SUPPORTING INFORMATION

Crellasterones A and B: A-norsterol derivatives from

the New Caledonian sponge Crella incrustans

Kavita Ragini, Andrew M. Piggott and Peter Karuso*

Department of Chemistry & Biomolecular Sciences, Macquarie University, NSW 2109, Australia

Table of Contents

Characterization of Compounds	2
-	
Table S1. NMR data (600 MHz) for crellasterone A (1) in CDCl3	3
Table S2. NMR data (600 MHz) for crellasterone B (2) in CDCl ₃	4
Figure S1. High resolution mass spectrum of crellasterone A (1)	5
Figure S2. High resolution mass spectrum of crellasterone B (2)	5
Figure S3. ¹ H NMR spectrum (600 MHz) of crellasterone A (1) in CDCl ₃	6
Figure S4. ¹³ C NMR spectrum (150 MHz) of crellasterone A (1) in CDCl ₃	7
Figure S5. ¹ H- ¹³ C HSQC spectrum (600 MHz) of crellasterone A (1) in CDCl ₃	8
Figure S6. ¹ H- ¹³ C HMBC spectrum (600 MHz) of crellasterone A (1) in CDCl ₃	9
Figure S7. ¹ H- ¹³ C H2BC spectrum (600 MHz) of crellasterone A (1) in CDCl ₃	10
Figure S8. ¹ H- ¹ H COSY spectrum (600 MHz) of crellasterone A (1) in CDCl ₃	11
Figure S9. ¹ H- ¹ H ROESY spectrum (600 MHz) of crellasterone A (1) in CDCl ₃	12
Figure S10. ¹ H NMR spectrum (600 MHz) of crellasterone B (2) in CDCl ₃	
Figure S11. ¹³ C NMR spectrum (150 MHz) of crellasterone B (2) in CDCl ₃	14
Figure S12. ¹ H- ¹³ C HSOC spectrum (600 MHz) of crellasterone B (2) in CDCl ₃	
Figure S13. ^{1}H - ^{13}C HMBC spectrum (600 MHz) of crellasterone B (2) in CDCl ₃	16
Figure S14 1 H- 1 H COSY spectrum (600 MHz) of crellasterone B (2) in CDCl ₂	17
Figure S15 1 H- 1 H ROESY spectrum (600 MHz) of crellasterone B (2) in CDCl ₃	18
Figure S16 ¹ H NMR spectrum (600 MHz) of chalinasterol (3) in CDCl ₂	19
Figure S17 13 C NMR spectrum (150 MHz) of chalinasterol (3) in CDCl ₂	20
Figure S18 Coordinate files for crellasterone B	21
Figure S19 Coordinate files for 6α -crellasterone A	1
Figure S19. Coordinate files for 60 crallestarone A	22
Figure S21 Coordinate files for 60 crollesterone A	23
Figure 521. Coordinate files for op-cretilasterone A	24
rigure 522. Ten lowest energy structures of I, superimposed showing the relativ	/e
distances between protons	25
Keterences	25

Characterization of compounds:

