of an
initial denaturation/activation step at 95 °C (3 min), 35 cycles of amplification [DNA denaturation step
at 95 °C (30 s), followed by an annealing step at 57 °C (30 s) and an elongation step at 72 °C (45 s)], and
a final elongation step at 57 °C (10 min). Amplicons were checked for size verification and specificity
by gel electrophoresis on a 1% agarose gel. The amplicons were purified from gels using an UltraClean
GelSpin® DNA extraction kit (Mo Bio Laboratories; Carlsbad, CA, USA) for subsequent forward
and reverse sequencing (Sanger; ABI 3730 DNA analyzer) at the Functional Biosciences laboratory
(Madison, WI, USA). Sequence data was analyzed and assembled using Geneious® (V6.1.4; Biomatters
Inc., Newark, NJ, USA). The consensus sequences were subjected to standard nucleotide similarity
searches via BLASTn [53] against the NCBI non-redundant database using standard parameters to
determine their identities and assess their similarities to those in NCBI GenBank.

5.3. Microscopy

Concentrated suspensions of three series of preparation: (1) fresh, (2) 2.5% glutaraldehdye-fixed
(Electron Microscopy Sciences, Hatfield, PA, USA) and (3) fixed-Nile Red (Sigma-Aldrich Corp.,
St. Louis, MO, USA) (5 micrograms/mL) treated cells were deposited onto the coverslip areas in glass
bottom microwell dishes (MatTek Corp., Ashland, MA, USA) and examined by confocal microscopy
using a model TCS SP5 system coupled to a DMI 6000 inverted microscope equipped with a 100 x
objective lens (Leica Microsystems, Exton, PA, USA) in the x,y,z imaging mode and fluorescence
scanning mode with excitation from the 488 nm line of an Argon laser. Images were collected in
data sets of two channels (500-550 nm and 660-720 nm) for fresh- and glutaraldehyde-fixed cells or
in three channels for Nile Red-treated cell suspensions (500-550 nm, 570-620 nm and 660-720 nm)
and examined as maximum projections (8-12 micrometers deep) in separate and graphically overlaid
image channels. Fluorescence emission scans were performed from 500-750 nm using a 15 nm detector
window and frame averaging of selected focal planes. DIC images were taken using the same method
for laser-scanning confocal microscopy; however, the transmitted light channel (non-confocal) was
employed here.
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5.4. Microplate Bioassays

A fluridone standard obtained from Sigma-Aldrich, Inc. (St. Louis, MO, USA) was dissolved in
100% ethanol and diluted accordingly: 304, 152, 76, 38, 19, 0 uM. Chlorococcum sp. culture was added
to two individual 96 well microplates from BRAND® GmbH & Co. KG (Wertheim, DE) at an optical
density (OD) of 0.1, 250 pL per well; adapted from Franz, et al., 2013 [48]. Fluridone was subsequently
added to the microplates according to the above concentrations and incubated for ten days under the
following conditions: light (22 UE per s~ 'm~2), CO; (1%), temperature (24 °C). Plates were read at
wavelengths 750 nm (biomass), 680 nm (chlorophyll), and 450 nm (carotenoids) over a ten day period
using a SPECTRAmax microplate spectrophotometer, Molecular Devices (Sunnyvale, CA, USA).

5.5. Scale-up Bioassays

Chlorococcum sp. was added to twelve sterile BD Falcon™ Tissue Culture Flasks with vented caps
from BD Biosciences (Erembodegem, BE) at 25 mL per flask, OD 0.5. A total of six flasks were incubated
with fluridone at 152 and 304 1M, respectively and subjected to the following two conditions: (1) light
(22 pE per s Im~2), CO, (1%), temperature (24 °C); (2) high light (2,000 uE per s~ Im™2), CO, (1%),
temperature (24 °C). Controls did not contain fluridone. Experiment was performed in biological
replicates of three. UV spectrophotometric readings were taken daily on a SPECTRAmax microplate
spectrophotometer, Molecular Devices (Sunnyvale, CA, USA), for a total of four days.

