Supplementary Materials for

Novel Antimicrobial Indolepyrazines A and B from the Marine-Associated *Acinetobacter* sp. ZZ1275

Komal Anjum¹, Sidra Kaleem², Wenwen Yi², Guowan Zheng¹, Xiaoyuan Lian^{1,*} and Zhizhen Zhang^{2,*}

- ¹ College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; komalazam@ymail.com (K.A.), 0818331@163.com (G.Z.)
- ² Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; kaleemsidra85@yahoo.com (S.K.), 18790658213@163.com (W.Y.)
- * Correspondence: xylian@zju.edu.cn (X.L.); zzhang88@zju.edu.cn (Z.Z.); Tel.: +86-135-7547-6388 (X.L.); +86-136-7585-9706 (Z.Z.)

CONTENT

Figure S ₁ . 16S rDNA sequence of strain ZZ12753
Figure S ₂ . Colony picture of strain ZZ12753
Table S ₁ . Sequences producing significant alignments of strain ZZ12754
Figures S ₃₋₅ . ¹ H NMR spectra of indolepyrazine A (1)4
Figures S ₆₋₉ . ¹³ C NMR spectra of indolepyrazine A (1)
Figure S ₁₀ . ¹ H- ¹ H COSY spectrum of indolepyrazine A (1)8
Figures S ₁₁₋₁₂ . HSQC spectra of indolepyrazine A (1)
Figures S ₁₃₋₁₅ . HMBC spectra of indolepyrazine A (1)9
Figure S ₁₆ . HRESIMS spectrum of indolepyrazine A (1)11
Figure S ₁₇ . UV spectrum of indolepyrazine A (1)11
Table S ₂ . Gibbs free energies ^{<i>a</i>} and equilibrium populations ^{<i>b</i>} of low-energy conformers
(1a–1d) of indolepyrazine A (1)12
Table S ₃ . Cartesian coordinates for the low-energy reoptimized MMFF conformers of
indolepyrazine A (1) at B3LYP/6-311+G(d,p) level of theory in MeOH12
Figures S ₁₈₋₂₀ . ¹ H NMR spectra of indolepyrazine B (2)17
Figures S ₂₁₋₂₂ . ¹³ C NMR spectra of indolepyrazine B (2)18
Figure S ₂₃ . ¹ H- ¹ H COSY spectrum of indolepyrazine B (2)19
Figures S ₂₄₋₂₅ . HSQC spectra of indolepyrazine B (2)20
Figures S ₂₆₋₂₇ . HMBC spectra of indolepyrazine B (2)21
Figure S ₂₈ . HRESIMS spectrum of indolepyrazine B (2)22
Figure S ₂₉ . UV spectrum of indolepyrazine B (2)22

