Supporting Information

Total Synthesis of the Highly N-Methylated Peptides

Carmabin A and Dragomabin

Baijun Ye¹, Peng Jiang¹, Tingrong Zhang¹, Yuanjun Sun¹, Xin Hao¹, Yingjun Cui¹, Liang Wang^{1,*} and Yue Chen^{1,2,*}

- ¹ The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; yebaijunts@126.com (B.Y.), jiang1921372889@126.com (P.J.); nku2120181185@126.com (T.Z.); sunyuanjun7818@163.com (Y.S.); haoxinbit@126.com (X.H.); cyj10080@126.com (Y.C.)
- ² Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, PR China; yuechen@nankai.edu.cn
- * Correspondence: <u>lwang@nankai.edu.cn</u> (L.W.); <u>yuechen@nankai.edu.cn</u> (Y.C.); Tel.: +86-22-85358387 (Y.C.)

Table of contents

NMR Comparison of natural and syn	hetic carmabin A (1)SI
NMR Comparison of natural and syn	hetic dragomabin (2a)S
NMR Spectra	

Figure S1. ¹H NMR comparison of natural and synthetic carmabin A (1).

Figure S2. ¹³C NMR comparison of natural and synthetic carmabin A (1).

Figure S3. Carmabin A (1) and 1a with atom numbering.

Table S1. ¹ H NMR data of naturation	l and synthetic carmabin	A (1)
---	--------------------------	-------

