Next Issue
Volume 14, March
Previous Issue
Volume 14, January
 
 

Mar. Drugs, Volume 14, Issue 2 (February 2016) – 17 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
822 KiB  
Article
Bisdioxycalamenene: A Bis-Sesquiterpene from the Soft Coral Rhytisma fulvum fulvum
by Yuval J. Trifman, Maurice Aknin, Anne Gauvin-Bialecki, Yehuda Benayahu, Shmuel Carmeli and Yoel Kashman
Mar. Drugs 2016, 14(2), 41; https://doi.org/10.3390/md14020041 - 19 Feb 2016
Cited by 6 | Viewed by 5321
Abstract
A dichloromethane extract of the soft coral Rhytisma fulvum fulvum collected in Madagascar afforded a novel compound possessing an unprecedented pentacyclic skeleton, bisdioxycalamenene (1), as well as seven known sesquiterpenes. The structures of the compounds were elucidated using 1D and 2D NMR techniques, [...] Read more.
A dichloromethane extract of the soft coral Rhytisma fulvum fulvum collected in Madagascar afforded a novel compound possessing an unprecedented pentacyclic skeleton, bisdioxycalamenene (1), as well as seven known sesquiterpenes. The structures of the compounds were elucidated using 1D and 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of 1 was determined using X-ray diffraction analysis and anomalous dispersion effects. The structure elucidation and a possible biogenesis of the compound are discussed. Full article
Show Figures

Graphical abstract

1561 KiB  
Article
Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032
by Tzu-Wen Liang, Shih-Chun Tseng and San-Lang Wang
Mar. Drugs 2016, 14(2), 40; https://doi.org/10.3390/md14020040 - 19 Feb 2016
Cited by 66 | Viewed by 5853
Abstract
Natural polysaccharides have received much attention due to their wide range of applications. Although most microbial exopolysaccharides (EPSs) use sugars as the major carbon source, such as glucose or sucrose, in this study, EPSs were induced from a squid pen powder (SPP)-containing medium [...] Read more.
Natural polysaccharides have received much attention due to their wide range of applications. Although most microbial exopolysaccharides (EPSs) use sugars as the major carbon source, such as glucose or sucrose, in this study, EPSs were induced from a squid pen powder (SPP)-containing medium by Paenibacillus mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil. Under the optimal culture conditions, the maximum EPS yield (14.8 g/L) was obtained. MALDI-TOF MS analysis of an EPS fraction purified by gel filtration revealed two mass peaks with molecular weights of ∼1.05 × 104 and ∼1.35 × 104 Da, respectively. The analysis of the hydrolysates of TKU032 EPS with cellulase, pectinase or α-amylase indicated that the glycosidic bond of TKU032 EPS is most likely an α-1,4 glycosidic bond and the hydrolysates are similar to those of starch. In addition, the purified EPS demonstrated strong antioxidant abilities. Full article
(This article belongs to the Special Issue Green Chemistry Approach to Marine Products)
Show Figures

Graphical abstract

5509 KiB  
Review
Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus
by Renato B. Pereira, Paula B. Andrade and Patrícia Valentão
Mar. Drugs 2016, 14(2), 39; https://doi.org/10.3390/md14020039 - 19 Feb 2016
Cited by 40 | Viewed by 10256
Abstract
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a [...] Read more.
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

479 KiB  
Review
Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications
by Eduardo J. Gudiña, José A. Teixeira and Lígia R. Rodrigues
Mar. Drugs 2016, 14(2), 38; https://doi.org/10.3390/md14020038 - 18 Feb 2016
Cited by 127 | Viewed by 10745
Abstract
Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug [...] Read more.
Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments. Full article
Show Figures

Graphical abstract

2135 KiB  
Review
Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin
by Rosario Nicoletti and Antonio Trincone
Mar. Drugs 2016, 14(2), 37; https://doi.org/10.3390/md14020037 - 18 Feb 2016
Cited by 118 | Viewed by 11403
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals [...] Read more.
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs. Full article
Show Figures