Figure S₁. 16S rDNA sequence of strain ZZ1275

GCGTTGGTACCGCCCTCTTTGCAGTTATGCTACTACTTCTGGTGCAGCAAACTCCC ATGGTGAGACGGGCGGTGTGGACAAGGCCCGGGAACGTATTCTCCGCGGCATTCT GATCCGCGATTACTAACGATTCCGACTTCATGGAGGCGAGTTGCAGACTCAAATCC GGACTACGATCGACTTTTTGATATTAACATCCTATCGCTAGGTAGCACCCCTTTGTA CCGACCATTGTATGACGTGTGTGTGGCCCTGGCCGTAAGGGCCATGATGACTTGACGT CGTCCCCGCCTTCCTCCAGTTTGTCACTGCCCGGATCCTTAAAGTTCCCATCCGAA ATGCTGGAAAGTAAGGAAAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCT GCATCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCATTTG AGTTTTASTCTTGMGAYCGTACTMGYCAGGCGRTCTASTTATCGYGTTAGMTGCGG CACTAAAGCTTCAAAGGCCCCCAACGGGTAGTAGACATCGTTTACGGCATGGATTAC CAGGGTATTTAATCCTGTTTGCTCCACATGCTTTAGTCCTCAGCGTCAGTGTTAGTT CAGATGTCTGCCTTCGTCATGGGTATTAGTTCAGATCTCTACGCATTTCTTCGTTAC ACCTGGAATTCTACCATCCTCTCCCACAGTATAGCCAATCAGTATTGAATGCAATTA CCAAGTTAAGATCGGGGGATTTCACATTGGACTTAATTGGCCGCCTACGCGCGCTTT ACGCACAGTAAATCCGATTTACGCTTGCACCATATGTATTGCCGCGGCTGGTGGCA CAGAGTTAGCCGGTGCTTATTGTGCGAGTATAGTCCACTCATCTTAGGTATTAACTA TGTGAGCCTCCTCTTCGCTTAAAGTGGTGTACAACCATAAGACGTTCTTCATACATG CGGCATGGTTGGATCAGGGTTCTCTCCCATTGTTCAATATTATTCACTGCTGCCTCCT GTAGGAGTATGGTCCGTGTCTCAGTAGCAGTGTGGCGGATCATCGTCTCAGAAGCG CTACAGATCGTCGCCTTGGTAGGCCTTTATTCCATCAACTAGATAATGAGAGTTAGG GTCATCTATTAGCGCAAGGTCACAAGTGATCCCTTGCTTTCTCCCGTAGGACGTATG CGGTATTAGCATCCCTTTCGAGATGTTGTCGTCCAATAATAGGCAGATTCCTAAGCA TTACTCACTCGTCCGCCGGTAAGTGATAGTGCAAGCAACATGCATCTATCGCTCGA CTTGCATGGTAGCCGCCCAGCC (1429 bp).

Figure S₂. Colony picture of strain ZZ1275

Associan	Description	Max	Total	Query	Evolue	Idant
Accession	Description	score	score	coverage	Evalue	Ident
MH746822.1	Acinetobacter baylyi strain 16S	2606	2606	100%	0.0	100%
	ribosomal RNA gene, partial					
	sequence					
KY817316.1	Acinetobacter baylyi strain L7 16S	1969	1969	99%	0.0	92%
	ribosomal RNA gene, partial					
	sequence					
KU863622.1	Bacterium strain BPIC3 16S	1967	1967	98%	0.0	92%
	ribosomal RNA gene, partial					
	sequence					
MG011591.1	Acinetobacter baylyi strain	1964	1964	98%	0.0	92%
	MnW3201007 16S ribosomal RNA					
	gene, partial sequence					
KU922292.1	Acinetobacter baumannii strain	1964	1964	98%	0.0	92%
	L30 16 16S ribosomal RNA gene,					
	partial sequence					
KU922258.1	Acinetobacter baumannii strain L9	1964	1964	98%	0.0	92%
	16S ribosomal RNA gene, partial					
	sequence					

Table S₁. Sequences producing significant alignments of strain ZZ1275.

Figure S₃. ¹H NMR spectrum of indolepyrazine A (1)

Figure S₅. ¹H NMR spectrum of indolepyrazine A (1)

Figure S₆. ¹³C NMR spectrum of indolepyrazine A (1)

Figure S7. ¹³C NMR spectrum of indolepyrazine A (1)

Figure S₉. ¹³C NMR spectrum of indolepyrazine A (1)

Figure S₁₀. 1 H- 1 H COSY spectrum of indolepyrazine A (1)

Figure S₁₁. HSQC spectrum of indolepyrazine A (1)

Figure S_{12} . HSQC spectrum of indolepyrazine A (1)

Figure S₁₃. HMBC spectrum of indolepyrazine A (1)

Figure S₁₄. HMBC spectrum of indolepyrazine A (1)

Figure S₁₅. HMBC spectrum of indolepyrazine A (1)

Figure S₁₆. HRESIMS spectrum of indolepyrazine A (1)

Figure S₁₇. UV spectrum of indolepyrazine A (1)

	In M	leOH
Conformers	ΔG	ΔG
1a	0	0
1b	0.28	0.28
1c	1.78	1.78
1d	1.97	1.97

Table S₂. Gibbs free energies and equilibrium populations of low-energy conformers (1a-1d) of indolepyrazine A (1).