Unit	Position	Synthetic Carmabin A (1)		Natural Carmabin A		Synthetic 1a
Cint	rosition	¹ H (400 MHz, CDCl ₃)	$\Delta \delta$ (ppm)	¹ H (600 MHz, CDCl ₃)	$\Delta \delta$ (ppm)	¹ H (400 MHz, CDCl ₃)
		$\delta_{\rm H}$ (mult, J in Hz)	41)	$\delta_{\rm H}$ (mult, J in Hz)	41)	$\delta_{\rm H}$ (mult, J in Hz)
N,O-diMeTyr	1	7.64/6.17/5.54/5.40, br s, NH2	-	5.54/5.40, br s, NH ₂ ^[a]	-	7.62/6.14/5.40/5.30, br s, NH2
	2					
	3	5.32, ob/4.73, dd (10.6, 3.9), CH	0.00/0.00	5.32, ob/4.73, dd (11, 2), CH	-0.02/0.01	5.30, ob/4.74, dd (10.8, 4.0), CH
	4					
	5	3.19/3.01, ob, CH ₂	-	3.19/3.16, ob, CH ₂ ^[b]	-	3.18/3.02, ob, CH ₂
	6					
	7	7.10/7.06, d (8.5), CH	0.00/0.01	7.10/7.05, d (8), CH	0.00/0.01	7.10/7.06, d (8.5), CH
	8	6.83/6.80, d (8.5), CH	0.00/0.00	6.83/6.80, d (8), CH	0.00/0.01	6.83/6.81, d (8.5), CH
	9					
	10	6.83/6.80, d (8.5), CH	0.00/0.00	6.83/6.80, d (8), CH	0.00/0.01	6.83/6.81, d (8.5), CH
	11	7.10/7.06, d (8.5), CH	0.00/0.01	7.10/7.05, d (8), CH	0.00/0.01	7.10/7.06, d (8.5), CH
	12	3.77/3.76, s, CH ₃	_[c]	3.77, s, CH ₃	_[c]	3.77/3.76, s, CH ₃
	13	2.90/2.75, s, CH ₃	0.00/-0.01	2.90/2.76, s, CH ₃	0.00/0.00	2.90/2.76, s, CH ₃
N-MeAla	14					
	15	5.35/4.81, ob, CH	0.00/0.00	5.35/4.81, ob, CH	0.00/0.01	5.35/4.82, ob, CH
	16					
	17	1.18/0.50, d (7.1), CH ₃	0.00/0.02	1.18/0.48, d (7), CH ₃	0.00/0.04 ^[d]	1.18/0.52, d (7.0), CH ₃
	18	3.01, 2.27, s, CH ₃	-	2.24, s, $CH_3^{[a]}$	-	3.00, 2.28, s, CH ₃
Ala	19					
	20	4.78, ob/4.59, p (7.0), CH	0.00/0.01	4.78/4.58, p (7), CH	0.00/0.02	4.78/4.60, p (7.0), CH
	21	6.94, br, NH	0.00	6.94, t (7), NH	-0.09	6.85, ob, NH
	22	1.20/1.08, d (6.7), CH ₃	0.00/0.00	1.20/1.08, d (7), CH ₃	-0.02/0.00	1.18/1.08, d (7.0), CH ₃
N-MePhe	23					
	24	5.52, ob, CH	0.00	5.52, ob, CH	-0.09 ^[d]	5.43, ob, CH
	25					
	26	3.27/2.98, ob, CH ₂	-	3.28/3.25, ob, CH ₂ ^[b]	-	3.26/2.98, ob, CH ₂
	27					
	28	7.18, ob, CH	0.00	7.18, ob, CH	0.00	7.18, ob, CH
	29	7.17, ob, CH	0.00	7.17, ob, CH	-0.01	7.16, ob, CH
	30	7.24, m, CH	0.00	7.24, m, CH	0.00	7.24, m, CH
	31	7.17, ob, CH	0.00	7.17, ob, CH	-0.01	7.16, ob, CH
	32	7.18, ob, CH	0.00	7.18, d (ob), CH	0.00	7.18, ob, CH
Mdvo	33	2.88, s, CH ₃	0.00	2.88, s, CH ₃	_[c]	2.89/2.88, s, CH ₃
Wuya	34	2 50	0.00		0.00	2.60
	35	2.60, sextet (6.6), CH	0.00	2.60, sextet (6), CH	0.00	2.60, m, CH
	36	1.13/1.10, m, CH ₂	0.00	1.13/1.10, m, CH ₂	0.28/0.20 ^[d]	1.41/1.30, m, CH ₂
	57	1.12, m, CH	0.00	1.12, m, CH	0.26 ^(a)	1.38, m, CH
	38	1.04/0.93, m, CH ₂	-	0.95 , m, $CH_2^{L^{\alpha_1}}$	- 0.07/0.0c[d]	$1.24/1.11, m, CH_2$
	39	1.29/1.21, m, CH ₂	0.00/0.00	1.29/1.21, m, CH ₂	0.0 ^{-[d]}	1.30/1.2/, m, CH ₂
	40	$1.42, m, CH_2$	0.00	1.42, m, CH ₂	0.02	$1.4/, m, CH_2$
	41	2.15, td (7.1, 2.6), CH ₂	0.00	2.15, t (0.0), CH ₂	0.02	2.1/, td (/.1, 2.6), CH ₂
	42	1.04 + (2.5) CV	0.01	1.05 hr - CII	0.01	1.04 hr - CU
	43	1.94, t (2.5), CH	-U.UI	1.95, Df 8, CH	-0.01	1.94, Dr S, CH
	44	$1.02/1.00, d(7.0), CH_3$	-0.05/-0.02[0]	$1.0//1.02, d (6.8), CH_3$	-0.28/-0.25 ^[0]	$0.79/0.77, d(6.9), CH_3$
	45	0.68, d (6.2), CH ₃	0.00	0.68, d (6.1), CH ₃	-	0.82/0.81, d (6.0), CH ₃

[a] The assignment of chemical shifts of natural carmabin A is incomplete according to the corresponding ¹H NMR and 2D NMR spectra.
[b] The assignment of chemical shifts of natural carmabin A is inaccurate according to the corresponding ¹H NMR and 2D NMR spectra.

[c] The difference of splitting pattern probably caused by rotamers.

[d] Obvious difference in the chemical shifts could be observed between the natural **carmabin A** and synthetic **1a** labelled in red.

[e] The difference of chemical shifts probably caused by impurities in natural carmabin A.