Chalinasterol (**3**):¹ white solid (112.2 mg); $[\alpha]^{20}_{D}$ –28 (*c* 0.50, CHCl₃) Lit.² $[\alpha]^{20}_{D}$ –23 (*c* 0.1, CHCl₃); UV (MeOH) λ_{max} 262 nm; IR (neat film) v_{max} 3335, 2957, 2935, 1465 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δ 5.33 (m, H-6), 4.49; 4.63 (m, H-25), 3.50 (m, H-3), 2.27; 2.21 (m, H-3), 2.20 (m, H-26), 2.07; 1.86 (m, H-23), 1.98; 1.13 (m, H-12), 1.95; 1.49 (m, H-7), 1.85; 1.08 (m, H-1), 1.83; 1.24 (m, H-16), 1.82; 1.49 (m, H-2), 1.55; 1.24 (m, H-15), 1.52; 1.13 (m, H-22), 1.46 (m, H-11), 1.42 (m, H-8), 1.39, (m, H-20), 1.10 (m, H-17), 1.00 (m, H-27), 1.00 (m, H-28), 0.99 (m, H-18), 0.98 (m, H-14), 0.93 (m, H-21), 0.91 (m, H-9), 0.66 (m, H-19). ¹³C-NMR (CDCl₃, 150 MHz) δ 156.4 (C-24), 140.3 (C-5), 121.3 (C-6), 105.5 (C-25), 71.3 (C-3), 56.3 (C-14), 55.5 (C-17), 49.6 (C-9), 41.8 (C-4), 41.8 (C-13), 39.1 (C-12), 36.8 (C-1), 36.0 (C-10), 35.3 (C-20), 34.4 (C-22), 33.3 (C-26), 31.4 (C-7), 31.2 (C-2), 31.1 (C-8), 30.5 (C-23), 27.8 (C-16), 23.8 (C-15), 21.5 (C-27), 21.4 (C-28), 20.6 (C-11), 18.9 (C-18), 18.2 (C-21), 11.4 (C-19); Mass spectrum (ESIMS) *m/z*: 399 [M + H]⁺ for C₂₈H₄₇O⁺.

Inosine (**4**): white solid (2.7 mg); $[\alpha]^{20}_{D}$ -30 (*c* 0.27, MeOH Lit.³ $[\alpha]^{20}_{D}$ -59 (*c* 1, H₂O); ¹H NMR (DMSO-*d*₆, 600 MHz) δ 12.39 (s, H-3), 8.34 (s, H-8), 8.06 (d, *J* = 4.0 Hz, H-2), 5.48 (s, H-4'-OH), 5.85 (d, *J* = 5.8 Hz, H-1'), 5.20 (s, H-3'-OH), 5.08 (s, H-5'-OH), 4.47 (t, *J* = 5.3 Hz, H-2'), 4.11 (dd, *J* = 1.3, 3.5 Hz, H-3'), 3.92 (q, *J* = 3.8 Hz, H-4'), 3.64; 3.53 (dd, *J* = 3.8, 7.8 Hz, H-5'). ¹³C-NMR (DMSO-*d*₆, 150 MHz) δ 156.5 (C-6), 148.2 (C-4), 145.9 (C-2), 138.7 (C-8), 124.4 (C-5), 87.4 (C-1'), 85.6 (C-4'), 74.1 (C-2'), 70.3 (C-3'), 61.3 (C-5'); Mass spectrum (ESIMS) *m/z*: 269 [M + H]⁺ for C₁₀H₁₃N₄O₅⁺.

2'-deoxyuridine (**5**): white solid (2.8 mg); $[\alpha]^{20}{}_{D}$ +40 (*c* 0.28, MeOH Lit.⁴ $[\alpha]^{20}{}_{D}$ +30 (*c* 2, H₂O); ¹H NMR (DMSO-*d*₆, 600 MHz) δ 11.29 (s, H-3), 7.84 (d, *J* = 8.0 Hz, H-6), 6.13 (t, *J* = 7.3 Hz, H-1'), 5.62 (dd, *J* = 2.2, 8.0 Hz, H-5), 5.24 (d, *J* = 4.2 Hz, H-3'-OH), 5.01 (t, *J* = 5.2 Hz, H-5'-OH), 4.21 (m, H-3'), 3.76 (q, *J* = 3.6 Hz, H-4'), 3.53 (m, H-5'), 2.07 (m, H-2'). ¹³C-NMR (DMSO-*d*₆, 150 MHz) δ 163.1 (C-4), 150.2 (C-2), 140.5 (C-6), 101.7 (C-5), 87.4 (C-4'), 84.1 (C-1'), 70.4 (C-3'), 61.3 (C-5'), 39.0 (C-2'); Mass spectrum (ESIMS) *m/z*: 223 [M + H]⁺ for C₉H₁₃N₂O₅⁺.