Graphical abstract

2832 KiB  
Article
Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin
by Fang Zhao, Xichun Li, Liang Jin, Fan Zhang, Masayuki Inoue, Boyang Yu and Zhengyu Cao
Mar. Drugs 2016, 14(2), 36; https://doi.org/10.3390/md14020036 - 16 Feb 2016
Cited by 23 | Viewed by 6644
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes [...] Read more.
Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists. Full article
Show Figures

Figure 1

1070 KiB  
Review
Potential Anti-Atherosclerotic Properties of Astaxanthin
by Yoshimi Kishimoto, Hiroshi Yoshida and Kazuo Kondo
Mar. Drugs 2016, 14(2), 35; https://doi.org/10.3390/md14020035 - 05 Feb 2016
Cited by 158 | Viewed by 16553
Abstract
Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the [...] Read more.
Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed. Full article
Show Figures

Graphical abstract

3038 KiB  
Review
Marine Origin Polysaccharides in Drug Delivery Systems
by Matias J. Cardoso, Rui R. Costa and João F. Mano
Mar. Drugs 2016, 14(2), 34; https://doi.org/10.3390/md14020034 - 05 Feb 2016
Cited by 209 | Viewed by 16579
Abstract
Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and [...] Read more.
Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Graphical abstract

541 KiB  
Review
Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem
by Marco Pelin, Valentina Brovedani, Silvio Sosa and Aurelia Tubaro
Mar. Drugs 2016, 14(2), 33; https://doi.org/10.3390/md14020033 - 04 Feb 2016
Cited by 39 | Viewed by 9340
Abstract
Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, [...] Read more.
Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential. Full article
Show Figures

Graphical abstract

1601 KiB  
Article
Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata
by Tomoe Furuta, Yoshikatsu Miyabe, Hajime Yasui, Yasunori Kinoshita and Hideki Kishimura
Mar. Drugs 2016, 14(2), 32; https://doi.org/10.3390/md14020032 - 04 Feb 2016
Cited by 85 | Viewed by 8335
Abstract
We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE [...] Read more.
We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477–17,638) and β-subunit (Mw: 17,455–18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins. Full article
(This article belongs to the Special Issue Green Chemistry Approach to Marine Products)
Show Figures

Graphical abstract

926 KiB  
Article
Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)
by Aubrie O’Rourke, Stephan Kremb, Theresa Maria Bader, Markus Helfer, Philippe Schmitt-Kopplin, William H. Gerwick, Ruth Brack-Werner and Christian R. Voolstra
Mar. Drugs 2016, 14(2), 28; https://doi.org/10.3390/md14020028 - 04 Feb 2016
Cited by 29 | Viewed by 7549
Abstract
The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC [...] Read more.
The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery. Full article
Show Figures

Graphical abstract

596 KiB  
Review
Fucoidan as a Potential Therapeutic for Major Blinding Diseases—A Hypothesis
by Alexa Klettner
Mar. Drugs 2016, 14(2), 31; https://doi.org/10.3390/md14020031 - 03 Feb 2016
Cited by 34 | Viewed by 7978
Abstract
Fucoidan is a heterogeneous group of sulfated polysaccharide with a high content of l-fucose, which can be extracted from brown algae and marine invertebrates. It has many beneficial biological activities that make fucoidan an interesting candidate for therapeutic application in a variety [...] Read more.
Fucoidan is a heterogeneous group of sulfated polysaccharide with a high content of l-fucose, which can be extracted from brown algae and marine invertebrates. It has many beneficial biological activities that make fucoidan an interesting candidate for therapeutic application in a variety of diseases. Age-related macular degeneration and diabetic retinopathy are major causes for vision loss and blindness in the industrialized countries and increasingly in the developing world. Some of the characteristics found in certain fucoidans, such as its anti-oxidant activity, complement inhibition or interaction with the Vascular Endothelial Growth factor, which would be of high interest for a potential application of fucoidan in age-related macular degeneration or diabetic retinopathy. However, the possible usage of fucoidan in ophthalmological diseases has received little attention so far. In this review, biological activities of fucoidan that could be of interest regarding these diseases will be discussed. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

