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Abstract: Quorum sensing inhibitors (QSIs) present a promising alternative or potent adjuvants
of conventional antibiotics for the treatment of antibiotic-resistant bacterial strains, since they
could disrupt bacterial pathogenicity without imposing selective pressure involved in antibacterial
treatments. This review covers a series of molecules showing quorum sensing (QS) inhibitory
activity that are isolated from marine microorganisms, including bacteria, actinomycetes and fungi,
and chemically synthesized based on QSIs derived from marine microorganisms. This is the first
comprehensive overview of QSIs derived from marine microorganisms and their synthetic analogues
with QS inhibitory activity.
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1. Introduction

We have found ourselves facing a significant problem in modern healthcare settings where many
anti-infective drugs have lost their effectiveness against life-threatening and debilitating diseases [1,2].
The pathogens have outplaced our abilities to sustainably manage them. Thus, there is an urgent need
to discover new types of antimicrobial compounds and novel mechanisms for disease prevention and
treatment. One competitive antimicrobial advantage proposed in targeting quorum sensing (QS) is
that the treatment of quorum sensing inhibitors (QSIs) does not inhibit bacterial growth and does not
also exert a selective pressure to develop bacterial resistance to this treatment. Granted, interference of
QS will likely decrease bacterial fitness for survival under certain conditions, but if a delicate control
is performed on pathogenic QS-regulated genes, then developing resistance mechanisms against
QS-inhibiting therapies may be a difficult proposition in pathogenic bacteria.

QS is a cell–cell communication process that enables bacteria to regulate their collective behaviors
in response to population density and species composition changes in the surrounding environment.
It allows bacteria to synchronize gene expression by virtue of extracellular signaling molecules called
autoinducers. These autoinducers are released into the surrounding environment where they could
be recognized by specific receptors that reside either in the cytoplasm or in the membrane. When
autoinducers reach a certain threshold concentration, a signal cascade is triggered that promotes
synchronous gene expression in the population of bacteria, such as bioluminescence, the secretion of
virulence factors, the formation of biofilm, and other biological behaviors. Commonly, gram-negative
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bacteria use the cytoplasmic transcription factors, LuxR-type QS receptors, to detect N-acyl-homoserine
lactones (AHLs) produced by partner LuxI-type synthases. AHLs are most commonly QS autoinducers
used by gram-negative bacteria. Exceptions to this are other QS signals, including autoinducer-2,
diffusible signal factor, Pseudomonas quinolone signal and new molecules [2,3]. Gram-positive bacteria
do not harbor LuxI/R homologues and instead utilize unmodified or modified oligopeptides as
autoinducers. At present, many known autoinducers are bound by a membrane-bound sensor kinase
located in the cell inner membrane, which switches its phosphatase and kinase activity in response
to interaction with peptides, which changes the phosphorylation state of bacterial cognate response
regulators and finally leads to activation or inhibition of QS target genes [4]. Both gram-positive and
gram-negative bacteria use the QS system, and interfering with QS has been identified as a potential
novel targeted therapeutic strategy to treat bacterial infections [5–8]. For example, gram-negative
bacterial QS inhibition by QSIs is depicted in Figure 1. We display different mechanisms of action
against a QS system; (a) inhibition of autoinducer synthases or decrease of activity of receptor proteins;
(b) inhibition of autoinducer biosynthesis; (c) degradation of autoinducers; and (d) interference with
binding of autoinducers and receptor proteins by competitive binding of autoinducer analogues and
receptor proteins. For pathogens that regulate virulence via signaling molecules, QS interference
also renders bacterial infections more benign and promotes the host innate immune system to more
effectively eradicate the pathogens.