Uridine (**6**): white solid (5.6 mg); $[\alpha]^{20}_{D}$ +6 (*c* 0.5, MeOH Lit.⁵ $[\alpha]^{20}_{D}$ +4 (*c* 0.5, MeOH); ¹H NMR (DMSO-*d*₆, 600 MHz) δ 11.30 (s, H-3), 7.87 (d, *J* = 8.1 Hz, H-6), 5.76 (d, *J* = 5.4 Hz, H-1'), 5.63 (dd, *J* = 2.2, 8.1 Hz, H-5), 4.01 (t, *J* = 5.4 Hz, H-2'), 3.94 (t, *J* = 4.3 Hz, H-3'), 3.82 (q, *J* = 3.6 Hz, H-4'), 3.60; 3.53 (dd, *J* = 3.3, 8.7 Hz H-5'). ¹³C-NMR (DMSO-*d*₆, 150 MHz) δ 163.1 (C-4), 150.7 (C-2), 140.7 (C-6), 101.7 (C-5), 87.6 (C-1'), 84.8 (C-4'), 73.5 (C-2'), 69.9 (C-3'), 60.8 (C-5'); Mass spectrum (ESIMS) *m/z*: 245 [M + H]⁺ for C₉H₁₂N₂O₆⁺.

Guanosine (7): white solid (2.7 mg); $[\alpha]_{D}^{20}$ –36 (*c* 0.27, MeOH Lit.⁶ $[\alpha]_{D}^{20}$ –48 (*c* 0.1, H₂O); ¹H NMR (DMSO-*d*₆, 600 MHz) δ 10.62 (s, H-3), 7.92 (s, H-8), 6.44 (br,s, -NH₂), 5.68 (d, *J* = 5.9 Hz, H-1'), 5.38 (d, *J* = 6.1 Hz, H-2'-OH), 5.11 (d, *J* = 4.8 Hz, H-3'-OH), 5.03 (d, *J* = 5.5 Hz, H-5'-OH), 4.38 (q, *J* = 6.1 Hz, H-2'), 4.07 (q, *J* = 4.8 Hz, H-3'), 3.85 (q, *J* = 3.9 Hz, H-4'), 3.59; 3.50 (m, H-5').; Mass spectrum (ESIMS) *m/z*: 284 [M + H]⁺ for C₁₀H₁₃N₅O₅⁺.

Table S1. NMR data	(600 MHz) for crellasterone A	(1) in CDCl ₃
--------------------	----------	-----------------------	----	------------------------

Position	δ _C , type	$\delta_{\rm H} (J \text{ in } \text{Hz})$	COSY	HMBC	H2BC	ROESY
1	47.9, CH ₂	α 2.23, d (18.8)	1β	2,3,5,9,10,19		1β,9
		β 2.16, d (18.8)	1α	2,3,5,9,10,19		1α,19
2	202.2, C					
3	149.0, C					
5	146.7, C				_	
6	68.9, CH	4.59, m	7α,7β	3,5,7,8,10,29	7	7α,7β,29,30
7	37.5, CH ₂	α 2.03, m	6,7β,14	3,6,9,14	6,8	6,7β,9
		β 1.14, m	6,7α,8	3,6,9,14	6,8	6,7α,8
8	30.8, CH	1.84, m	7β,9,14	7,9	7,9	7β,11β,18,19
9	53.2, CH	0.85, m	8	12,19	8	1α,7α
10	40.2, C					
11	$23.2, CH_2$	α1.16, m	11β,12α	12		11β,12α
		β 1.56, m	11α,12β	9,12,13	9,12	8,11α,12β,18,19
12	39.2, CH ₂	α1.99, m	11α,12β	13,14		11α,21
		β 1.14, m	11β,12α	18		11β
13	42.6, C					
14	55.5, CH	1.11, m	7α,8	12,13,18,20	16	
15	23.7, CH ₂	α 1.34, m	15β	8,13,17		15β
		β 1.58, m	15α	8,13,17	14,16	15α,16α,16β
16	27.7, CH ₂	α 1.83, m	16β,17	13,14	15,17	15β
		β 1.26, m	16α		15,17	16α,15β
17	55.5, CH	0.96, m	16α,20	8,13,18		21,22α
18	11.8, CH ₃	0.72, s		12,13,14		8, 11β,20
19	21.2, CH ₃	1.25, s		1,3,9,10		1β,8,11β
20	35.3, CH	1.39, m	17,21	17,21,22	17,21	18
21	18.2, CH ₃	0.92, d (6.6)	20	17,20,22	20	12,17,22α
22	34.2, CH ₂	α 1.12, m	22β,23α	17	20	17,22β
		β1.51, m	22α,23β	17,20,21,23	23	22α,23β
23	30.5, CH ₂	α 2.07, m	22α,23β	22,24,28	22	23β
		β 1.86, m	22β,23α	22,24,28	22	22β,23α
24	156.4, C					
25	33.3, CH	2.20, m	26,27	24,28	26	26
26	21.5, CH ₃	1.00, d (3.7)	25	24,25,27	25	25
27	21.4, CH ₃	0.99, d (3.7)	25	24,25,26	25	
28	105.5, CH ₂	α 4.69, m	28β	23,24,25		28β
		β 4.63, m	28α	23,24,25		28α
29	63.7, CH ₂	3.41, q (7.0)	30	6,30	30	6,30
30	14.7, CH ₃	1.16, t (7.0)	29	29	29	6,29

Table S2. NMR data (600 MHz) for crellasterone B (2) in CDCl₃

Position	δ _C , type	$\delta_{\rm H} (J \text{ in Hz})$	COSY	HMBC	ROESY
1	46.8, CH ₂	α 2.21, d (18.8)		2,3,9,10,19	9,11α
		β 2.15, d (18.8)		2,3,9,10,19	19
2	201.1, C				
3	154.3, C				
5	143.6, C				
6	21.9, CH ₂	α 2.81, m	6β,7α,7β	3,5,7,8,10	6β,7α,7β
		β 2.12, m	6α,7α	3,5,7	6α,7α
7	31.2, CH ₂	α 1.87 m	6α,6β,7β	3,6,8,9	$6\alpha, 6\beta, 7\beta, 15\alpha$
		β 0.95, m	6α,6β,7α	6,8	7α
8	35.4, CH	1.48, m	9	7,9,14	18,19
9	53.4, CH	0.86, m	8,11α	6,12	$1\alpha, 14$
10	40.1, C		,		,
11	23.3, CH ₂	α 1.37, m	9,11β	9,12,13	1α,11β,12α,12β
		β 1.52, m	$11\alpha, 12\alpha, 12\beta$	9,12,13	11α,18,19
12	39.0, CH ₂	α 1.97, m	11β,12β	14,17	$11\alpha, 12\beta, 21$
		β 1.16, m	$12\alpha, 11\beta$	13,14,17,18	$11\alpha, 12\alpha$
13	42.4, C	•	•		-
14	55.4, CH	1.12, m		13,16	9,15α,16α
15	23.8, CH ₂	α 1.55, m	15β,16α	12,16	7α,14,15β
		β 1.07, m	15α	8,16,17	15α,16α
16	28.3, CH ₂	α 1.67, m	15α,16β	13,14	14,15β,16β,17
		β 1.20, m	16α		16α,20
17	55.3, CH	0.99, m		13,15,18,21,22	16α
18	11.8, CH ₃	0.71, s		12,13,14	8,11β,20
19	19.8, CH ₃	1.13, s		1,3,9,10	1β,8,11β
20	39.8, CH	1.99, m	21,22	17,21,22,23	22
21	20.5, CH ₃	0.97, d (6.6)	20	17,20,22	12α,22
22	135.4, CH	5.13, dd (7.5, 15.2)	20	17,20,21,23,24	20,21
23	131.5, CH	5.14, dd (7.8, 15.2)	24	20,22,24,25,28	24,27,28
24	42.6, CH	1.81, m	23,28	22,23,28,25	23,25,27,28
25	32.7, CH	1.43, m	26,27	23,24,27	24
26	19.2, CH ₃	0.81, d (6.8)	25	24,25,27	
27	19.7, CH ₃	0.82, d (6.8)	25	26	23,24
28	17.6, CH ₃	0.89, d (6.8)	24	23,24,25	23,24