Unit	Position	Synthetic Carmabin A (1)		Natural Carmabin A		Synthetic 1a
		13C (100 MHz, CDCl3)	$\Delta \delta$ (ppm)	¹³ C (100 MHz, CDCl ₃)	$\Delta \delta$ (ppm)	13C (100 MHz, CDCl3)
N,O-diMeTyr	1					
	2	171.9/171.5, qC	0.20/0.10	171.7/171.4, qC	0.20/0.00	171.9/171.4, qC
	3	62.3/57.8, CH	0.00/-0.10	62.3/57.9, CH	0.00/-0.10	62.3/57.8, CH
	4	Ν	-	Ν	-	Ν
	5	33.3/32.5, CH ₂	-0.20/0.00	33.5/32.5, CH ₂	-0.20/0.00	33.3/32.5, CH ₂
	6	129.5, qC	-0.10	129.6, qC	0.00	129.6, qC
	7	130.3/129.8, CH	-0.10/0.00	130.4/129.8, CH	0.00/0.00	130.4/129.8, CH
	8	114.3/114.0, CH	-0.10/-0.10	114.4/114.1, CH	0.00/-0.10	114.4/114.0, CH
	9	158.7/158.5, qC	0.00/-0.10	158.7/158.6, qC	0.00/0.00	158.7/158.6, qC
	10	114.3/114.0, CH	-0.10/-0.10	114.4/114.1, CH	0.00/-0.10	114.4/114.0, CH
	11	130.3/129.8, CH	-0.10/0.00	130.4/129.8, CH	0.00/0.00	130.4/129.8, CH
	12	55.3, CH ₃	0.00	55.3, CH ₃	0.00	55.3, CH ₃
	13	31.0/29.0, CH ₃	0.00/0.00	31.0/29.0, CH3	0.00/0.00	31.0/29.0, CH3
N-MeAla	14	173.07/172.23, qC	0.09/-0.17	172.98/172.4, qC	0.09/-0.1	173.07/172.30, qC
	15	50.1/48.7, CH	-0.10/-0.10	50.2/48.8, CH	-0.10/-0.10	50.1/48.7, CH
	16	N	-	N	-	N
	17	14.0/13.9, CH ₃	0.00/0.00	14.0/13.9, CH ₃	0.00/0.00	14.0/13.9, CH ₃
	18	30.7/29.2, CH ₃	-[b]	29.2, CH ₃	-[b]	30.68/29.15, CH3
Ala	19	171.4, qC	0.10	171.3, qC	0.00	171.3, qC
	20	45.6/45.4, CH	-0.10/0.00	45.7/45.4, CH	-0.10/0.00	45.6/45.4, CH
	21	NH	-	NH	-	NH
	22	18.0/17.5, CH ₃	-0.10/-0.20	18.1/17.7, CH ₃	-0.10/-0.20	18.0/17.5, CH ₃
N-MePhe	23	169.65/169.56 qC	-[b]	169.5, qC	-[b]	169.54/169.49 qC
	24	56.7/56.3, CH	0.00/0.00	56.7/56.3, CH	0.30/0.30 ^[c]	57.0/56.6, CH
	25	N	-	N	-	N
	26	33.7/33.55, CH ₂	-[b]	33.7, CH ₂	-[b]	33.83/33.68, CH ₂
	27	136.92/136.85, qC	-0.08/-0.05	137.0/136.9, qC	0.00/0.00	137.0/136.9, qC
	28	128.86/128.79, CH	0.00/-0.01	128.86/128.80, CH	-0.01/0.01	128.85/128.81, CH
	29	126.54/126.52, CH	-0.06/-0.06	126.60/126.58, CH	-0.06/-0.07	126.54/126.51, CH
	30	128.37/128.35, CH	-[b]	128.4, CH	-[b]	128.36/128.33, CH
	31	126.54/126.52, CH	-0.06/-0.06	126.60/126.58, CH	-0.06/-0.07	126.54/126.51, CH
	32	128.86/128.79, CH	0.00/-0.01	128.86/128.80, CH	-0.01/0.01	128.85/128.81, CH
	33	30.99, CH ₃	0.19	30.8, CH ₃	0.21	31.01, CH ₃
Mdya	34	1/8.2/1/8.1, qC	-0.01/0.00	1/8.3/1/8.1, qC	-0.10/-0.10	1/8.2/1/8.0, qC
	35	33.52/33.49, CH	-0.08/-0.06	33.60/33.55, CH	0.06/0.07	33.66/33.62, CH
	30	40.7/40.6, CH ₂	-0.10/-0.10	40.8/40.7, CH ₂	-0.08/-0.02	40.72/40.68, CH ₂
	3/	30.14/30.07, CH		30.2, CH	0.40 ^[c]	30.6, CH
	38	30.34/30.29, CH ₂	-0.06/-0.01	30.4/30.5, CH ₂	-lbl	30.73/30.70, CH ₂
	39	23.0, CH ₂	-0.10	23.7, CH ₂	-[b]	23.90/23.89, CH ₂
	40	28.7, CH2	0.00	28.7, CH2	-[b]	28.0//28.58, CH2
	41	16.5, CH2 84.5 cC	0.00	16.5, CH2	-[b]	10.31/16.27, CH2 84.5/84.4 cC
	42	68.2 CH	-0.10	68.2 CH	-[b]	68 32/69 27 CU
	43	17.0/16.0 CH-	-0.10/.0.10	17 1/17 0 CH.	0.00/0.00	17 1/17 0 СН-
	44	10/11/10/20 CH.	0.00/0.07	10 50/10 45 CH-	0.00/0.00	10 51/10 50 CH.
L	43	17.41/17.30, UII3	-0.07/-0.07	17.JU/17.4J, UII3	0.01/0.03	17.J1/17.JU, UII3

