Supplementary Materials: Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in *Nostoc* sp. CAVN2

Michael Preisitsch, Stefan E. Heiden, Monika Beerbaum, Timo H. J. Niedermeyer, Marie Schneefeld, Jennifer Herrmann, Jana Kumpfmüller, Andrea Thürmer, Inga Neidhardt, Christoph Wiesner, Rolf Daniel, Rolf Müller, Franz-Christoph Bange, Peter Schmieder, Thomas Schweder and Sabine Mundt

Ingredient	mg/L H ₂ O
Macronutrier	ıts ^a
NaNO ₃	233.5
Ca(NO3)2·4H2O	29.5
K ₂ HPO ₄	15.5
MgSO4·7H2O	12.5
Na ₂ CO ₃	10.6
Micronutrien	ıts ^b
H ₃ BO ₃	0.24800
MnSO ₄ ·4H ₂ O	0.17840
KBr	0.00952
KI	0.00664
ZnSO4·7H2O	0.02296
(NH4)6M07O24·4H2O	0.00704
Na2WO4·2H2O	0.00264
KCr(SO ₄) ₂ ·12H ₂ O	0.00400
AlK(SO ₄) ₂ ·12H ₂ O	0.07584
Cd(NO ₃) ₂ ·4H ₂ O	0.01232
Co(NO3)2·6H2O	0.01168
$CuSO_4$	0.00640
NiSO4·7H2O	0.01128
NH4VO3	0.00184
Other Compon	ents ^c
FeSO ₄ ·7H ₂ O	5.0
Na2EDTA	20.0

Table S1. Composition of Z¹/₂ medium used in this study.

^a Half quantity of macronutrients found in Zehnder-Medium according to Falch *et al.* [1]; ^b Micronutrient according to Gaffron's solution reported by Hughes *et al.* [2] in modified form; ^c Fe-EDTA-supplement according to Meffert *et al.* [3] in modified form.

CAVNO Culture	Bioma	ss Dry Weig	ht (g/L)
CAVN2 Culture	20 Days	25 Days	30 Days
Control	0.39 ± 0.03	0.40 ± 0.05	0.47 ± 0.00
+0.001% KF	0.40 ± 0.02	0.46 ± 0.02	0.50 ± 0.02
+0.01% KF	0.42 ± 0.01	0.42 ± 0.04	0.50 ± 0.04
+0.1% KF	0.28 ± 0.03	0.33 ± 0.03	0.39 ± 0.03
+1.0% KF	0.17 ± 0.01	0.20 ± 0.02	0.23 ± 0.02
+0.001% KI	0.36 ± 0.00	0.39 ± 0.01	0.44 ± 0.05
+0.01% KI	0.36 ± 0.03	0.43 ± 0.04	0.43 ± 0.03
+0.1% KI	0.20 ± 0.00	0.25 ± 0.02	0.38 ± 0.11
+1.0% KI	0.17 ± 0.03	0.15 ± 0.05	0.19 ± 0.05
+0.001% KBr	0.38 ± 0.04	0.51 ± 0.04	0.45 ± 0.05
+0.01% KBr	0.36 ± 0.02	0.46 ± 0.05	0.51 ± 0.01
+0.1% KBr	0.32 ± 0.04	0.43 ± 0.00	0.40 ± 0.02
+1.0% KBr	0.44 ± 0.03	0.47 ± 0.02	0.48 ± 0.07
+0.001% KCl	0.45 ± 0.08	0.65 ± 0.06	0.52 ± 0.00
+0.01% KCl	0.41 ± 0.04	0.49 ± 0.11	0.54 ± 0.06
+0.1% KCl	0.38 ± 0.05	0.42 ± 0.04	0.52 ± 0.05
+1.0% KCl	0.50 ± 0.05	0.54 ± 0.01	0.63 ± 0.00

Table S2. Biomass dry weights of *Nostoc* sp. CAVN2 cultures grown in the presence of different halogen salts at varying concentrations for 20–30 days. Values are presented as mean ± standard error of the mean (SEM), *n* = 2.

Table S3. ¹H (600 MHz,) and ¹³C (150 MHz) NMR spectroscopic data for compounds 1–5 in MeOH-d₄ ^a.