KR1

Figure S1. High resolution mass spectrum of crellasterone A (1)

Figure S2. High resolution mass spectrum of crellasterone B (2)

Figure S4. ¹³C NMR spectrum (150 MHz) of crellasterone A (1) in CDCl₃

Figure S5. ¹H-¹³C HSQC spectrum (600 MHz) of crellasterone A (1) in CDCl₃

Figure S6. ¹H-¹³C HMBC spectrum (600 MHz) of crellasterone A (1) in CDCl₃

Figure S7. ¹H-¹³C H2BC spectrum (600 MHz) of crellasterone A (1) in CDCl₃

Figure S8. ¹H-¹H COSY spectrum (600 MHz) of crellasterone A (1) in CDCl₃

Figure S9. ¹H-¹H ROESY spectrum (600 MHz) of crellasterone A (1) in CDCl₃

Figure S10. ¹H NMR spectrum (600 MHz) of crellasterone B (2) in CDCl₃

Figure S11. ¹³C NMR spectrum (150 MHz) of crellasterone B (2) in CDCl₃

Figure S12. ¹H-¹³C HSQC spectrum (600 MHz) of crellasterone B (2) in CDCl₃

Figure S13. ¹H-¹³C HMBC spectrum (600 MHz) of crellasterone B (2) in CDCl₃

Figure S14. ¹H-¹H COSY spectrum (600 MHz) of crellasterone B (2) in CDCl₃

Figure S15. ¹H-¹H ROESY spectrum (600 MHz) of crellasterone B (2) in CDCl₃

Figure S16. ¹H NMR spectrum (600 MHz) of chalinasterol (3) in CDCl₃

Figure S17. ¹³C NMR spectrum (150 MHz) of chalinasterol (3) in CDCl₃

TD-DFT calculation (Turbomole 7.1) of 1 and 2:

Figure S18.Coordinate files for crellasterone B

(2; minus sidechain) (XYZ format) from Turbomole DFT-D3//PBE0/TZVPP-COSMO (CHCl₃) calculations

49

С	-1.762526	-0.476260 0.660610
0	-1.821955	0.620006 1.437198
Η	-2.566125	0.491023 2.041342
С	-2.719927	-1.558425 0.831002
0	-3.630028	-1.539528 1.641838
С	-2.341500	-2.657841 -0.120898
Η	-2.040510	-3.529493 0.466719
Η	-3.203150	-2.959478 -0.719062
С	-1.174904	-2.097820 -0.956511
С	-1.617660	-1.885110 -2.407803
Η	-2.475451	-1.210053 -2.438994
Η	-1.915885	-2.827542 -2.868130
Η	-0.825496	-1.447606 -3.016512
С	-0.882071	-0.762845 -0.309868
С	0.097754	-2.968079 -0.848778
Η	0.259293	-3.126076 0.228456
С	0.317046	-0.000412 -0.722767
Η	0.436327	0.897481 -0.114838
Η	0.204187	0.325735 -1.763441
С	1.544134	-0.908927 -0.618161
Η	1.744510	-1.118288 0.438975
Η	2.419281	-0.386054 -1.010158
С	1.350530	-2.229323 -1.353165
н	1.232728	-2.006925 - 2.420751