Table S2. ¹³C NMR data of natural and synthetic carmabin A (1)^a

[a] ${}^{13}C$ NMR spectra were calibrated by using internal references and solvent signals CDCl₃ (δ_C =77.00 ppm).

[b] The difference of splitting pattern probably caused by rotamers.

[c] Obvious difference in the chemical shifts could be observed between the natural carmabin A and Synthetic 1a labelled in red.

NMR Comparison of natural and synthetic dragomabin (2a)

Figure S4. ¹H NMR comparison of natural and synthetic dragomabin (2a).

Figure S5. ¹³C NMR comparison of natural and synthetic dragomabin (2a).

Figure S6. Dragomabin (2a) and 2 with atom numbering.

Table S3. ¹ H NMF	data of natural	and synthetic	dragomabin ((2a)
------------------------------	-----------------	---------------	--------------	---------------

Unit	Position	Synthetic Dragomabin (2a)		Natural Dragomabin		Synthetic 2
		¹ H (400 MHz, CDCl ₃)	$\Delta \delta$ (ppm)	¹ H (400 MHz, CDCl ₃)	$\Delta \delta$ (ppm)	¹ H (400 MHz, CDCl ₃)
NO IM-T		$\delta_{\rm H}$ (mult, J in Hz)		$\delta_{\rm H}$ (mult, J in Hz)		$\delta_{\rm H}$ (mult, J in Hz)
N,O-divie I yr	1	7.62/6.18/5.55/5.41, br s, NH ₂	-	5.44, br s, $NH_2^{[a]}$	-	7.60/6.16/5.59/5.43, br s, NH ₂
	2	5.00 1/4.50 1.011	0.02/0.02	5.00 1/1.54 1.077	0.00/0.02	5.00 1/4.50 11/40.5 0.00 000
	3	5.30, ob/4.72, ob, CH	-0.02/-0.02	5.32, ob/4.74, ob, CH	0.00/-0.02	5.32, ob/4.72, dd (10.7, 3.8), CH
	4	0.10/2.01 CY		a 17 ort bi		2.10/2.01
	5	3.19/3.01, m, CH ₂	-	$3.17, m, CH_2^{[0]}$	-	3.19/3.01, m, CH ₂
	6		0.00/0.00	E 10/E 0 (1/0) - CT	0.00/0.00	
	/	7.10/7.06, d (8.5), CH	0.00/0.00	7.10/7.06, d (8), CH	0.00/0.00	7.10/7.06, d (8.5), CH
	8	6.83/6.80, d (8.7) , CH	0.00/0.00	6.83/6.80, d (8), CH	0.00/0.00	6.83/6.80, d (8.6) , CH
	9	6 02/6 00 1 (0 7) CH	0.00/0.00	6 02/6 00 1/0) CH	0.00/0.00	C 02/C 00 1/0 C) CH
	10	6.83/6.80, d (8.7), CH	0.00/0.00	6.83/6.80, d (8), CH	0.00/0.00	6.83/6.80, d (8.6) , CH
	11	7.10/7.06, d (8.5) , CH	0.00/0.00	7.10/7.06, d (8) , CH	0.00/0.00	7.10/7.06, d (8.5) , CH
	12	3.77/3.76, s, CH ₃	_[0]	3.77, s, CH ₃	_[c]	3.77/3.76, s, CH ₃