Marine microbial species, due to marine chemodiversity, have been considered as an untapped
source for unique chemical leads with numerous biological activities [9–11]. These compounds
provided a wide range of valuable drug candidates for treating various diseases in plants, animals
and humans. However, marine microbial species have not been fully exploited like their terrestrial
counterparts; according to the statistics, valuable compounds derived from marine environments
have been discovered to a much lower extent (1%) than terrestrial environments so far, suggesting the
very low percentage of metabolites isolated from marine microbial species [12]. Also, some evidence
suggests that QS is a frequent phenomenon in marine environments [13]; QSIs have been found in
diverse marine microbial species, such as marine bacteria, actinomycetes and fungi. The aim of this
review is to give a comprehensive overview of QSIs from marine microbial species and their synthetic
derivatives with QS inhibitory activity.
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2. QSIs from Marine Bacteria and Their Derivatives with QS Inhibitory Activity

2.1. QSIs from Marine Gram-Positive Bacteria and Their Derivatives with QS Inhibitory Activity

Halophilic microorganisms possess a multitude of bioactive secondary metabolites due to their
unique physiological and genetic properties. Halobacillus salinus C42 from a sea grass sample collected
in the Point Judith Salt Pond, South Kingstown, RI afforded two phenethylamide metabolites,
2,3-methyl-N-(2’-phenylethyl)-butyramide (1) and N-(2’-phenylethyl)-isobutyramide (2), which were
proven nontoxic to a panel of bacteria, fungi and microalgae [14,15]. These compounds inhibited
QS-regulated violacein biosynthesis of Chromobacterium violaceum CV026 and green fluorescent
protein production of Escherichia coli JB525. They acted as antagonists of bacterial QS by competing
with AHL for receptor binding. The cyclo(L-Pro-L-Val) (3) isolated by Haloterrigena hispanica SK-3
could promote the expression of QS-regulated genes in bacterial AHL reporters, suggesting that
archaea have the ability to interact with AHL-producing bacteria in syntrophic communities [16].
In contrast, four different diketopiperazines (DKPs): cyclo(L-Pro-L-Phe) (4), cyclo(L-Pro-L-Leu) (5),
cyclo(L-Pro-L-isoLeu) (6), and cyclo(L-Pro-D-Phe) (7) isolated from Marinobacter sp. SK-3 demonstrated
their QS-inhibitory activities based on the test of C. violaceum CV017 and E. coli [17]. This indicated
that DKPs from microorganisms could activate or inhibit bacterial QS, pointing to a vital role of these
molecules within microbial communities.

Three active metabolites isolated from Oceanobacillus sp. XC22919 were identified as 2-methyl-N-
(2′-phenylethyl)-butyramide (8), 3-methyl-N-(2′-phenylethyl)-butyramide (9) and benzyl benzoate
(10), and were first reported to exhibit the apparent QS inhibitory activities against C. violaceum 026
and Pseudomonas aeruginosa [18]. These molecules could inhibit violacein production in C. violaceum
026, as well as pyocyanin production, elastase and proteolytic enzymes, and biofilm formation in
P. aeruginosa. Among them, Compound 8 significantly inhibited the formation of biofilm of P. aeruginosa,
with a maximum of 50.6% inhibition, at 100 µg/mL. Saurav et al. [19] performed bioassay-guided
isolation from three bacterial isolates of sponges (Nautella sp., Erythrobacter sp. CUA-870, and Dietzia
maris IHBB 9296). The isolates Cc27, Pv86 and Pv91were found to be positive for QS inhibitory activity
and inhibited the formation of biofilm by over 50% in tested strains (E. coli, P. aeruginosa PAO1, and
Bacillus subtilis). Finally, nine main secondary metabolites (11–19) were identified in Cc27 (11–13), Pv86
(14–16), and Pv91 (17–19) using LC–HRMS/MS.

Two novel depsipeptides, solonamide A (20) and B (21), from a marine Photobacterium were
identified by bioassay-guided isolation [20]. They interfere with agr QS activity in the highly virulent,
community-acquired strain USA300 and Staphylococcus aureus 8325-4. This is the first report of the
agr QS inhibitors from the marine bacteria. Generally, the S. aureus agr QS system includes at least
four agr subclasses, and the autoinducing peptide from each class could induce agr in strains of its
own class rather than repress agr of other subclasses [21–23]. However, solonamide B reduced agr QS
expression significantly in three of four known agr classes (agr group I, agr group II, agr group IV),
as well as having a minor effect against agr group III in the S. aureus agr system. Moreover, solonamide
B significantly decreased the expression of phenol-soluble modulins, directly controlled AgrA and
the transcription of agrA, as well as dramatically reduced the overall toxicity of supernatants towards
human neutrophils. This indicated that solonamide B not only interfered with the expression of AgrA
and agrA, but also repressed biosynthesis of virulence factors controlled by the agr QS system [24].
Further analysis demonstrated that solonamide B interfered with agr QS activation by preventing
interactions between AgrC sensor histidine kinase and S. aureus autoinducing peptides. Structural
comparison of solonamide B and autoinducing peptides suggests that the ability to interfere with
different agr QS classes is related to the cyclic structure of solonamide B, and the differences observed
may correlate with the temporal RNAIII induction pattern or the individual structures of autoinducing
peptides [25].