5.6. Carotenoid Analyses & Quantification

Phytoene Profile-Algae was collected by centrifugation at 10,000 rpm and lyophilized on a
Labconco FreeZone 6 (Kansas City, MO, USA) for a minimum of 24h. Approximately 15 mg of algae
was milled with 0.5 mm dia. zirconia/silica beads (BioSpec Products, Inc., Bartlesville, OK, USA)
using a Mini Bead Beater™ (BioSpec Products, Inc., Bartlesville, OK, USA) for a total of 2 min to
achieve cell lyses. HPLC grade acetone (Sigma-Aldrich Corp., St. Louis, MO, USA) was added to
the samples in a 1:30, mg: pL, ratio and allowed to sit for 20 min., followed by centrifugation for
10 min at 13,000 rpm and the supernatant removed and collected in a separate vial. The extraction was
repeated a second time to ensure complete pigment-tissue extraction, and the supernatants combined.
Samples were analyzed on a Waters 2695 Alliance® HPLC (Waters Corp., Milford, MA, USA) with a
996 photodiode array detector and YMC America carotenoid column (YMC America, Inc., Allentown,
PA, USA), using the YMC MTBE carotenoid method [54]. Phytoene quantification was performed
using external calibration on a series of dilutions of a phytoene standard obtained from Sigma-Aldrich,
product #78903 (Sigma-Aldrich Corp., St. Louis, MO, USA). Carotenoid content was quantified via
UV-Vis using a series of dilutions of a 3-carotene standard obtained from Sigma-Aldrich, product
#1065480 (Sigma-Aldrich Corp., St. Louis, MO, USA), and read at 450 nm using a SPECTRAmax
microplate spectrophotometer, Molecular Devices (Sunnyvale, CA, USA).

5.7. Lipid Analysis

Fatty Acid Methyl Ester (FAME) profiles were obtained for each treatment group via base
catalyzed transesterification. 2 mL of KOH in methanol (2N) was applied to dried, ground tissue
(~5 mg), vortexed and incubated at ~37 °C for 30 min. Samples were allowed to cool for approximately
15 min. 1 mL of acetic acid (1IM) was added to samples to quench the reaction. Subsequently, 2 mL
of HPLC grade hexane with C23:0 ISTD at 50 ppm was added to samples and vortexed thoroughly.
All reagents for FAME extraction were obtained from (Sigma-Aldrich, St. Louis, MO, USA). 200 uL
of the upper portion of the sample was removed and dispensed into GC vials, fitted with inserts, for
analysis. Samples were then analyzed by GC/MS on a Varian 3800 Gas Chromatograph with a Varian
2000 Mass Spectrometer and a Varian 8200 Auto sampler (Agilent Technologies, Inc., Santa Clara,
CA, USA). 2 uL were injected onto a 30 m x 0.25 mm diam. x0.25 pm film DB-23 capillary column
(Agilent Technologies, Inc., Santa Clara, CA, USA) with Helium carrier gas at 1 mL/min with a 5:1
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split. The inlet and transfer line were held at 250 °C. The column temperature was held at 60 °C for
1 min. and then ramped at 30 °C min~1 to 175 °C and maintained for 1 min., then ramped to 235 °C at
4 °C for a total run time of 21.83 min. The instrument was tuned with a standard auto tune method
and a calibration curve prepared from a Supelco 37 Component FAME mix (10 mg mL~!) in methylene
chloride product # CRM47885 (Sigma-Aldrich, St. Louis, MO, USA). The mass spectrometer operated
at 70 eV in electron ionization (EI) mode with 5 scans per second between the mass range 40 and 500.

5.8. Statistics

Statistics were performed using Sigma Plot V11.0 (Systat Software, Inc., San Jose, CA, USA). All
data sets were run as a two-way analysis of variance (ANOVA), and using the Holm-Sidak method.
Microplate bioassay data was run as a two-way ANOVA with repeated measures.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1660-3397/17/3/187/s1,
Figure S1: PCR amplification, Figure S2: Scanning Electron Microscopic images of Chlorococcum sp. (UTEX B 3056).
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