^{*a*} B3LYP/6-31+G(d,p), in kcal/mol; ^{*b*} From ΔG values at 298.15K.

	1a	Standard Orientation (Ångstroms)			
Ι	Atom	Туре	Х	Y	Z
1.	6.	0.	3.086124	1.549401	1.198165
2.	6.	0.	3.195205	1.779314	2.587679
3.	6.	0.	2.173161	2.400129	3.296731
4.	6.	0.	1.031211	2.785001	2.582869
5.	6.	0.	0.895102	2.557312	1.182855
6.	6.	0.	1.949102	1.930971	0.491902
7.	7.	0.	-0.117688	3.414669	3.007932
8.	6.	0.	-0.962281	3.595062	1.931690
9.	6.	0.	-0.389586	3.084611	0.790684
10.	6.	0.	-2.872760	1.343262	-0.507209
11.	6.	0.	-1.604149	1.727758	-0.967354
12.	6.	0.	-1.001366	3.068986	-0.587981
13.	7.	0.	-3.427826	0.172910	-0.830867
14.	6.	0.	-2.702500	-0.632961	-1.616304
15.	6.	0.	-1.431691	-0.276898	-2.082017
16.	7.	0.	-0.892799	0.911848	-1.756828
17.	6.	0.	1.502739	-1.158009	-1.538831
18.	6.	0.	0.441866	-2.062579	-2.227086
19.	6.	0.	-0.620703	-1.197741	-2.961462
20.	7.	0.	1.411779	-1.366620	-0.190820
21.	6.	0.	0.488449	-2.381987	0.119741
22.	6.	0.	-0.101016	-2.858817	-1.062014
23.	8.	0.	2.288595	-0.430146	-2.129540
24.	6.	0.	0.164357	-2.904245	1.365556
25.	6.	0.	-0.774117	-3.944533	1.404653
26.	6.	0.	-1.361800	-4.437899	0.237230
27.	6.	0.	-1.027407	-3.889878	-1.010273
28.	8.	0.	1.093417	-2.911345	-3.165207

Table S₃. Cartesian coordinates for the low-energy reoptimized MMFF conformers of indolepyrazine A (1) at B3LYP/6-311+G(d,p) level of theory in MeOH.

29.	1.	0.	3.909041	1.074112	0.671332
30.	1.	0.	4.095194	1.469741	3.110584
31.	1.	0.	2.256637	2.581813	4.364068
32.	1.	0.	1.875825	1.737620	-0.573685
33.	1.	0.	-0.308417	3.715885	3.950987
34.	1.	0.	-1.917652	4.083810	2.062069
35.	1.	0.	-3.451808	2.007874	0.130199
36.	1.	0.	-0.247487	3.318116	-1.341603
37.	1.	0.	-1.781780	3.835631	-0.641712
38.	1.	0.	-3.144981	-1.587458	-1.889962
39.	1.	0.	-0.087304	-0.595811	-3.704907
40.	1.	0.	-1.277916	-1.892881	-3.491922
41.	1.	0.	1.974639	-0.860860	0.482347
42.	1.	0.	0.624413	-2.527996	2.273206
43.	1.	0.	-1.044134	-4.374397	2.364453
44.	1.	0.	-2.081374	-5.248078	0.295214
45.	1.	0.	-1.483543	-4.270313	-1.919452
46.	1.	0.	1.658231	-2.337383	-3.708111
1	b		Standard Orienta	tion (Ångstroms	s)
Ι	Atom	Туре	Х	Y	Z
1.	6.	0.	2.181178	2.585657	-2.023817
2.	6.	0.	2.260933	3.848389	-2.648766
3.	6.	0.	1.600624	4.954006	-2.124100
4.	6.	0.	0.855527	4.766453	-0.953815
5.	6.	0.	0.759768	3.501368	-0.304357
6.	6.	0.	1.439762	2.401146	-0.862342
7.	7.	0.	0.112878	5.664052	-0.217200
8.	6.	0.	-0.439170	5.014883	0.866672
9.	6.	0.	-0.073400	3.689714	0.860523
10.	6.	0.	-2.819291	1.816112	1.292520
11.	6.	0.	-1.430887	1.617808	1.322951
12.	6.	0.	-0.479432	2.656208	1.881514
13.	7.	0.	-3.660427	0.908288	0.791210
14.	6.	0.	-3.116510	-0.210226	0.295721
15.	6.	0.	-1.735627	-0.428257	0.294248
16.	7.	0.	-0.908377	0.493864	0.818297
17.	6.	0.	-0.645410	-2.889403	1.875193
18.	6.	0.	-0.016398	-2.336359	0.551918
19.	6.	0.	-1.110392	-1.660379	-0.317948
20.	7.	0.	-0.528796	-4.256819	1.842324
21.	6.	0.	0.166388	-4.702798	0.705034
22.	6.	0.	0.511270	-3.601466	-0.092191
23.	8.	0.	-1.144669	-2.228343	2.772689
24	6	0	0 510067	-6 001864	0 351863