In order to further elaborate structure–function relationships for AgrC QS antagonists, an array of
27 lactam hybrid analogues based on solonamide B and autoinducing peptides were designed and
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tested for AgrC-inhibitory activity [26]. Among them, 21 compounds (22–41) showed inhibition on the
S. aureus QS system. However, there was considerable difference for their inhibitory activity. Hybrid
analogues with all-L stereochemistry of the amino acids (22) were equipotent to AgrC inhibitors,
solonamides A and B; however, compounds 25, 27 and 33–35 were 20- to 40-fold higher in the
inhibition of AgrC than the starting hit compound 22. The structure–activity relationship indicates
several structural features are very important determinants for AgrC inhibition (Figure 2); (a) ring
size must be identical to the known autoinducing peptides; (b) the tail should be preferably selected
from short fatty acid moieties; (c) a Phe residue shows more potent inhibition than other aliphatic or
aromatic residues in residue no. 2; (d) residues no. 3 and 4 need to be further studied as there are no
clear-cut conclusions; (e) the Leu in residue no. 5 is also crucial for activity.

Morever, Kajerulff et al. [27] reported four novel agr QS-interfering cyclodepsipeptides,
ngercheumicin F–I (42–45) from a marine Photobacterium halotolerans. All four ngercheumicins enhanced
expression of spa and decreased transcription of hla and rnaIII in the S. aureus lacZ reporter assays.
Further studies showed that ngercheumicins reduce expression of rnaIII in the CA-MRSA strain
USA300 by Northern blot analysis, suggesting that ngercheumicins interfere with agr QS activation.
It can be speculated that these compounds could interfere with QS pathways that exist in the marine
environment or even act as a class of novel alternative QS molecules.
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2.2. QSIs from Marine Gram-Negative Bacteria

Marine gram-negative bacteria have been discovered to produce QS inhibitory compounds.
For example, Vibrio alginolyticus G16 from seaweed Gracilaria gracilis could disrupt QS signaling
pathways and reduce biofilm formation in Serratia marcescens. An active compound, phenol,
2,4-bis(1,1-dimethylethyl) (46) was obtained and identified [28]. It could inhibit the QS-mediated
virulence factor biosynthesis in S. marcescens and lead to a significant reduction in biofilm (85%),
lipase (84%), haemolysin (70%), protease (42%), and extracellular polysaccharide (85%) without
affecting bacterial growth. Quantitative PCR analysis confirmed that the N-butanoyl-L-homoserine
lactone (C4-HSL)-mediated bsmA gene was obviously downregulated in S. marcescens. Reduction
in expression level of bsmA could be related to the ability of phenol, 2,4-bis(1,1-dimethylethyl) to
affect QS-regulated biofilm formation. In addition to anti-QS-mediated biofilm inhibition, phenol,
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2,4-bis(1,1-dimethylethyl) simultaneously induced hydration of the microbial cell wall, which made it
a potential anti-biofilm agent by dual approaches. At the same time, the compound also increased the
susceptibility of S. marcescens to gentamicin, which opened another avenue for combination therapy to
improve the effectiveness of clinical antibiotics.