1690 KiB  
Review
Yessotoxin, a Promising Therapeutic Tool
by Amparo Alfonso, Mercedes R. Vieytes and Luis M. Botana
Mar. Drugs 2016, 14(2), 30; https://doi.org/10.3390/md14020030 - 28 Jan 2016
Cited by 39 | Viewed by 7457
Abstract
Yessotoxin (YTX) is a polyether compound produced by dinoflagellates and accumulated in filter feeding shellfish. No records about human intoxications induced by this compound have been published, however it is considered a toxin. Modifications in second messenger levels, protein levels, immune cells, cytoskeleton [...] Read more.
Yessotoxin (YTX) is a polyether compound produced by dinoflagellates and accumulated in filter feeding shellfish. No records about human intoxications induced by this compound have been published, however it is considered a toxin. Modifications in second messenger levels, protein levels, immune cells, cytoskeleton or activation of different cellular death types have been published as consequence of YTX exposure. This review summarizes the main intracellular pathways modulated by YTX and their pharmacological and therapeutic implications. Full article
Show Figures

Graphical abstract

1040 KiB  
Review
Emergent Sources of Prebiotics: Seaweeds and Microalgae
by Maria Filomena De Jesus Raposo, Alcina Maria Miranda Bernardo De Morais and Rui Manuel Santos Costa De Morais
Mar. Drugs 2016, 14(2), 27; https://doi.org/10.3390/md14020027 - 28 Jan 2016
Cited by 211 | Viewed by 17828
Abstract
In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding [...] Read more.
In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen. Full article
Show Figures

Graphical abstract

2220 KiB  
Review
Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy
by Hyeongmin Kim and Jaehwi Lee
Mar. Drugs 2016, 14(2), 29; https://doi.org/10.3390/md14020029 - 26 Jan 2016
Cited by 12 | Viewed by 6599
Abstract
Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation [...] Read more.
Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases. Full article
Show Figures

Graphical abstract

6538 KiB  
Review
New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids
by Alois Plodek and Franz Bracher
Mar. Drugs 2016, 14(2), 26; https://doi.org/10.3390/md14020026 - 26 Jan 2016
Cited by 17 | Viewed by 7934
Abstract
Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. [...] Read more.
Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids. This review summarizes the progress in the chemistry of pyridoacridine alkaloids that was made in the last one-and-a-half decades. Full article
(This article belongs to the Special Issue Synthesis of Antitumor Marine Alkaloids and Related Analogues)
Show Figures

Graphical abstract

2314 KiB  
Article
Larvicidal Potential of the Halogenated Sesquiterpene (+)-Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae)
by Orlando Salvador-Neto, Simone Azevedo Gomes, Angélica Ribeiro Soares, Fernanda Lacerda da Silva Machado, Richard Ian Samuels, Rodrigo Nunes da Fonseca, Jackson Souza-Menezes, Jorge Luiz da Cunha Moraes, Eldo Campos, Flávia Borges Mury and José Roberto Silva
Mar. Drugs 2016, 14(2), 20; https://doi.org/10.3390/md14020020 - 25 Jan 2016
Cited by 30 | Viewed by 6676
Abstract
Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for [...] Read more.
Dengue is considered a serious public health problem in many tropical regions of the world including Brazil. At the moment, there is no viable alternative to reduce dengue infections other than controlling the insect vector, Aedes aegypti Linnaeus. In the continuing search for new sources of chemicals targeted at vector control, natural products are a promising alternative to synthetic pesticides. In our work, we investigated the toxicity of a bioactive compound extracted from the red alga Laurencia dendroidea J. Agardh. The initial results demonstrated that crude extracts, at a concentration of 5 ppm, caused pronounced mortality of second instar A. aegypti larvae. Two molecules, identified as (−)-elatol and (+)-obtusol were subsequently isolated from crude extract and further evaluated. Assays with (−)-elatol showed moderate larvicidal activity, whereas (+)-obtusol presented higher toxic activity than (−)-elatol, with a LC50 value of 3.5 ppm. Histological analysis of the larvae exposed to (+)-obtusol revealed damage to the intestinal epithelium. Moreover, (+)-obtusol-treated larvae incubated with 2 µM CM-H2DCFDA showed the presence of reactive oxygen species, leading us to suggest that epithelial damage might be related to redox imbalance. These results demonstrate the potential of (+)-obtusol as a larvicide for use against A. aegypti and the possible mode of action of this compound. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop