Novel antimicrobial peptides from the Arctic polychaeta *Nicomache minor* provide new molecular insight into biological role of the BRICHOS domain

Pavel V. Panteleev *, Andrey V. Tsarev, Ilia A. Bolosov, Alexander S. Paramonov, Mariana B. Marggraf, Sergey V. Sychev, Zakhar O. Shenkarev, Tatiana V. Ovchinnikova

M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997

* Correspondence: alarm14@gmail.com; ibch@inbox.ru; Tel.: +7-495-335-0900

Distance and Angle restraints	
Total NOE contacts	260
intraresidual	77
sequential (i-j =1)	85
medium-range (1< i-j <u><</u> 4)	98
Hydrogen bonds restraints (11 bonds, upper/lower)	22/22
S-S bond restraints (1 bond, upper/lower)	3/3
Torsion angle restraints	
Angle φ	26
Angle χ1	4
Total restraints/per residue:	340/10
Statistics for calculated structures	
Structures calculated/selected	200/20
CYANA target function (Å ²)	1.64 ± 0.1
Violations of restraints	
Distance (>0.2 Å)	4
Distance (>0.5 Å)	0
Dihedral angles (>5 °)	0
RMSD (Å) overall (Gly1-K33)	
Backbone	2.72 ± 0.80
All heavy atoms	3.42 ± 1.04
RMSD (Å) N-terminal domain (Gly1-Asn21)	
Backbone	0.24 ± 0.06
All heavy atoms	0.72 ± 0.09
RMSD (Å) C-terminal domain (Lys22-Lys33)	
Backbone	0.54 ± 0.32
All heavy atoms	1.33 ± 0.43
Ramachandran analysis	
Residues in favored regions (%)	81
Residues in allowed regions (%)	91

Figure S1. Polychaeta Nicomache minor

Nicomicin-1	[GCG A	GAC D	GAG E	TGT C	TAT Y	CTG L	ATC I	GGC G	GGC G	GTG V	GAC D	GAC D	AGT S	
		3	3'-GSI	P1 G	TGT	TAC	GTC	ATG	GGT	GG <mark>S</mark>	STK	GAC	>		
		3'-0	GSP2	GAG	TGC	TAC	YTG	RTC	GGM	GG					
Capitellacin		TCA S	GAG E	GAG E	TGC C	TAC Y	TTA L	GTC V	GGA G	GGC G	ATC	GAC D	CGT R	CAT H	
Alvinellacin		$_{\rm T}^{\rm ACC}$	GGA G	TCG S	TGT C	TAC Y	GTC V	ATG M	GGT G	GGC G	CTT L	GAC D	AGT S	AGT S	
Arenicin-1		GCT A	GGG G	GAG E	TGC C	TAC Y	CTG L	ATC	GGA G	GGG G	GTG V	GAC D	AAA K	CAG Q	
Arenicin-3		ACT T	GAT D	GAG E	TGT C	TAC Y	CTG L	ATT I	GGC G	GGG G	GTG V	GAC D	AGG R	AAG K	

Nicomicin-1	[GGT G	CTG L	TGT C	CAG Q	GAC D	AAA K	CCA P	GTC V	TTC F	TGG W	СТС L	GAG E	AAA K	
		3'-GSP3		TGC	BAG	GGM	AAR	CCT	GTY	TTC	TGG	MT			
Capitellacin		TCA S	AAG K	TGC C	GAA E	GAC D	AAG K	$\underset{\mathbb{P}}{\textbf{CCT}}$	GTT V	TTC F	TGG W	ATG M	GAA E	GCG A	
Alvinellacin		ACG T	TTG L	TGT C	TGG W	GGA G	AAG K	CCT P	GTC V	$\mathop{\textbf{TTC}}_{F}$	TGG W	ATC	AGT S	AAG K	
Arenicin-1		GAG E	GCC A	TGC C	CAG Q	GGC G	AAA K	TCA S	GTG V	TAC Y	TGG W	CTG L	GAG E	AAG K	
Arenicin-3		GAG E	$\operatorname{ccc}_{\mathbb{P}}$	TGC C	TCG S	GGA G	AAG K	GAC D	GTC V	TTC F	TGG W	CTG L	GAG E	AGG R	