С	2.544145	-3.148595 -1.173425
Н	2.579185	-3.396421 -0.101592
С	2.409134	-4.495217 -1.896728
С	2.296281	-4.336009 -3.413160
Н	3.190114	-3.880529 -3.842491
Н	1.446177	-3.718459 -3.701791
Н	2.164422	-5.311722 -3.885472
С	1.185409	-5.212007 -1.344665
Н	1.356797	-5.431364 -0.284067
Н	1.031547	-6.171713 -1.848006
С	-0.063888	-4.346527 -1.487357
Н	-0.918455	-4.858597 -1.036260
Н	-0.304866	-4.235741 -2.547201
С	3.938079	-2.661283 -1.558865
Н	4.357231	-1.979465 -0.817844
Н	3.904970	-2.117565 -2.507099
С	3.762391	-5.126347 -1.527756
С	4.156827	-6.387132 -2.270392
Н	4.292082	-6.196635 -3.337424
Н	3.403141	-7.170994 -2.159878
Н	5.100726	-6.781391 -1.886358
Н	3.700150	-5.368952 -0.459673
С	4.760552	-3.961709 -1.695322
н	5.559600	-4.021771 -0.954264
Н	5.241644	-4.018014 -2.675210

Figure S19. Coordinate files for 6α -crellasterone A (2a; minus sidechain) (XYZ format) from Turbomole DFT-D3//PBE0/TZVPP-COSMO (CHCl₃) calculations

56

wavelength

206.662851916

216.412430933

262.157607884

304.982195300

С	1.670922 0	.649083 0.493113
0	2.077400 1	.824824 -0.008693
Н	1.565328 1	.958646 -0.823692
С	2.278062 0	.121140 1.719909
0	3.122621 0	.670216 2.395622
С	1.679023 -	1.242120 1.961415
Н	2.474786 -	1.982177 1.838276
Н	1.324357 -	1.321738 2.990087
С	0.571176 -	1.420133 0.910622
С	-0.805817	-1.397708 1.583781
Η	-0.906470	-2.218431 2.294481
Н	-1.619042	-1.477576 0.860639
Н	-0.934752	-0.461840 2.131155
С	0.739859 -	0.203709 0.034442
С	0.780574 -	2.674258 0.034958
Η	1.825509 -	2.626792 -0.305919
С	-0.039766	-0.105648 -1.223543
0	0.345028 1	.071054 -1.915971
С	-0.610131	1.544577 -2.849806
С	-0.099254	2.829459 -3.446117
Η	0.046163 3	.585488 -2.672487
Н	-0.817386	3.215094 -4.171325
Н	0.851123 2	.667446 -3.957226
Η	-1.566642	1.703041 -2.336093
Η	-0.770441	0.794731 -3.631768
Н	-1.111103	-0.037190 -0.978383
С	0.195135 -	1.368933 -2.047940
н	1.238437 -	1.362102 -2.381743

H -0.435955 -1.351215 -2.938344 C -0.074894 -2.635358 -1.243449 H -1.137098 -2.645529 -0.971048 C 0.233227 -3.879660 -2.055154 H 1.316901 -3.858950 -2.244748 -0.022532 -5.191554 -1.300379 С -1.489931 -5.364366 -0.908565 С Η -1.622364 -6.289727 -0.344421 Η -2.141343 -5.415041 -1.782426 H -1.848878 -4.549143 -0.281153 C 0.864168 -5.212128 -0.063020 H 1.912581 -5.224784 -0.383307 H 0.698178 -6.120937 0.523316 C 0.615861 -3.982081 0.806692 H 1.301535 -3.989164 1.658571 H -0.389882 -4.037055 1.229546 C -0.447407 -4.090829 -3.404160 H -0.005841 -3.477358 -4.190814 H -1.505043 -3.819919 -3.345449 C 0.358105 -6.199607 -2.397876 -0.002565 -7.650646 -2.151243 С H 0.365331 -8.282271 -2.963339 H -1.084395 -7.789731 -2.093225 H 0.436360 -8.020913 -1.221380 1.448429 -6.135484 -2.500786 н -0.276946 -5.602647 -3.671273 С H 0.345121 -5.797309 -4.546507 H -1.243122 -6.075337 -3.866253

Figure S20. Coordinate files for 6α -crellasterone A (2a; minus sidechain) (XYZ format) from Turbomole DFT-D3//PBE0/TZVPP-COSMO (CHCl₃) calculations

