Supplementary Information

- 1. Figure S1. Chemical structures of known compounds 4–20. 2. Figure S2. The (+)-HRESIMS spectrum of chrysoxanthone A (1) **3. Figure S3.** IR spectrum of chrysoxanthone A (1) 4. Figure S4. ¹H NMR spectrum of chrysoxanthone A (1) in CDCl₃ 5. Figure S5. ¹³C NMR spectrum of chrysoxanthone A (1) in CDCl₃ 6. Figure S6. HMBC spectrum of chrysoxanthone A (1) in CDCl₃ 7. Figure S7. ROESY spectrum of chrysoxanthone A (1) in CDCl₃ 8. Figure S8. The (+)-HRESIMS spectrum of chrysoxanthone B (2) 9. Figure S9. IR spectrum of chrysoxanthone B (2) 10. Figure S10. ¹H NMR spectrum of chrysoxanthone B (2) in CDCl₃ 11. Figure S11. ¹³C NMR spectrum of chrysoxanthone B (2) in CDCl₃ 12. Figure S12. HMBC spectrum of chrysoxanthone B (2) in CDCl₃ 13. Figure S13. ROESY spectrum of chrysoxanthone B (2) in CDCl₃ 14. Figure S14. The (+)-HRESIMS spectrum of chrysoxanthone C (3) 15. Figure S15. IR spectrum of chrysoxanthone C (3) 16. Figure S16. ¹H NMR spectrum of chrysoxanthone C (3) in CDCl₃ 17. Figure S17. ¹³C NMR spectrum of chrysoxanthone C (3) in CDCl₃ 18. Figure S18. HMBC spectrum of chrysoxanthone C (3) in CDCl₃ 19. Figure S19. ROESY spectrum of chrysoxanthone C (3) in CDCl3 **20. Table S1.** Energies of dominative conformers of compounds **1–3** at MMFF94 force field. **21. Table S2.** Energies of conformers of compounds **1–3** at B3LYP/6-311G** in methanol. 22. Table S3. ¹H (500 MHz) and ¹³C NMR (125 MHz) spectroscopic data (δ in ppm, J in Hz) for compound 4 in CDCl₃ 23. Figure S20. ¹H NMR spectrum of andrastin A (4, in keto form) in CDCl₃
- 24. Figure S21. 13 C NMR spectrum of andrastin A (4, in keto form) in CDCl3
- 25. Figure S22. HSQC spectrum of andrastin A (4, in keto form) in CDCl3
- 26. Figure S23. HMBC spectrum of andrastin A (4, in keto form) in CDCl3
- 27. Figure S24. Proposed biosynthetic gene cluster (pc16g10640- pc16g10860) of compounds 1–3
- 28. Table S4. Putative ORFs and predicted functions of gene cluster pc16g10640-pc16g10860
- 29. Table S5. Antitumor activities (in vitro IC₅₀, μ M) of compounds 1–3