Figure S2. Design of degenerate gene-specific primers for amplification of the 3'-end of cDNA encoding BRICHOSrelated peptides. Nucleotide and amino acid sequence alignments are presented at the figure. The primers were designed to anneal to sequences encoding two most conservative regions in BRICHOS domains of precursors of polychaeta AMPs capitellacin [8], alvinellacin [8], arenicin-1 [4], and arenicin-3 [12]. Degenerate nucleotides (R(A,G); Y(C,T); M(A,C); K(G,T); S(G,C); B(G,T,C)) in the primers are marked with red. 3'-GSP1 was designed to preferentially anneal to proalvinellacin encoding sequence. 3'-GSP2 was designed to preferentially anneal to procapitellacin and proarenicins encoding sequences. 3'-GSP3 was designed to preferentially anneal to consensus sequence (proarenicin-1, proarenicin-3, procapitellacin, and proalvinellacin). The corresponding pronicomicin-1 cDNA fragments are marked with dashed boxes. GTTGATCCGACAGTCGCTTGCAAACGAACTCAGAAAAGTTACAGTGATGGCCCGACTATATM A R L Y

CTG	TAC	CTG	TTG	GGA	GCG	GTG	TGT	GCC	GTC	CTG	CTC	ACT	CCC	CAGC	CTG	GGG	CTG	GCCC	CTT	GAG	TCC	GGC
L	Y	L	L	G	A	V	С	A	V	L	L	Т	P	S	L	G	L	Ρ	L	Ε	S	G
GAC	ATT	CAG	AAA	CGT	GCC	GAC	CTC	CAC	CAG	СТА	TTG	GCT	'AGC	CTG	GAC	AGA	CTG	GCTC	CAA	GAA	CCG	GAT
D	I	Q	K	R	A	D	L	Н	Q	L	L	A	R	L	D	R	L	L	Q	Е	P	D
CAG	АТА	СТТ	GCA	GAC	ААТ	GTC	AAG	GAC	GCT	'GCA	GAT	'GCT	CAG	CAA	CAG	CAT	ידידיי	GAG	GTA	TTT	GAT	GCT
Q	I	L	A	D	N	V	K	D	A	A	D	A	Q	Q	Q	Η	F	Е	V	F	D	A
GTG	ААТ	AAC	GCA	GAC	GAA	GCA	TTC	GAC	CTT	'GAC	CTT	'GAG	GAAT	GAC	AAG	GAA	ATC	GTT	'ACA	GTG	ACC	AGT
V	N	N	A	D	E	A	F	D	L	D	L	E	N	D	K	E	I	V	Т	V	Т	S
GGT	GAC	GCC	GCC	GGG	TCT	ACC	CTT	GTC	ATA	GAT	'GGA	GCC	AAG	GGT	ATC	ATC	AGC	TGG	GCC	AAC	AGG	CTG
G	D	A	A	G	S	T	L	V	I	D	G	A	K	G	I	I	S	W	A	N	R	L
ccc	CAC	GAG	TCT	ጥልጥ	CTC	ATC	CCC		CTC	CAC		аст	יריינ		יידריי	ICC A	CCC		CTTC	CCC	CAC	CDD
A	D	E	C	Y	L	I	G	G	V	D	D	S	L	P	S	A	G	E	L	R	E	E
										10			_									_