С	1.985152 0.656455 -0.688838
0	2.319321 1.617957 -1.563779
Н	3.168420 1.969994 -1.257804
С	2.892441 0.362454 0.413973
0	3.935873 0.964048 0.597827
С	2.320681 -0.778058 1.199461
Н	3.014675 -1.620687 1.146139
Н	2.233159 -0.504656 2.252579
С	0.967034 -1.095413 0.538895
С	-0.178612 -0.813418 1.515982
Н	-1.155017 -1.021655 1.077114
Н	-0.162573 0.236632 1.814779
Н	-0.079091 -1.419725 2.416705
С	0.904359 -0.139635 -0.638097
С	0.928035 -2.535908 -0.020870
Н	1.846360 -2.645329 -0.616859
С	-0.228443 -0.293858 -1.594472
0	-0.197978 0.596534 -2.678129
С	-0.665302 1.891958 -2.353380
С	-0.500094 2.777583 -3.559632
Н	-1.053702 2.379182 -4.411761
Н	0.553339 2.852584 -3.832973
Н	-0.873900 3.780127 -3.344301
Н	-0.099763 2.295138 -1.505963
Н	-1.720366 1.829587 -2.052040
Н	-1.171995 -0.159067 -1.041032
С	-0.203099 -1.720596 -2.127533
н	0.705306 - 1.850312 - 2.725612

rotary strength

240.810059529 0.0390457923757

261.074280696 24.797654587273

10.376465431112

-22.00899476656

wavelength

211.424067019

290.904565365

56

H -1.057683 -1.854052 -2.793635 C -0.235101 -2.746577 -1.003661 H -1.184789 -2.629261 -0.468377 -0.149806 -4.164183 -1.537193 С H 0.846655 -4.259073 -1.994087 C -0.201369 -5.240571 -0.444234 C -1.516982 -5.221388 0.334310 H -1.701099 -4.259574 0.811905 H -1.498676 -5.976615 1.123150 H -2.372942 -5.435761 -0.307150 C 0.975737 -5.022587 0.495825 H 1.905262 -5.179422 -0.063999 H 0.967714 -5.751876 1.312126 C 0.963556 -3.606868 1.067565 H 1.844677 -3.459260 1.697585 H 0.099333 -3.490894 1.725697 C -1.159030 -4.644229 -2.575593 H -0.939438 -4.261488 -3.573069 H -2.165141 -4.301750 -2.318467 C -0.120290 -6.502688 -1.319450 C -0.407684 -7.827581 -0.642252 H 0.253888 -7.994297 0.211573 H -0.260919 -8.656117 -1.339154 H -1.438937 -7.879066 -0.285500 H 0.906261 -6.536370 -1.704790 C -1.062661 -6.183976 -2.499222 H -0.687366 -6.618190 -3.427362 H -2.046188 -6.628202 -2.324821

Figure S21.Coordinate files for 6β-crellasterone A (**2b**; minus sidechain) (XYZ format) from Turbomole DFT-D3//PBE0/TZVPP-COSMO (CHCl₃) calculations

С	1.629755	0.567542 0.642312
0	2.391988	1.584684 0.214823
Η	2.854490	1.931425 0.990757
С	1.624434	0.190109 2.053426
0	2.259122	0.776470 2.910490
С	0.759251	-1.028335 2.193248
Η	1.401197	-1.864338 2.485574
Η	0.028920	-0.892603 2.992440
С	0.127591	-1.254972 0.804519
С	-1.378363	-0.975062 0.869640
Η	-1.864629	-1.641988 1.582412
Η	-1.852338	-1.092700 -0.103426
Η	-1.549952	0.050560 1.203425
С	0.826017	-0.235154 -0.069284
С	0.442743	-2.658206 0.239490
Η	1.529802	-2.789001 0.354118
С	0.680971	-0.273540 -1.556516
0	-0.624539	0.070303 -1.987407
С	-0.950167	1.426008 -1.759489
С	-2.349818	1.673509 -2.258113
Η	-2.426778	1.448557 -3.323302
Η	-2.623512	2.718954 -2.106327
Η	-3.066396	1.049539 -1.720925
Η	-0.228296	2.068434 -2.282261
Η	-0.875974	1.657697 -0.689405
Η	1.398735	0.423109 -2.008428
С	0.966483	-1.689427 -2.029590
Н	2.036536	-1.884638 -1.899596