N N K A 1	13	2.90/2.76, s, CH ₃	0.00/0.00	2.90/2.76, s, CH ₃	-0.01/-0.01	2.89/2.75, s, CH ₃
N-MeAla	14					
	15	5.34/4.81, ob, CH	-0.01/0.00	5.35/4.81, ob, CH	0.00/0.00	5.35/4.81, ob, CH
	16					
	17	1.18/0.51, d (7.1), CH ₃	0.00/0.00	1.18/0.51, d (7), CH ₃	0.00/0.00	1.18/0.51, d (7.1), CH ₃
	18	3.02/2.28, s, CH ₃	-	2.28, s, CH ₃ ^[a]	-	3.00/2.25, s, CH ₃
Ala	19					
	20	4.78, ob/4.60, p (7.1) , CH	0.00/0.00	4.78/4.60, p (7), CH	0.00/-0.02	4.78, ob/4.58, p (6.9) , CH
	21	6.95, br, NH	0.05	6.90, ob, NH	-0.01	6.89, br, NH
	22	1.20/1.08, d (6.9), CH ₃	0.00/0.00	1.20/1.08, ob, CH ₃	0.00/0.00	1.20/1.08, d (6.9), CH ₃
N-MePhe	23					
	24	5.49, m, CH	-0.01	5.50, m, CH	-0.01	5.49, m, CH
	25					
	26	3.25/2.97, m, CH ₂	-	3.28/3.25, m, CH2 ^[b]	-	3.28/2.96, m, CH ₂
	27					
	28	7.18, ob, CH	0.00	7.18, d (ob), CH	0.00	7.18, ob, CH
	29	7.17, ob, CH	0.00	7.17, ob, CH	0.00	7.17, ob, CH
	30	7.24, m, CH	0.00	7.24, m, CH	0.00	7.24, m, CH
	31	7.17, ob, CH	0.00	7.17, ob, CH	0.00	7.17, ob, CH
	32	7.18, ob, CH	0.00	7.18, d (ob) , CH	0.00	7.18, ob, CH
	33	2.88, s, CH ₃	-0.01	2.89, s, CH ₃	_[c]	2.88/2.87, s, CH ₃
Moya	34					
	35	2.53, sextet (6.1), CH	0.00	2.53, sextet (6), CH	0.02	2.55, sextet (6), CH
	36	1.45/1.18, m, CH ₂	-0.01/-0.02	1.46/1.20, m, CH ₂	0.18/0.09 ^[d]	1.64/1.29, m, CH ₂
	37	1.00, m, CH ₂	0.00	1.00, m, CH ₂	0.32 ^[d]	1.32, m, CH ₂
	38	1.34, m, CH ₂	0.00	1.34, m, CH ₂	0.14 ^[d]	1.48, m, CH ₂
	39	2.06, m, CH ₂	0.00	2.06, m, CH ₂	-0.02	2.04, m, CH ₂
	40					
	41	1.93, br s, CH	0.00	1.93, br s, CH	0.00	1.93, br s, CH
	42	1.06/1.03, d (7.0), CH ₃	_[e]	1.04, d (7), CH ₃	_[d]	0.80/0.71, d (7.1), CH ₃

[a] The assignment of chemical shifts of natural dragomabin is incomplete according to the corresponding ¹H NMR spectra.

[b] The assignment of chemical shifts of natural dragomabin is inaccurate according to the corresponding 2D NMR spectra.

[c] The difference of splitting pattern probably caused by rotamers.

[d] Obvious difference in the chemical shifts could be observed between the natural dragomabin and synthetic 2 labelled in red.

[e] The difference probably caused by impurities in natural **natural dragomabin**.