CTG	CAG	CAG	GGA	GAC	TCT	GAG	TCG	TTG	TCG	CTG	AAG	CAG	ATC	CGTG	TAC	CAG	AAG	GTC	CGT	AGC	CGA	GTG
L	Q	Q	G	D	S	Ε	S	L	S	L	K	Q	Ι	V	Y	Q	K	V	R	S	R	V
GGC	CGG	GAC	ACG	TCT	ATC	TTG	GCA	GAC	GAG	ATC	CAA	GGT	CTG	GTGT	'CAG	GAC	AAA	CCA	GTC	TTC	TGG	CTC
G	R	D	Т	S	I	L	A	D	Е	Ι	Q	G	L	C	Q	D	K	Ρ	V	F	W	L
GAG	ΔΔΔ	GTC	ACG	GAA	СТС	GAC	ААТ	GCC	GTT	GGA	GGA	тст	יידירי	GAG	AAG	AAG	GGT	יידידי	ידיקה	AGC	AGT	GTT
E	K	V	T	E	L	D	N	A	V	G	G	S	L	E	K	K	G	F	W	S	S	V
TCC	CAC	CCC	CCC	AAC	ייי מ מ	CTTC	CCC	ACC		<u>አ</u> መር	סידימי	מממי	די מ	CCC	מממי	Стт	יידיכר	CTTA	መልር	CCC	CTTA	TCC
W	D	G	A	K	N	V	G	T	A	I	I	K	N	A	K	V	C	V	Y	A	V	C
GTTC	ACC	CAC	AAC	тсa	ጥሮጥ	CCC	CAC	GAC			CDD	CCC	מממ	TCC		ጥጥር	יידיר	САТ	מידימי	ጥልጥ	CTT	CCT
V	S	H	K	•	101	ccc	CAC	GAC	CAC				1111	1100	MOR	III C	,110	IGAI	nin	INI	011	001
GAT	TTT	GAT	TGA	AAC	AAA	СТА	ATT	TAA	ACT	TCG	CTT	'AGA	TAC	CTT	'ATA	ATA	TGT	CTG	GTA	AAA	CTG	CTC
СТА	AGA	ТАА	TAT	TAT	AAC	AAT	GTT	'CAT	'TAC	GCT	TTG	GAC	CAAC	CGTT	CTT	'AA'I	'AAC	CATG	ATT	GAT	TCA	GGT
GAA	CAT	TTA	TAT	GCT	TCG	CGC	GCG	ATG	TTG	CGA	CCC	TTA	CAA	AAC	AAA	TGA	TGC	TTA	CAT	AAA	AGA	AAT
AAC	ATG	ATT	GCA	TTC	AGA	ACG	GCA	ACA	TTT	AGT	'ATA	AGG	SAAG	GCCC	TAT	'GGG	TAT	AAG	GCTC	CAT	TTG	ССТ
ATT	GAT	TTT	AAA	TAC	AAT	GCT	GTT	'GAC	AAA	TGT	'AAT	'AAG	GTI	TAT	'ATA	AAT	'TAA	TGG	STTC	ATT	TTT	ACC
AGT	CTG	ATA	TTA	CAA	ATA	GAT	ATC	ATG	TAT	TGC	AGA	TAT	TCA	ATTG	ACC	ACA	TAA	AAT	'CAA	TTA	CTT	ACT
ሻጃ	ጥጥጥ	Стт	GCT	ጥጥር	מידב	ልጥጥ	тса	ጥልጥ	יעעי		ምጥር	ΔΔΔ	ממיד		'ርጥጥ	ጣልር	CTT		ΔΔΔ	ΔΔΔ	ΔΔΔ	ΔΔΔ
T 1 77 J	* * * *						1 013		× ** * ±				. 1 1 1			1110					1	- 17 75 7
AAA	AAA	AAA	AAA	AAA	A																	

Figure S3. The nucleotide sequence of mRNA encoding prepronicomicin-1 and its translation. The open reading frame is represented with the following individual components: signal peptide (brown), prosequence (blue); and mature peptide (red). Tandem repeat sequences at the 3'UTR are underlined.

Figure S4. The peptide Nico(1-17) forms a gel structure at concentration of 2 mg/mL in water.