CD spectrum	TD-DFT-D3/	/PBE0/TZVPP
-------------	------------	-------------

wavelength	rotary strength
210.32764955009	-4.8560094925472
222.29418556585	17.796859718369
248.22792078821	38.55729154899
262.73255124129	-15.299318109639
300.78249687242	-20.823666181965

Η	0.754654 -1.741064 -3.099991
С	0.169856 -2.744185 -1.272091
Η	-0.893895 -2.565661 -1.460648
С	0.529283 -4.142148 -1.739850
Η	1.588267 -4.289230 -1.477399
С	-0.227924 -5.258328 -1.008616
С	-1.739457 -5.176875 -1.223464
Н	-2.008943 -5.308561 -2.272599
Н	-2.151771 -4.221603 -0.899941
Н	-2.243861 -5.959603 -0.652935
С	0.105012 -5.167213 0.473545
Η	1.176345 -5.360949 0.604489
Η	-0.429694 -5.932833 1.044518
С	-0.231486 -3.783316 1.022474
Η	0.064364 -3.722705 2.073767
Η	-1.314851 -3.645320 1.006256
С	0.386064 -4.504942 -3.215460
Н	1.197714 -4.100436 -3.821536
Н	-0.544757 -4.098582 -3.620430
С	0.347569 -6.484764 -1.736806
С	-0.340179 -7.812882 -1.492370
Η	-1.368147 -7.804414 -1.861629
Н	-0.365289 -8.062567 -0.428529
Н	0.185854 -8.620121 -2.007705
Η	1.387281 -6.575524 -1.398646
С	0.363334 -6.049535 -3.216953
Н	1.222879 -6.472573 -3.739966
Н	-0.526496 -6.426000 -3.728091

Figure S22. Ten lowest energy structure of 1, superimposed showing the relative distances between protons.

Calculations were performed in MOE. Low mode molecular dynamics with a RMSD of 0.25 Å and a 7 kcal/mol energy window was used to generate a database of conformations. Structures were minimized to an RMS gradient of <0.001 kcal/mol using the MMFF94x forcefield and ranked by energy. The ten lowest structures were within 1.5 kcal/mol of each other and are shown in Figure S22. All structures show H-20 and H₃-18 in close proximity for (20*R*)-crellasterone A as seen experimentally in the ROESY spectrum (Figure S9).

References:

(1) Al-Massarani, S. M.; El-Gamal, A. A.; Al-Said, M. S.; Abdel-Kader, M. S.; Ashour, A. E.; Kumar, A.; Abdel-Mageed, W. M.; Al-Rehaily, A. J.; Ghabbour, H. A.; Fun, H.-K., *Pharmacogn. Mag.* **2016**, *12*, 114-119.

(2) Viegelmann, C.; Parker, J.; Ooi, T.; Clements, C.; Abbott, G.; Young, L.; Kennedy, J.; Dobson, D. A.; Edrada-Ebel, R., *Mar. Drugs* **2014**, *12*, 2937-2952.

(3) Panzica, R. P.; Rousseau, R. J.; Robins, R. K.; Townsend, L. B., J. Am. Chem. Soc. 1972, 94, 4708-4714.

(4) Huang, H.; Chu, C. K., Synth. Commun. 1990, 20, 1039-1046.

(5) Abe, F.; Yamauchi, T., *Phytochemistry* **1993**, *33*, 1499-1501.

(6) Hisamoto, M.; Kikuzaki, H.; Ohigashi, H.; Nakatani, N., J. Agric. Food Chem. 2003, 51, 5255-5261.