Through bioassay-guided fractionation, Sun and coworkers [29] have recently obtained an
active diketopiperazine, cyclo(Trp–Ser) (47) from the marine bacterium, Rheinheimera aquimaris
QSI02. It decreased QS-regulated violacein biosynthesis (67%) of C. violaceum CV026 and pyocyanin
biosynthesis (65%), elastase activity (40%) and biofilm formation (60%) of P. aeruginosa PAO1.
The analysis of molecular dynamics suggested that cyclo(Trp–Ser) binds more easily to the LasR
receptor than natural QS-signaling molecules (AHLs), but the opposite is true in the LasR receptor.
These results demonstrated that cyclo(Trp–Ser) not only efficiently inhibited the biosynthesis of
violacein in C. violaceum CV026, but also reduced the formation of biofilm and other QS-mediated
phenotypes in P. aeruginosa PAO1. In addition to these small molecules, MomL (48), a novel AHL
lactonase derived from marine Muricauda olearia Th120, also significantly attenuated the virulence
factor production (protease and pyocyanin) of P. aeruginosa PAO1. The growth of PAO1 was almost
not affected, whereas AHL accumulations in the cultures were obviously reduced, suggesting that
the reduction of production of virulence factors was due to AHL degradation [30]. Although QS
processes were widely distributed in marine microorganisms and QSIs were discovered as a frequent
phenomenon in the marine environments [31], QSIs from marine gram-negative bacteria are still very
scarce when compared to marine gram-positive bacteria, and there may be drawbacks to probing QSIs
in marine gram-negative bacteria using traditional bioassay-guided isolation.

3. QSIs from Marine Actinomycetes and Their Derivatives with QS Inhibitory Activity

As recently reported by Fu and coworkers [32], three new α-pyrones, nocapyrones H (49), I (50)
and M (51) from marine-derived actinomycete Nocardiopsis dassonvillei subsp. dassonvillei XG-8-1
exhibited inhibitory activities on QS-controlled gene expression in both C. violaceum CV026 and
P. aeruginosa QSIS-lasI biosensors at a concentration of 100 µg/mL. This is the first report of α-pyrones
inhibiting QS-regulated gene expression in pathogenic bacteria. Recently, four novel α-pyrones
and eight known analogues were also detected in the secondary metabolites of Streptomyces sp.
OUCMDZ-3436 isolated from the marine green alga Enteromorpha prolifera [33]. The results of bioassays
suggested that these α-pyrones did not exhibit any QS inhibitory activity. However, the skeleton of
α-pyrone could be easily transformed into pyridine-2(1H)-one, which had been proved to have a variety
of biological activities [34–42]. Therefore, based on a diversity-enhanced extracts approach [43,44],
four novel α-pyridones (52–55) were obtained and exhibited the inhibitory effect on gene expression
regulated by QS in P. aeruginosa QSIS-lasI biosensors at 6.35 µg/well.

In order to further obtain potent QSIs from pyrone-derived compounds, Park and coworkers [45]
designed and synthesized several novel pyrone-derived QSIs (56–65) to inhibit the binding of
N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) to the LasR of P. aeruginosa. Among the 10 novel
pyrone-derived QSIs, compound 63 exhibited the most potent in-vitro inhibitory activity against
biofilm formation. Furthermore, all of the selected QS-inducible genes, including synthase genes (lasI,
rhlI, pqsC, pqsD, pqsH, and phnB), and auto-inducer receptor genes (lasR, mvfR, and rhlR), were also
significantly downregulated by compound 63. The modeling studies indicated that it mostly interacted
with residues in the binding pocket of LasR that was highly similar to the crystal ligand OdDHL.
The structure–activity relationship indicated that the pyrone derivatives with more than nine alkyl
chains would significantly reduce biofilm formation.

Cyclo(Pro–Gly) (66) and cinnamic acid (67) from marine invertebrate-derived Streptomyces sp. were
reported to attenuate P. aeruginosa virulence as QS inhibitors [46]. The in-vivo study suggested that
cinnamic acid protected Caenorhabditis elegans from the virulence of P. aeruginosa resulting in reduced
mortality [47]. This protective mechanism is likely to be a consequence of competitive suppression
of RhlR and LasR receptor proteins by cinnamic acid. A significant reduction in colonization of the
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bacteria treated with cinnamic acid was also further observed in the nematode. These data were
consistent with past results that curcumin increased the survival rate of Caenorhabditis elegans ~28%
by decreasing the expression of genes involved in biofilm formation and attenuating the biosynthesis
of signal molecules in P. aeruginosa PAO1 [48]. The in-silico analysis showed that it could act as a
competitive inhibitor for the natural signal molecules towards active pockets of LasR and RhlR QS
circuits in P. aeruginosa.