Nah		1		2		3		4		5
INO. ⁶	δc, Type	δ н (<i>J</i> in Hz)	δс, Туре	δ н (<i>J</i> in Hz)	δc, Type	δн (J in Hz)	δc, Type	б н (J in Hz)	δc, Type	δ н (J in Hz)
1	84.9, CH	4.93, d (10.1)	84.9, CH	4.90, d (10.4)	84.9, CH	4.93, d (10.1)	84.6, CH	4.90, d (10.1)	84.8, CH	4.90, d (10.2)
2	41.7, CH	1.81, <i>m</i>	41.7, CH	1.81, m	41.8, CH	1.84, <i>m</i>	41.8, CH	1.81, <i>m</i>	41.7, CH	1.81, <i>m</i>
3	35.9, CH ₂	0.87, 0.79, m	36.0, CH ₂	0.87, 0.79, m	35.9, CH ₂	0.91, 0.82, m	35.8, CH ₂	0.87, 0.80, m	35.8, CH ₂	0.87, 0.80, m
4	31.0, CH ₂	1.52, n.o., <i>m</i>	31.0, CH ₂	1.52, n.o., <i>m</i>	31.0, CH ₂	1.56, 0.92, m	30.9, CH ₂	1.53, 0.92, <i>m</i>	30.9, CH ₂	1.53, 0.92, <i>m</i>
5	31.7, CH ₂	1.03, 0.81, <i>m</i>	31.8, CH ₂	1.04, 0.81, <i>m</i>	31.8, CH ₂	1.07, 0.84, m	31.8, CH ₂	1.05, 0.81, <i>m</i>	31.8, CH ₂	1.05, 0.81, m
6	36.6, CH ₂	2.12, 1.41, m	36.6, CH ₂	2.13, 1.41, m	36.6, CH ₂	2.15, 1.44, <i>m</i>	36.6, CH ₂	2.13, 1.42, <i>m</i>	36.6, CH ₂	2.13, 1.42, m
7	37.9, CH	3.27, m	37.9	3.27, m	37.7, CH	3.31, <i>m</i>	37.7, CH	3.28, m	37.7, CH	3.28, <i>m</i>
8	119.1, C		119.1, C		119.7, C		119.9, C		118.7, C	
9	158.4, C		160.2, C		160.2, C		161.2, C		160.2, C	
10	106.6, CH	6.28, s	106.6, CH	6.28, s	106.6, CH	6.24, <i>s</i>	106.8, CH	6.22, <i>s</i>	106.6, CH	6.22, <i>s</i>
11	141.2, C		141.3, C		141.4, C		141.8, C		141.5, C	
12	110.7, CH	6.21, <i>s</i>	110.7, CH	6.21, <i>s</i>	110.8, CH	6.31, <i>s</i>	110.8, CH	6.28, s	110.8, CH	6.28, s
13	158.4, C		158.5, C		158.4, C		158.3, C		158.4, C	
14	84.9, CH	4.93, d (10.1)	84.9, CH	4.90, d (10.4)	84.9, CH	4.93, d (10.1)	84.6, CH	4.90, d (10.1)	84.8, CH	4.90, d (10.2)
15	41.7, CH	1.81, <i>m</i>	41.7, CH	1.81, <i>m</i>	41.8, CH	1.84, <i>m</i>	41.8, CH	1.81, <i>m</i>	41.7, CH	1.81, <i>m</i>
16	35.9, CH ₂	0.87, 0.79, m	36.0, CH ₂	0.87, 0.79, m	35.9, CH ₂	0.91, 0.82, <i>m</i>	35.8, CH ₂	0.87, 0.80, m	35.8, CH ₂	0.87, 0.80, m
17	31.0, CH ₂	1.52, n.o., <i>m</i>	31.0, CH ₂	1.52, n.o., <i>m</i>	31.0, CH ₂	1.56, 0.92, <i>m</i>	30.9, CH ₂	1.53, 0.92, <i>m</i>	30.9, CH ₂	1.53, 0.92, m
18	31.7, CH2	1.03, 0.81, <i>m</i>	31.8, CH ₂	1.04, 0.81, <i>m</i>	31.8, CH ₂	1.07, 0.84, <i>m</i>	31.8, CH ₂	1.05, 0.81, <i>m</i>	31.8, CH ₂	1.05, 0.81, m
19	36.6, CH ₂	2.12, 1.41, m	36.6, CH ₂	2.13, 1.41, m	36.6, CH ₂	2.15, 1.44, <i>m</i>	36.6, CH ₂	2.13, 1.42, <i>m</i>	36.6, CH ₂	2.13, 1.42, <i>m</i>
20	38.1, CH	3.24 <i>, m</i>	37.9	3.27, m	38.2, CH	3.27, m	37.7, CH	3.28, <i>m</i>	37.7, CH	3.28, <i>m</i>
21	119.7, C		119.1, C		118.7, C		119.9, C		118.7, C	
22	158.4, C		160.2, C		160.2, C		161.2, C		160.2, C	
23	106.6, CH	6.28, s	106.6, CH	6.28, s	106.6, CH	6.24, <i>s</i>	106.8, CH	6.22, s	106.6, CH	6.22, s
24	141.2, C		141.3, C		141.4, C		141.8, C		141.5, C	
25	110.7, CH	6.21, <i>s</i>	110.7, CH	6.21, <i>s</i>	110.8, CH	6.31 <i>, s</i>	110.8, CH	6.28, s	110.8, CH	6.28, s
26	158.4, C		158.5, C		158.4, C		158.3, C		158.4, C	
27	35.4, CH ₂	2.06, 1.60, m		2.06, 1.59, m	34.7, CH ₂	2.14, 1.64, <i>m</i>	34.7, CH ₂	2.11, 1.61, <i>m</i>	34.7, CH ₂	2.11, 1.61, m
28	29.3, CH ₂	1.39, 1.32, m	29.3, CH ₂	1.39, 1.32, m	29.2, CH ₂	1.64, 1.49, m	29.2, CH ₂	1.61, 1.46, <i>m</i>	29.2, CH ₂	1.61, 1.46, <i>m</i>
29	35.8, CH ₂	1.90, 1.84, m	35.8, CH ₂	1.91, 1.83, m	48.3, CH ₂	2.50, 2.38, m	48.3, CH ₂	2.47, 2.35, m	48.3, CH ₂	2.47, 2.35, m
30	35.8, CH ₂	3.42, td (7.0, 0.9)	35.8, CH ₂	3.42, td (7.1, 0.8)	49.3, CH	5.91, t (6.3)	49.3, CH	5.88, t (6.4)	49.3, CH	5.88, t (6.3)