Isolation of the Known Compounds. Fraction E3 (80% CH₃OH-H₂O, 760 mg) was separated on a semipreparative HPLC with an Agilent C₁₈ column (9.6 × 250 mm, 5 μ m) with 60% CH₃OH in H₂O as the mobile phase (flow rate 4 mL/min) to afford compounds 4–8 (compound 4, 5.6 mg, trs = 35.2 min; compound 5 2.3 mg, t_{R6} = 38.9 min; compound 6, 28.2 mg, t_{R7} = 42.8 min; compound 7, 25.3 mg, t_{R8} = 44.5 min; compound 8, 24.1 mg, tro = 48.7 min). Fraction F (petroleum ether-EtOAc 5:1, 1.5 g) was chromatographed on Sephadex LH-20 (2.5 × 120 cm, 100 g) with CHCl₃-CH₃OH (1:10, v/v, each 20 mL) as eluent. Fractions were examined by HPLC and combined to fraction F1–F3. Purification of fraction F1 (180 mg) by semipreparative HPLC (45% CH₃OH/H₂O, 4 mL/min) afforded compound **17–18** (compound **17**, 6.2 mg, *t_{R18}* = 32.2 min; compound **18**, 4.2 mg t_{R19} = 34.5 min). Then, fraction F2 (340 mg) was subjected to the semipreparative HPLC (52% CH₃OH/H₂O, 4 mL/min) to provide compounds 14–16 (compound 14, 6.6 mg, t_{R15} = 33.8 min; compound 15, 6.9 mg, t_{R16} = 38.7 min; compound **16**, 5.4 mg t_{R17} = 41.6 min). Purification of fraction F3 (220 mg) by semipreparative HPLC (55% CH₃OH/H₂O, 4 mL/min) afforded compounds **19–20** (compound **19**, 5.2 mg, *t*_{R20} = 28.8 min; compound **20**, 4.7 mg, tr21 = 34.7 min). Fraction G (petroleum ether-EtOAc 2:1, 4.8 g) was separated by ODS CC (4 × 60 cm, 200 g), using a stepped gradient elution of CH₃OH-H₂O (40%, 65%, 85%, and 100%, *v*/*v*, each 1.5 L) to afford four subfractions, G1–G4. Fraction G1 (195 mg) was subjected to the semipreparative HPLC (35% CH₃OH/H₂O, 4 mL/min) to provide compounds **11–13** (compound **11**, 3.5 mg, *t*_{R12} = 38.1min; compound **12**, 4.3 mg, t_{R13} = 35.9 min; compound 13, 3.9 mg t_{R14} = 39.6 min). Purification of fraction G2 (110 mg) by semipreparative HPLC (40% CH₃OH/H₂O, 4 mL/min) was performed to give compounds 9-10 (compound 9, 4.8 mg, *t*_{R10} = 30.4 min; compound **10**, 6.1 mg, *t*_{R11} = 35.4 min).

Figure S1. Chemical structures of known compounds 4-20.

Figure S2. The (+)-HRESIMS spectrum of chrysoxanthone A (1)

Figure S3. IR spectrum of chrysoxanthone A (1)

Figure S9. IR spectrum of chrysoxanthone B (2).

Figure S15. IR spectrum of chrysoxanthone C (3).

Configuration	Conformer	Energy (kcal/mol)	Population (%)
	1	154.07	88.60
1/2.	2	155.66	6.04
1a/2a	3	156.15	2.64
	4	156.47	1.53
11-/01-	1	156.25	60.04
10/20	2	156.49	39.84
1.0	1	155.09	92.11
10/20	2	156.63	6.83
14/04	1	152.51	70.93
10/20	2	153.05	28.96
	1	157.52	96.14
3a	2	159.72	2.32
	3	160.01	1.43
01	1	155.77	95.99
30	2	157.65	3.99
2.	1	153.31	91.33
3c	2	154.71	8.60
3d	1	151.34	53.20
	2	151.58	35.84
	3	152.28	10.96

 Table S1. Energies of dominative conformers of compounds 1–3 at MMFF94 force field.

Configuration	Conformation	Structure	E (Hartree)	E (kcal/mol)	Population (%)
1a/2a	1	995 87 - 29 8 2 8 4 4 4 4 4 4 - 49 8 9 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-2291.321942	-1437826.215	1.73
1a/2a	2	an a	-2291.321588	-1437825.993	1.19
1a/2a	3	5. 50 	-2291.324721	-1437827.959	32.92
1a/2a	4		-2291.325351	-1437828.354	64.17
1b/2b	1	ماند معرفان می وارد می واقع می می وارد می واقع می می وارد می واقع می می وارد می واقع می می	-2291.321538	-1437825.962	62.09
1b/2b	2	فرون ولومو مراجع مراجع مراجع مراجع مراجع مراجع مر مراجع مراجع مراج	-2291.321073	-1437825.67	37.91

Table S2. Energies of conformers of compounds **1** ~ **3** at B3LYP/6-311G** in methanol.