Several derivatives structurally related to cinnamic acid were also synthesized and assessed for
their effects on the QS process. Cinnamyl alcohol (68), methyl trans-cinnamate (69) and allyl cinnamate
(70) were able to completely inhibit C. violaceum QS at 1 mM, and cinnamamide (71), 4-chlorocinnamic
acid (72), α-methylcinnamic acid (73) and 3,4-(methylenedioxy)cinnamic acid (74) at 5 mM [49]. These
data were consistent with past results that 71 and 72 inhibited Vibrio spp. virulence factor biosynthesis
in vitro and in vivo [50,51]. However, by contrast, 68 and 69 were devoid of inhibitory activity as
QSIs against Vibrio spp. [50]. This suggests that they are selective QSIs against different pathogens.
The structure–activity relationship of 67 indicated that the replacement of the carboxylic acid moiety
by an aldehyde group (cinnamaldehyde) or the lack of the double bond (3-phenylpropionic acid) leads
to inactivity. The replacement of the vinyl acid function by a vinyl sulfone resulted in a more active
compound, methyl-styryl sulfone (75). Substituents with electron withdrawing properties increased
QS activity. The inhibitory activity decreased in the order 4-trifluoromethyl cinnamic acid (76) > 72
> 2,3,4,5,6-pentafluoro-cinnamic acid (77). The aromatic ring of cinnamic acid was replaced by an
alkyl group, and a carboxylic acid moiety was replaced by an acrolein moiety, and these changes
still led to active autoinducer-2 signal QS inhibitors, such as (E)-2-pentenal (78), (E)-2-tridecenal (79),
methyl-(E)-2-nonenoate (80), and (E)-2-heptenal (81) [50].

The research group of Miao et al. [52] obtained and identified a secondary metabolite, actinomycin
D (82) derived Streptomyces parvulus HY026 isolated from a seawater sample, which showed remarkable
anti-QS activity. It significantly inhibited the violacein biosynthesis of C. violaceum (65%) at 12.5 µg/mL
and prodigiosin production (the pigment inhibition zone of 13.5 mm) of Serratia proteamaculans 657 at
25 µg/disc without affecting bacterial growth. These findings indicated that researchers not only pay
attention to the discovery of novel compounds, but also point to known antibiotics for the discovery of
new valuable bioactivity.

4. QSIs from Marine Fungi and Their Derivatives with QS Inhibitory Activity

Marine fungi were targeted as potent producers of QSIs, since they possess the ability to
synthesize and secrete diverse secondary metabolites, such as peptides, terpenes, polyketide-derived
alkaloids, and mixed biosynthesis metabolites [53]. A γ-pyrone derivative, kojic acid (83) from
marine-derived fungus Altenaria sp. isolated from marine green alga Ulva pertusa of Pyoseon
Beach, Jeju Island, inhibited QS-dependent luminescence of the reporter E. coli pSB401 induced
by N-hexanoyl-L-homoserine lactone (C6-HSL) at >36 µM. However, the molecule only interfered
with LuxR reporters [54]. Equisetin (84), from a marine fungus Fusarium sp. Z10, inhibited biofilm
formation and swarming motility of P. aeruginosa. Further studies showed that the compound inhibited
elastase of P. aeruginosa PAO1 and transcriptional activation of lasB in E. coli MG4/pKDT17, attenuated
pyocyanin biosynthesis of P. aeruginosa PAO1 and transcriptional activation of PqsA in E. coli pEAL08-2,
and declined rhamnolipid biosynthesis, swarming motility and transcriptional activation of rhlA
in E. coli pDSY. These data indicated that equisetin could inhibit las, rhl and the PQS system [55].
Asteltoxin (85), a known QS inhibitor from a marine fungus Penicillium sp. QF046, exhibited more
potent inhibition of violacein than positive control, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone,
and decreased the expression of multiple QS-related genes (lasA, lasB, vioB, vioI, cynS, and hcnB) [56].
A new bacterial enoyl-acyl carrier protein reductase inhibitor, meleagrin (86), from the marine fungus
Penicillum chrysogenium isolated from seashore slime of Daechun beach, Chungcheongnam-do, Korea,
inhibited QS of C. violaceum CV017 with minimum inhibitory concentration (MIC) of 138.42 mM [57,58].
The fermentation broth of Penicillium sp. SCS-KFD08 isolated from the marine animal Sipunculus
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nudus collected from Haikou Bay, China led to the isolation of six QSIs (87–92), based on the test of
biosensor C. violaceum CV026. These secondary metabolites exhibited obvious anti-QS activity against
C. violaceum CV026 at a dosage of 50 µg/well. Among them, compounds 91 and 92 inhibited violacein
biosynthesis in C. violaceum CV026 cultures induced by signal molecule C6-HSL by up to 46% and 49%
at subminimal inhibitory concentration (sub-MIC) of 300 µM, respectively [59].