25.	6.	0.	1.229639	-6.178587	-0.838241
26.	6.	0.	1.589365	-5.091109	-1.638054
27.	6.	0.	1.227808	-3.787933	-1.264322
28.	8.	0.	1.043811	-1.439921	0.838600
29.	1.	0.	2.708758	1.743512	-2.462342
30.	1.	0.	2.847766	3.959136	-3.555890
31.	1.	0.	1.660090	5.927110	-2.602430
32.	1.	0.	1.377574	1.421171	-0.399814
33.	1.	0.	0.001039	6.644351	-0.424305
34.	1.	0.	-1.054906	5.553521	1.573291
35.	1.	0.	-3.252419	2.730523	1.690866
36.	1.	0.	-0.954462	3.158788	2.729938
37.	1.	0.	0.401306	2.129022	2.265289
38.	1.	0.	-3.795220	-0.956115	-0.110306
39.	1.	0.	-0.627597	-1.376226	-1.261439
40.	1.	0.	-1.889174	-2.387609	-0.564984
41.	1.	0.	-0.832516	-4.849899	2.602763
42.	1.	0.	0.237995	-6.847867	0.974427
43.	1.	0.	1.513318	-7.182938	-1.138024
44.	1.	0.	2.151941	-5.254623	-2.551584
45.	1.	0.	1.510124	-2.938880	-1.879953
46.	1.	0.	0.616150	-0.578460	1.039376
		-			
1	.c		Standard Orienta	ation (Ångstroms	s)
1 I	c Atom	Туре	Standard Orienta	ation (Ångstroms Y	s) Z
I 1.	c Atom 6.	Type 0.	Standard Orienta X -0.143689	ation (Ångstroms Y 1.765493	s) Z 3.002700
I I 1. 2.	c Atom 6. 6.	Туре 0. 0.	Standard Orienta X -0.143689 1.196029	ation (Ångstroms Y 1.765493 2.087425	s) Z 3.002700 3.311638
I I 1. 2. 3.	c Atom 6. 6. 6.	Type 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904	Ation (Ångstroms Y 1.765493 2.087425 2.672338	z 3.002700 3.311638 2.365935
I I 1. 2. 3. 4.	c Atom 6. 6. 6. 6.	Type 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475	s) Z 3.002700 3.311638 2.365935 1.096031
I I 1. 2. 3. 4. 5.	c Atom 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350	z 3.002700 3.311638 2.365935 1.096031 0.757421
I I I. 2. 3. 4. 5. 6.	c Atom 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406	s) Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050
I I 1. 2. 3. 4. 5. 6. 7.	c Atom 6. 6. 6. 6. 6. 6. 6. 7.	Type 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719
I I 1. 2. 3. 4. 5. 6. 7. 8.	c Atom 6. 6. 6. 6. 6. 6. 7. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459	Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326
I I 1. 2. 3. 4. 5. 6. 7. 8. 9.	c Atom 6. 6. 6. 6. 6. 6. 7. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288
I I I 2. 3. 4. 5. 6. 7. 8. 9. 10.	c Atom 6. 6. 6. 6. 6. 6. 7. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303
I I I 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	c Atom 6. 6. 6. 6. 6. 6. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	c Atom 6. 6. 6. 6. 6. 6. 7. 6. 6. 6. 6. 6. 6. 6. 7. 7.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278 -1.803602
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858 -2.258473	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394 -1.280311	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278 -1.803602 -2.108595
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858 -2.258473 -0.931664	Attion (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394 -1.280311 -0.839196	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.455278 -1.803602 -2.108595 -2.204670
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858 -2.258473 -0.931664 -0.625892	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394 -1.280311 -0.839196 0.450255	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278 -1.803602 -2.108595 -2.204670 -1.999732
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858 -2.258473 -0.931664 -0.625892 1.797503	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394 -1.280311 -0.839196 0.450255 -0.947190	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278 -1.803602 -2.108595 -2.204670 -1.999732 -0.685228
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858 -2.258473 -0.931664 -0.625892 1.797503 1.083363	Attion (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394 -1.280311 -0.839196 0.450255 -0.947190 -2.184374	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278 -1.803602 -2.108595 -2.204670 -1.999732 -0.685228 -1.304580
I I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	c Atom 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Type 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Standard Orienta X -0.143689 1.196029 2.033904 1.499704 0.154876 -0.667727 2.078246 1.155459 -0.036579 -2.937171 -1.618947 -1.271294 -3.262858 -2.258473 -0.931664 -0.625892 1.797503 1.083363 0.205173	Ation (Ångstroms Y 1.765493 2.087425 2.672338 2.925475 2.595350 2.011406 3.480314 3.495496 2.963396 0.826677 1.292501 2.755064 -0.452394 -1.280311 -0.839196 0.450255 -0.947190 -2.184374 -1.780217	Z 3.002700 3.311638 2.365935 1.096031 0.757421 1.738050 -0.023719 -1.050326 -0.624288 -1.586303 -1.682970 -1.455278 -1.803602 -2.108595 -2.204670 -1.999732 -0.685228 -1.304580 -2.520502