31	36.2, CH ₂	2.00, 1.58, m	35.4, CH ₂	2.06, 1.59, m	36.2, CH ₂	2.03, 1.61, <i>m</i>	35.4, CH ₂	2.06, 1.60, m	34.7, CH ₂	2.11, 1.61, <i>m</i>
32	33.0, CH ₂	1.29, 1.19, <i>m</i>	29.3, CH ₂	1.39, 1.32, m	33.0, CH ₂	1.29, 1.19, m	29.1, CH ₂	1.46, 1.33, m	29.2, CH ₂	1.61, 1.46, m
33	25.3, CH ₂	1.33, n.o., <i>m</i>	35.8, CH ₂	1.91, 1.83, m	25.3, CH ₂	1.40, 1.34, <i>m</i>	35.7, CH ₂	1.91, 1.84, <i>m</i>	48.3, CH ₂	2.47, 2.35, m
34	15.8, CH ₃	0.90, t (7.2)	35.8, CH ₂	3.42, td (7.1, 0.8)	15.9, CH ₃	0.93, t (7.2)	35.8, CH ₂	3.42, td (7.0, 1.2)	49.3, CH	5.88, t (6.3)
35	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.12, d (6.4)	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.09, d (6.4)
36	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.12, d (6.4)	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.09, d (6.4)
37	161.3, C		161.2, C		161.3, C		162.3, C		161.2, C	
38	161.3, C		161.2, C		161.3, C		162.3, C		161.2, C	

^a ¹³C chemical shifts obtained from HMQC and HMBC spectra; Abbreviation: n.o. = not observed; ^b Numbering of the carbamidocyclophane framework, see Figure 4A.