1c/2c	1	ي کې کې د ي کې کې کې کې کې کې کې کې د ي کې	-2291.320084	-1437825.049	97.46
1c/2c	2	بر مع و مع مر من	-2291.316644	-1437822.891	2.54
1d/2d	1		-2291.320168	-1437825.102	99.35
1d/2d	2	and Barton and an Barton Barton and an Barton Barton and an Barton Barton an Barto	-2291.315428	-1437822.127	0.65
3a	1		-2291.287827	-1437804.807	20.11
3a	2		-2291.288303	-1437805.106	33.31
3a	3		-2291.288619	-1437805.304	46.58

3b	1		-2291.28883	-1437805.437	57.64
3b	2	م م في في محمد و فريد م في فريد م م م م م م م م م م م م م م م م م م م	-2291.28854	-1437805.255	42.36
3c	1		-2291.292728	-1437807.883	7.98
3c	2	ς 9 - 20 9 - 20 9 - 20 9 - 20 9 - 20 9 - 20 9 - 20 9 - 20 9 - 20 9 	-2291.295034	-1437809.33	92.02
3d	1		-2291.292081	-1437807.477	3.89
3d	2	٠٠ ٢٩ يو محمد ۵۰ ۵ م ٩ يو ۵ يو ۵ يو ۵ يو ۵ يو ٩ يو ۵ يو ۵ يو ۵ يو ۵ يو ۴ يو ۵ يو ۵ يو	-2291.295046	-1437809.338	90.22
3d	3		-2291.292472	-1437807.722	5.89

Position	δн, mult,J in Hz	δc	Position	δн, mult,J in Hz	δc
1a	2.35,ddd,12.5,3.5,3.5	27.7	14		72.3
1b	1.98,ddd,14.0,12.5,4.0		15		210.5
2	1.60,m	23.4	16	3.22,q,7.0	50.8
3	4.65,t,2.5	77.2	17		208.9
4		37.0	18		170.7
5	1.78,dd,10.8,3.2	47.9	19	2.10,s	21.4
6	1.60,m	16.7	20	0.88,s	21.2
7a	2.73,ddd,13.5,13.0,4.0	30.9	21	0.94.s	26.5
7b	2.42,ddd,13.5, 3.5,3.0		22	1.17,s	19.0
8		39.4	23	10.12,s	204.4
9	2.12,d,2.0	53.8	24	1.66,brs	19.0
10		52.3	25	1.24,s	15.9
11	5.72,s	124.7	26		168.0
12		134.3	27	3.58,s	52.0
13		60.7	28	1.22,d,7.0	9.5

Figure S24. Proposed biosynthetic gene cluster (*pc16g10640-pc16g10860*) of compounds **1–3 Table S4.** Putative ORFs and predicted functions of gene cluster *pc16g10640-pc16g10860*.

Penicillium chrysogenum (Wisconsin 54-1255)	Predicted function
pc16g10640	Fungal specific transcription factor
pc16g10650	NAD(P)-dependent dehydrogenase
pc16g10660	Dyp-type peroxidase
pc16g10670	Oxidoreductase/Monooxygenase
pc16g10680	Hypothetical protein
pc16g10690	Hypothetical protein
pc16g10700	Hypothetical protein
pc16g10710	Major facilitator superfamily
pc16g10720	Hypothetical protein
pc16g10730	Decarboxylase
pc16g10740	O-methyltransferase
pc16g10750	Nonreducing PKS
pc16g10760	Dehydratase
pc16g10770	Hypothetical protein
pc16g10780	Reductase/Dehydrogenase
pc16g10790	Oxidase
pc16g10800	Decarboxylase
pc16g10810	Peroxisomal short-chain alcohol dehydrogenase
pc16g10820	Oxidoreductase/Monooxygenase
pc16g10830	Short-chain alcohol dehydrogenase
pc16g10840	Salicylate 1-monooxygenase
pc16g10850	Major facilitator superfamily
pc16g10860	Fungal specific transcription factor

Compounds	IC ₅₀ (µM)				
	U87 MG	NCI-H1650	HT29	A498	HL-60
1	22.6	42.2	41.8	28.5	37.2
2	>50.0	>50.0	30.8	>50.0	16.2
3	47.0	>50.0	43.2	>50.0	22.7
Secalonic acid D	5.64	4.93	1.46	8.88	0.41

Table S5. Antitumor activities (in vitro IC50, μ M) of compounds 1–3.