21.	6.	0.	0.481049	-1.857273	0.963244
22.	6.	0.	0.305772	-2.725470	-0.126100
23.	8.	0.	2.646565	-0.276659	-1.253640
24.	6.	0.	-0.135884	-2.080840	2.187904
25.	6.	0.	-0.939178	-3.223078	2.306878
26.	6.	0.	-1.115365	-4.102897	1.236033
27.	6.	0.	-0.491745	-3.852939	0.004470
28.	8.	0.	2.076994	-3.113616	-1.726894
29.	1.	0.	-0.771693	1.317676	3.767201
30.	1.	0.	1.579171	1.879488	4.306131
31.	1.	0.	3.062817	2.924719	2.603819
32.	1.	0.	-1.696906	1.749314	1.510000
33.	1.	0.	3.025676	3.818160	-0.090221
34.	1.	0.	1.424696	3.885070	-2.022012
35.	1.	0.	-3.746006	1.506695	-1.327692
36.	1.	0.	-1.126233	3.228780	-2.434429
37.	1.	0.	-2.139051	3.250464	-1.003089
38.	1.	0.	-2.509878	-2.323867	-2.282179
39.	1.	0.	0.867991	-1.304639	-3.251933
40.	1.	0.	-0.175619	-2.707143	-2.958917
41.	1.	0.	1.655875	-0.072956	1.221207
42.	1.	0.	0.000581	-1.398217	3.019532
43.	1.	0.	-1.431331	-3.424662	3.253537
44.	1.	0.	-1.738714	-4.983000	1.356378
45.	1.	0.	-0.627653	-4.534647	-0.829861
46.	1.	0.	2.720401	-2.605839	-2.248148
1	ld		Standard Orienta	tion (Ångstroms	5)
Ι	Atom	Туре	Х	Y	Ζ
1.	6.	0.	0.557755	5.656257	3.218827
2.	6.	0.	1.128507	4.972665	4.313849
3.	6.	0.	1.147862	3.582570	4.366154
4.	6.	0.	0.580531	2.886886	3.291870
5.	6.	0.	-0.002006	3.555253	2.176813
6.	6.	0.	-0.005281	4.962171	2.153787
7.	7.	0.	0.454687	1.534314	3.065509
8.	6.	0.	-0.183676	1.326149	1.858231
9.	6.	0.	-0.483111	2.536694	1.276376
10.	6.	0.	-3.258051	1.409700	-0.485489
11.	6.	0.	-1.870622	1.577640	-0.595379
12.	6.	0.	-1.160861	2.791058	-0.050205
13.	7.	0.	-3.884202	0.314557	-0.925958
14.	6.	0.	-3.120538	-0.634573	-1.478014
15.	6.	0.	-1.735720	-0.489859	-1.613057
16.	7.	0.	-1.127014	0.627001	-1.178284