Table S4. 1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data for compounds 6-9 in MeOH-d4. a

NI- h	6		7 8				9	
NO. ⁶	δc, Type	δн (J in Hz)	δc, Type	δ н (J in Hz)	δc, Type	δ н (J in Hz)	δc, Type	δ н (<i>J</i> in Hz)
1	84.9, CH	4.93, d (10.4)	84.9, CH	4.90, d (10.3)	84.9, CH	4.90, d (10.6)	85.0, CH	4.89, d (10.4)
2	41.8, CH	1.85, m	41.8, CH	1.82, <i>m</i>	41.8, CH	1.82, <i>m</i>	41.7, CH	1.82, <i>m</i>
3	35.9, CH ₂	0.89, 0.79, m	35.9, CH ₂	0.88, 0.79, m	35.9, CH ₂	0.88, 0.80, <i>m</i>	35.9, CH ₂	0.88, 0.79, m
4	31.2, CH ₂	1.54, n.o., <i>m</i>	31.2, CH ₂	1.51, 0.91, m	31.1, CH ₂	1.51, 0.90, m	31.0, CH ₂	1.53, 0.90, <i>m</i>
5	31.9, CH ₂	1.03, 0.80, <i>m</i>	31.9, CH ₂	1.04, 0.80, <i>m</i>	31.8, CH ₂	1.03, 0.81, <i>m</i>	31.8, CH ₂	1.03, 0.81, <i>m</i>
6	36.8, CH ₂	2.15, 1.43, m	36.7, CH ₂	2.13, 1.41, m	36.7, CH ₂	2.13, 1.41, m	36.7, CH ₂	2.14, 1.41, <i>m</i>
7	37.9, CH	3.30, m	37.7, CH	3.28, <i>m</i>	37.8, CH	3.28, <i>m</i>	37.7, CH	3.28, <i>m</i>
8	119.2, 119.7, C		119.2, 119.7, C		119.2, 119.7, C		119.9, C	
9	160.3, C		160.3, C		160.2, C		160.3, C	
10	106.6, CH	6.32, s	106.7, CH	6.31, <i>s</i>	106.6, CH	6.30, s	106.9, CH	6.29, s
11	141.2, C		141.3, C		141.4, C		141.8, C	
12	110.8, CH	6.20, s	110.9, CH	6.24, s	110.8, CH	6.22, s	111.0, CH	6.22, s
13	158.4, C		158.4, C		158.4, C		n.o.	
14	83.1, CH	3.86 <i>, d</i> (9.8)	83.1, CH	3.84, d (9.6)	83.1 CH	3.84, d (9.5)	83.2, CH	3.83, d (9.5)
15	43.4, CH	1.66, <i>m</i>	43.4, CH	1.63, <i>m</i>	43.4, CH	1.63, <i>m</i>	43.4, CH	1.63, <i>m</i>
16	36.6, CH ₂	0.85, 0.74, <i>m</i>	36.6, CH ₂	0.83, 0.72, <i>m</i>	36.5, CH ₂	0.82, 0.71, <i>m</i>	36.5, CH ₂	0.83, 0.73, <i>m</i>

Table S4. Cont.