In the screening of QS–disrupting molecules, 75 marine fungal isolates were obtained from saline
lakes, mangrove rhizosphere and reef organisms. Their QS inhibitory activity was evaluated using
C. violaceum CV026. Four strains of endophytic fungi belonging to Sarocladium (LAEE06), Fusarium
(LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21) exhibited potent activity at concentrations
ranging from 50 to 500 µg/mL. LC–HRMS analysis of these fungal bioactive metabolites resulted in
the identification of several major compounds whose QS inhibitory properties had been known or
unknown so far (93–108) [60]. For example, fusaric acid (96) and linoleic acid (108) were isolated from
the samples of Fusarium (LAEE13) and Khuskia (LAEE21), respectively, and their ability to interfere
with the QS system had been previously reported [61–64]. Two major components isolated from
Epicoccum (LAEE14) were tentatively classified as two DKPs, variecolorin N (104) and phenylahistin
(105). They may act as QS agonists or antagonists due to the wide recognition of DKPs as QSIs [65].

Facile and expeditious synthetic strategies have proven to be an efficient tool in obtaining valuable
QSIs. Taking advantage of microwave–assisted synthesis, 39 fusaric acid analogues were obtained and
tested for their QS inhibitory activity in three QS screening models, luxI-gft, lasB-gft, and rhlA-gft [66].
In the luxI-gft QS system, compounds 109–114 revealed QS inhibition at concentrations from 6.25
to 100 µg/mL. Compound 115 exhibited a little QS inhibition at 3.13 µg/mL whereas at higher
concentrations (6.25–100 µg/mL) its QS inhibition was obviously enhanced. In the lasB-gft QS system,
compound 116 showed good QS inhibition from 125 µg/mL. A structure–activity relationship for QS
inhibition is depicted in Figure 3; (a) the C-2 ester group is essential for inhibition of QS, since it can
simulate the intermolecular interaction solicited by the lactone moiety of QS signal molecules; (b) the
carboxylic acid substituent at C-2 shows no QS inhibitory activity and inhibits the growth of bacteria;
and (c) the alkyl substituent at C-5 is not mandatory, it can be swapped by an aromatic/heterocyclic
aromatic ring or alkoxy, even if the compounds exhibit modest QS inhibitory activity.
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5. Conclusions and Perspectives

Through reviewing the literature of QSIs from marine microorganisms and their synthetic
analogues, it is very clear that 116 QSIs are derived from marine microorganisms and their synthetic
analogues (Table 1). Therefore, more effort needs to be made towards the promising strains from
marine microorganisms for the discovery of novel QSIs. Moreover, the majority of QSIs from
marine microorganisms and their synthetic analogues identified to date function as useful chemical
probes for mechanistic or structural studies rather than lead-like compounds for further anti-infective
drug development.
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Table 1. QSIs from marine microorganisms.

No. Structures of QSIs Source Biosensor Microorganisms Specific Inhibitory Activity Ref.
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In addition, the current lack of methodological standardization in assessing effectiveness of QSI
candidates limits the broad validity of any findings. The use of only laboratory-adapted strains may
lead to a major pitfall in this field, since these strains may be distant from pathogens of relevant
clinical infections. Therefore, further screening of QSIs in conditions that mimic in-vivo pathogenic
infections will be vital for the future study and development of QSIs. It is worth noting that QSIs
are most likely to be beneficial as potent adjuvants of conventional antibiotics for the treatment of
clinical treatment rather than as standalone therapeutic agents, as QSIs allow for temporal control
of virulence gene expression rather than result in selective pressures on bacterial survival [67–70].
For example, the QSI pyrizine–2–carboxylic acid significantly increased the susceptibility of antibiotics
(tetracycline, doxycycline, erythromycin and chloramphenicol) against multidrug-resistant Vibrio
cholerae [71]. Undoubtedly, simultaneous use of inhibitors for various targets including the QS system
will contribute to combating multiantibiotic–resistant bacteria [72,73].
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