Supplementary Material

New Ansamycins from the Deep-Sea-Derived Bacterium *Ochrobactrum* sp. OUCMDZ-2164

Yaqin Fan ^{1,2,+}, Cong Wang ^{1,3,+}, Liping Wang ⁴, Arthit Chairoungdua ⁵, Pawinee Piyachaturawat ⁵, Peng Fu ^{1,2*} and Weiming Zhu ^{1,2,4*}

- ¹ Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; fanyaqin.826@163.com (Y.F.); wangcong123206@163.com (C.W.)
- ² Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology; Qingdao 266003, China
- ³ Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
- ⁴ State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; lipingw2006@163.com
- ⁵ Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; arthit.chi@mahidol.ac.th (A.C.); pawinee.pia@mahidol.ac.th (P.P.)
- * Correspondence: fupeng@ouc.edu.cn (P.F.); weimingzhu@ouc.edu.cn (W.Z.); Tel./Fax: +86-532-8203-1268 (W.Z.)
- + These authors contributed equally to this paper.

List of Supplementary Material

S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24

Figure S2. ¹H-NMR spectrum of trienomycin H (1) in DMSO-*d*₆

Figure S3. ¹³C-NMR spectrum of trienomycin H (1) in DMSO-*d*₆

Figure S4. DEPT spectrum of trienomycin H (1) in DMSO-*d*₆

Figure S5. HSQC spectrum of trienomycin H (1) in DMSO-*d*₆

Figure S6. 1 H- 1 H COSY spectrum of trienomycin H (1) in DMSO- d_{6}

Figure S7. HMBC spectrum of trienomycin H (1) in DMSO-*d*₆

Figure S8. HRESIMS spectrum of trienomycin I (2)

Figure S9. ¹H-NMR spectrum of trienomycin I (2) in DMSO- d_6

Figure S10. ¹³C-DEPTQ-NMR spectrum of trienomycin I (2) in DMSO- d_6

Figure S11. HSQC spectrum of trienomycin I (2) in DMSO-d₆

Figure S13. HMBC spectrum of trienomycin I (2) in DMSO-*d*₆

Figure S14. The determination of the Ala configuration of 1 by Marfey's Method (Solvents: A water + 0.2% TFA, B MeCN; linear gradient: 0 min, 25% B; 40 min, 60% B; 45 min, 100% B; temperature, 30 °C; flow rate, 1 mL/min; UV detection at λ 340 nm; FDAA, 14.2 min)

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.0

Figure S15. HPLC profiles for the water-insoluble hydrolysate of 1 and 3

Figure S16. ESIMS spectrum for the water-insoluble hydrolysate of 1

Figure S17. ESIMS spectrum for trienomycinol (3)

Figure S19. HPLC profiles for the water-insoluble hydrolysate of 2 and 3

Figure S20. ESIMS spectrum for the water-insoluble hydrolysate of 2

The Physical Properties of trienomycinol (3)

Trienomycinol (3): Yellow oil; $[α]_D^{25}$ +62.8 (*c* 0.1, MeOH); ECD (0.0011 *M*, MeOH) λ_{max} (Δε) 211 (-6.3), 266 (-2.8), 269 (+13.0) nm; ¹H NMR (DMSO-*d*₆, 600 MHz) δ 9.51, (s, 1H, 20-NH), 6.86 (s, 1H, H-21), 6.44 (s, 1H, H-23), 6.29 (s, 1H, H-19), 6.09 (dd, *J* = 15.3 Hz, *J* = 11.0 Hz, 1H, H-6), 6.08 (dd, *J* = 15.3 Hz, *J* = 10.3 Hz, 1H, H-7), 6.07 (dd, *J* = 15.0 Hz, *J* = 9.3 Hz, 1H, H-5), 6.06 (dd, *J* = 15.0 Hz, *J* = 11.5 Hz, 1H, H-8), 5.71 (m, 1H, H-9), 5.56 (dd, *J* = 15.0 Hz, *J* = 8.3 Hz, 1H, H-4), 5.08 (m, 1H, H-15), 4.54 (brs, 1H, H-13), 4.00 (m, 1H, H-3), 3.48 (m, 1H, H-11), 3.18 (s, 3H, CH₃O-3), 2.65 (m, 1H, H_a-17), 2.18 (overlap, 1H, H_a-16), 2.00 (overlap, 1H, H_b-17), 1.82 (overlap, 1H, H_b-16), 1.67 (overlap, 1H, H-12), 1.67 (overlap, 3H, H₃-25), 0.75 (d, *J* = 6.6 Hz, 3H, H₃-24); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 168.1 (C, C-1), 157.6 (C, C-22), 143.5 (C, C-18), 140.0 (C, C-14), 140.0 (C, C-20), 134.1 (CH, C-6), 133.5 (CH, C-5), 132.5 (CH, C-9), 132.1 (CH, C-8), 131.8 (CH, C-4), 129.4 (CH, C-7), 124.0 (CH₂, C-15), 111.5 (CH, C-19), 111.5 (CH, C-23), 105.7 (CH, C-21), 80.1 (CH, C-3), 70.7 (CH, C-11), 68.2 (CH, C-13), 56.1 (CH₃, CH₃O-3), 43.7 (CH₂, C-2), 41.5 (CH, C-12), 36.8 (CH₂, C-10) 36.2 (CH₂, C-17), 29.3 (CH₂, C-16), 20.9 (CH₃, C-25), 10.5 (CH₃, C-24), ESIMS *m*/z 464.4 [M + Na]⁺.