17	31.2, CH ₂	1.54, n.o., <i>m</i>	31.2, CH ₂	1.51, 0.91, <i>m</i>	31.1, CH ₂	1.51, 0.91, <i>m</i>	31.1, CH ₂	1.51, n.o., <i>m</i>
18	31.9, CH ₂	1.03, 0.80, <i>m</i>	31.9, CH ₂	1.04, 0.80, <i>m</i>	31.8, CH ₂	1.03, 0.81, <i>m</i>	31.8, CH ₂	1.03, 0.81, <i>m</i>
19	36.8, CH ₂	2.15, 1.43, m	36.7, CH ₂	2.13, 1.41, m	36.7, CH ₂	2.13, 1.41, m	36.7, CH ₂	2.14, 1.41, <i>m</i>
20	38.2, CH	3.27, m	38.2, CH	3.24, <i>m</i>	37.8, CH	3.28, <i>m</i>	37.7, CH	3.28, <i>m</i>
21	118.5, 119.0, C		118.5, 119.0, C		118.5, 119.0, C		118.3, C	
22	160.2, C		160.4, C		160.3, C		160.3, C	
23	106.4, CH	6.18, s	106.5, CH	6.36, s	106.4, CH	6.34, s	106.6, CH	6.33, s
24	145.4, C		145.5, C		145.6, C		146.0, C	
25	110.2, CH	6.35, s	110.3, CH	6.19, s	110.2, CH	6.16, s	110.4, CH	6.16, <i>s</i>
26	158.4, C		158.5, C		158.4, C		n.o.	
27	35.4, CH2	2.11, 1.61, <i>m</i>	35.4, CH2	2.06, 1.59, m	34.8, CH ₂	2.13, 1.60, <i>m</i>	34.7, CH ₂	2.12, 1.60, <i>m</i>
28	29.2, CH ₂	1.38, 1.33, m	29.2, CH ₂	1.60, 1.45, m	29.2, CH ₂	1.60, 1.45, m	29.1, CH ₂	1.60, 1.45, m
29	35.8, CH2	1.93, n.o., <i>m</i>	48.3, CH ₂	2.49, 2.35, m	48.2, CH ₂	2.48, 2.34, <i>m</i>	48.3, CH ₂	2.48, 2.34, <i>m</i>
30	35.9, CH ₂	3.43, <i>m</i>	49.4, CH	5.89, t (6.3)	49.4, CH	5.89, td (6.3, 1.4)	49.3, CH	5.88, td (6.3, 1.4)
31	36.2, CH ₂	2.03, 1.59, m	36.2, CH ₂	2.01, 1.57, m	35.3, CH ₂	2.08, 1.59, m	34.7, CH ₂	2.12, 1.60, <i>m</i>
32	33.1, CH ₂	1.28,1.17, m	33.2, CH ₂	1.26, 1.19, m	29.2, CH ₂	1.42, 1.35, <i>m</i>	29.1, CH ₂	1.60, 1.45, <i>m</i>
33	25.3, CH ₂	1.40, 1.32, <i>m</i>	25.3, CH ₂	1.37, 1.28, m	35.5, CH ₂	1.91, 1.84, <i>m</i>	48.3, CH ₂	2.48, 2.34, <i>m</i>
34	15.9, CH ₃	0.92, <i>m</i>	15.9, CH ₃	0.90, <i>m</i>	35.9, CH ₂	3.41, <i>m</i>	49.3, CH	5.88, td (6.3, 1.4)
35	18.0, CH ₃	1.12, d (6.1)	18.0, CH ₃	1.09 <i>, d</i> (6.3)	17.9, CH ₃	1.09, d (6.4)	17.9, CH ₃	1.09, d (6.4)
36	18.3, CH ₃	1.17, d (6.1)	18.3, CH ₃	1.15 <i>, d</i> (6.3)	18.3, CH ₃	1.14, d (6.4)	18.3, CH ₃	1.15, d (6.4)
37	161.3, C		161.3, C		161.2, C		161.5, C	

^a ¹³C chemical shifts obtained from HMQC and HMBC spectra; Abbreviation: n.o. = not observed; ^b Numbering of the carbamidocyclophane framework, see Figure 4A.

Figure S1. Intracellular contents of brominated (1–9) and non-halogenated (19 and 20) carbamidocyclophanes of *Nostoc* sp. CAVN2 cultivated in Z¹/₂ medium as control containing <0.1 μ M halide ions (Ø KBr) or in bromide-enriched (+0.01 M KBr) Z¹/₂ medium. Values shown are expressed as the mean ± SEM, *n* = 3.

Figure S2. Intracellular contents of chlorinated (**10–18**) and non-halogenated (**19** and **20**) carbamidocyclophanes of *Nostoc* sp. CAVN2 cultivated in Z¹/₂ medium as control containing <0.1 μ M halide ions (Ø KCl) or in chloride-enriched (+ 0.01 M KCl) Z¹/₂ medium. Values shown are expressed as the mean ± SEM, *n* = 3.

Table S5. Biomass dry weights of *Nostoc* sp. CAVN2 cultures grown in the presence of KCl and KBr at different mixing ratios for 20 days. Values are presented as mean \pm SEM, n = 3.