17.	6.	0.	-0.059781	-2.565077	-0.044223
18.	6.	0.	0.382952	-1.933214	-1.407379
19.	6.	0.	-0.867329	-1.548999	-2.248610
20.	7.	0.	0.323828	-3.880724	-0.060126
21.	6.	0.	1.058602	-4.205463	-1.214686
22.	6.	0.	1.145534	-3.077534	-2.043169
23.	8.	0.	-0.640514	-1.997218	0.870887
24.	6.	0.	1.650209	-5.415515	-1.554440
25.	6.	0.	2.354694	-5.471170	-2.765271
26.	6.	0.	2.459361	-4.353549	-3.597017
27.	6.	0.	1.849229	-3.142763	-3.235993
28.	8.	0.	1.226038	-0.816442	-1.196444
29.	1.	0.	0.560529	6.742377	3.211259
30.	1.	0.	1.561015	5.542170	5.131250
31.	1.	0.	1.587012	3.055811	5.208155
32.	1.	0.	-0.440559	5.500332	1.316071
33.	1.	0.	0.765579	0.803517	3.686279
34.	1.	0.	-0.366342	0.319546	1.506320
35.	1.	0.	-3.870751	2.184139	-0.030401
36.	1.	0.	-0.426675	3.125520	-0.795148
37.	1.	0.	-1.883476	3.607697	0.060731
38.	1.	0.	-3.619272	-1.535754	-1.826146
39.	1.	0.	-0.492515	-1.178399	-3.210475
40.	1.	0.	-1.462449	-2.442267	-2.457167
41.	1.	0.	0.182725	-4.499903	0.726682
42.	1.	0.	1.576769	-6.283089	-0.907014
43.	1.	0.	2.829563	-6.403288	-3.056167
44.	1.	0.	3.016278	-4.421652	-4.525977
45.	1.	0.	1.932608	-2.269739	-3.876610
46.	1.	0.	0.630875	-0.046832	-1.060203

Figure S₁₉. ¹H NMR spectrum of indolepyrazine B (2)

Figure S₂₀. ¹H NMR spectrum of indolepyrazine B (2)

Figure S₂₁. 13 C NMR spectrum of indolepyrazine B (2)

Figure S₂₃. ¹H-¹H COSY spectrum of indolepyrazine B (2)

Figure S₂₄. HSQC spectrum of indolepyrazine B (2)

Figure S₂₅. HSQC spectrum of indolepyrazine B (2)

Figure S₂₆. HMBC spectrum of indolepyrazine B (2)

Figure S_{27} . HMBC spectrum of indolepyrazine B (2)

Figure S₂₈. HRESIMS spectrum of indolepyrazine B (2)

Figure S_{29} . UV spectrum of indolepyrazine B (2)