Unit	Position	Synthetic Dragomabin (2a)		Natural Dragomabin		Synthetic 2
		13C (100 MHz, CDCl3)	$\Delta \delta$ (ppm)	13C (75 MHz, CDCl ₃)	Δ δ (ppm)	¹³ C (100 MHz, CDCl ₃)
N.O-diMeTvr	1	NH ₂	-	NH2	-	NH2
	2	171.8/171.5, gC	0.10/0.00	171.7/171.5. gC	0.20/-0.10	171.9/171.4. gC
	3	62.3/57.9. CH	0.00/0.00	62.3/57.9. CH	0.00/-0.20	62.3/57.7. CH
	4	N	-	N	-	N
	5	33.28/32.5, CH ₂	-0.02/0.10	33.3/32.4, CH ₂	-0.02/0.10	33.28/32.5, CH ₂
	6	129.6, qC	0.00	129.6, gC	-0.10	129.5, gC
	7	130.4/129.8, CH	0.00/0.00	130.4/129.8, CH	0.00/0.00	130.4/129.8, CH
	8	114.4/114.1, CH	0.00/0.00	114.4/114.1, CH	-0.10/-0.10	114.3/114.0, CH
	9	158.8/158.6, qC	0.01/0.00	158.7/158.6, qC	0.00/0.00	158.7/158.6, qC
	10	114.4/114.1, CH	0.00/0.00	114.4/114.1, CH	-0.10/-0.10	114.3/114.0, CH
	11	130.4/129.8, CH	0.00/0.00	130.4/129.8, CH	0.00/0.00	130.4/129.8, CH
	12	55.3, CH ₃	-0.10	55.4, CH ₃	-0.10	55.3, CH ₃
	13	31.1/29.1, CH ₃	0.00/0.00	31.1/29.1, CH3	0.00/0.00	31.1.9/29.1, CH3
N-MeAla	14	172.9/172.4, qC	0.00/0.00	172.9/172.4, qC	0.00/-0.10	172.9/172.3, qC
	15	50.2/48.8, CH	0.00/0.00	50.2/48.8, CH	-0.10/-0.10	50.1/48.7, CH
	16	Ν	Ν	Ν	Ν	Ν
	17	14.0/13.9, CH ₃	0.00/0.00	14.0/13.9, CH3	0.00/0.00	14.0/13.9, CH3
	18	30.8/29.2, CH ₃	_[b]	29.2, CH ₃	_[b]	30.8/29.1, CH3
Ala	19	171.3, qC	0.00/0.00	171.3, qC	0.00/0.00	171.3, qC
	20	45.7/45.4, CH	0.00/-0.10	45.7/45.5, CH	-0.10/0.00	45.6/45.5, CH
	21	NH	-	NH	-	NH
	22	18.1/17.7, CH ₃	-0.10/-0.10	18.2/17.8, CH ₃	-0.10/-0.20	18.1/17.6, CH ₃
N-MePhe	23	169.54/169.52, qC	_[b]	169.5, qC	_[b]	169.5/169.4, qC
	24	57.0/56.5, CH	0.00/0.00	57.0/56.5, CH	-0.20/0.10	56.8/56.6, CH
	25	Ν	-	Ν	-	Ν
	26	33.6/33.4, CH ₂	_[b]	33.6, CH ₂	_[b]	33.7/33.6, CH ₂
	27	137.1/137.0, qC	0.00/0.00	137.1/137.0, qC	-0.10/-0.10	137.0/136.9, qC
	28	128.83/128.78, CH	-0.02/-0.02	128.85/128.80, CH	-0.01/0.00	128.84/128.80, CH
	29	126.61/126.58, CH	_[b]	126.6, CH	_[b]	126.55/126.51, CH
	30	128.44/128.42, CH	_[b]	128.5, CH	_[b]	128.36/128.33, CH
	31	126.61/126.58, CH	_[b]	126.6, CH	_[b]	126.55/126.51, CH
	32	128.83/128.78, CH	-0.02/-0.02	128.85/128.80, CH	-0.01/0.00	128.84/128.80, CH
	33	31.2/30.85, CH ₃	_[b]	30.8, CH ₃	_[b]	31.2/30.89, CH3
Moya	34	177.8/177.6, qC	0.00/0.00	177.8/177.6, qC	0.00/0.00	177.8/177.6, qC
	35	35.9, CH	0.00/0.00	35.9, CH	_[b]	35.84/35.80, CH
	36	33.37/33.23, CH ₂	0.04/-0.02	33.33/33.25, CH ₂	-0.03/-0.05	33.30/33.20, CH ₂
	37	26.2, CH ₂	-0.10	26.3, CH ₂	[c]	26.7/26.6, CH ₂
	38	28.39/28.35, CH2	-0.01/-0.01	28.40/28.36, CH2	0.09/-0.02	28.49/28.34, CH2
	39	18.1/17.7, CH ₂	-0.10/-0.10	18.2/17.8, CH ₂	0.00/0.38	18.2/18.18, CH2
	40	84.46/84.41, qC	-0.03/-0.04	84.49/84.45, qC	-0.06/-0.24	84.43/84.21, qC
	41	68.23/68.17, CH	-0.01/-0.01	68.24/68.18, CH	0.38/0.13 ^[c]	68.62/68.31, CH
	42	17.4, CH ₃	0.00	17.4, CH ₃	_[b]	17.4/17.3, CH3

Table S4. ¹³C NMR data of natural and synthetic dragomabin (2a) ^[a]

[a] ¹³C NMR spectra were calibrated by using internal references and solvent signals CDCl₃ (δ_C =77.00 ppm).

[b] The difference of splitting pattern probably caused by rotamers.[c] Obvious difference in the chemical shifts could be observed between the natural dragomabin and Synthetic 2 labelled in red.

NMR Spectra

Figure S7. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 10.

Figure S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 10.

Figure S9. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 11.

Figure S10. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 11.

Figure S11. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 12.

Figure S12. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 12.

Figure S13. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 13.

Figure S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 13.

Figure S15. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 15.

Figure S16. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 15.

Figure S17. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5.

Figure S18. $^{\rm 13}C$ NMR (100 MHz, CDCl_3) spectrum of compound 5.

Figure S19. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 18.

Figure S20. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 18.

Figure S21. COSY (¹H, 400 MHz, CDCl₃) spectrum of compound 18.

Figure S22. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 18.

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 20.

Figure S24. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 20.

Figure S25. COSY (¹H, 400 MHz, CDCl₃) spectrum of compound 20.

Figure S26. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 20.

Figure S27. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7.

Figure S28. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 7.

Figure S29. COSY (¹H, 400 MHz, CDCl₃) spectrum of compound 7.

Figure S30. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 7.

Figure S31. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3.

Figure S32. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3.

Figure S33. COSY (1 H, 400 MHz, CDCl₃) spectrum of compound 3.

Figure S34. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 3.

Figure S35. COSY (¹H, 400 MHz, CDCl₃) spectrum of synthetic carmabin A (1).

Figure S36. NOESY (1 H, 400 MHz, CDCl₃) spectrum of synthetic carmabin A (1).

Figure S37. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of synthetic carmabin A (1).

Figure S38. HMBC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of synthetic carmabin A (1).

Figure S39. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3a.

Figure S40.¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3a.

Figure S41. COSY (1 H, 400 MHz, CDCl₃) spectrum of compound 3a.

Figure S42. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 3a.

Figure S43. COSY (¹H, 400 MHz, CDCl₃) spectrum of compound 1a.

Figure S44. NOESY (1 H, 400 MHz, CDCl₃) spectrum of compound 1a.

Figure S45. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 1a.

Figure S46. HMBC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 1a.

Figure S47. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6.

Figure S48. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6.

Figure S49. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4.

Figure S50. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4.

Figure S51. COSY (1 H, 400 MHz, CDCl₃) spectrum of compound 4.

Figure S52. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 4.

Figure S53. COSY (¹H, 400 MHz, CDCl₃) spectrum of compound 2.

Figure S54. NOESY (¹H, 400 MHz, CDCl₃) spectrum of compound 2.

Figure S55. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 2.

Figure S56. HMBC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 2.

Figure S57. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a.

Figure S58. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4a.

Figure S59. $COSY ({}^{1}H, 400 \text{ MHz}, CDCl_{3})$ spectrum of compound 4a.

Figure S60. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of compound 4a.

Figure S61. COSY (¹H, 400 MHz, CDCl₃) spectrum of synthetic dragomabin (2a).

Figure S62. NOESY (¹H, 400 MHz, CDCl₃) spectrum of synthetic dragomabin (2a).

Figure S63. HSQC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of synthetic dragomabin (2a).

Figure S64. HMBC (¹H, 400 MHz, ¹³C, 100 MHz, CDCl₃) spectrum of synthetic dragomabin (2a).