CAVN2 Culture	Biomass Dry Weight (g/L)	Statistical Significance <i>versus</i> the Control ^a
Control	0.35 ± 0.01	
+0.01 M KCl and 0.01 M KBr	0.77 ± 0.03	**
+0.01 M KCl and 0.001 M KBr	0.68 ± 0.02	No
+0.001 M KCl and 0.01 M KBr	0.64 ± 0.03	No

^a Two asterisks (**) indicate a significant difference of p < 0.01 versus the control; Data were tested for Gaussian distribution using the Kolmogorov-Smirnov test; Statistical analysis was performed using the Kruskal-Wallis test followed by Dunn's multiple comparisons test.

ORF	Annotation	Protein	Amino Acids	Top BlastP Result Protein [Organism] (Acc. No.)	Ident/Sim/Qcov (%), E-Value	InterPro Results
1	Caspase-like domain-containing protein		220	Hypothetical protein [<i>Scytonema hofmanni</i> UTEX B 1581] (WP_051502726)	56/68/87.27, 8.16e-57	Caspase-like domain(IPR029030)
2	Long-chain-fatty-acid—CoA ligase	CabA	604	AMP-dependent synthetase/ligase [<i>Cylindrospermum licheniforme</i> UTEX B 2014] (AFV96135)	88/94/99.83, 0	AMP-dependent synthetase/ligase (IPR000873)
3	Acyl carrier protein	CabB	103	Acyl carrier protein [<i>C. licheniforme</i> UTEX B 2014] (AFV96136)	87/90/100, 1.61e-57	Acyl carrier protein-like (IPR009081)
4	Hypothetical protein	CabC	471	Hypothetical protein [<i>C. licheniforme</i> UTEX B 2014] (AFV96137)	96/97/100, 0	None
5	Polyketide synthase	CabD	1,385	Polyketide synthase [<i>C. licheniforme</i> UTEX B 2014] (AFV96138)	88/94/77.11,0	Polyketide synthase, beta-ketoacyl synthase domain (IPR020841), acyl transferase domain (IPR020801), 3× phosphopantetheine-binding domain (IPR020806)
6	Beta-ketoacyl synthase	CabE	413	Beta-ketoacyl synthase [<i>C. licheniforme</i> UTEX B 2014] (AFV96139)	92/96/100, 0	Polyketide synthase, beta-ketoacyl synthase domain (IPR020841)
7	Hydroxymethylglutaryl-CoA synthase	CabF	419	3-Hydroxy-3-methylglutaryl CoA synthase [Cylindrospermum stagnale] (WP_015207399)	94/98/100, 0	Hydroxymethylglutaryl-coenzyme A synthase, N-terminal (IPR013528), C-terminal domain (IPR013746)
8	Enoyl-CoA hydratase	CabG	258	Enoyl-CoA hydratase/isomerase [<i>C. licheniforme</i> UTEX B 2014] (AFV96141)	90/95/98.45, 1.41e-162	Crotonase superfamily (IPR001753)

Table S6. List of predicted open reading frames (ORF) of the *cab* gene cluster.^a

Table S6. Cont.

						Crotonase superfamily (IPR001753);
						Polyketide synthase, enoylreductase
				Polyketide synthase family protein		domain (IPR020843), beta-ketoacyl
9	Polyketide synthase	CabH	2077	[C. stagnale]	84/91/68.85, 0	synthase domain (IPR020841), acyl
				(WP_015207397)		transferase domain (IPR020801),
						phosphopantetheine-binding domain
						(IPR020806);
						Thioesterase (IPR001031)
				Naringenin-chalcone synthase		FAE1/Type III polyketide synthase-like
10	10 Type III polyketide synthase	CabI	373	[C. stagnale]	92/97/100, 0	protein (IPR013601);
				(WP_015207396)		Chalcone/stilbene synthase, C-terminal
						(IPR012328)
11	Isoprenylcysteine carboxyl	Cali	100	Phospholipid methyltransferase	<i>94/04/</i> 100 <i>2 ((</i> - 1 22	Isoprenylcysteine carboxyl
11	methyltransferase	Cabj	199	$\begin{bmatrix} C. \ licentiforme \ O \ I \ EX \ B \ 2014 \end{bmatrix}$	84/94/100, 3.668-122	methyltransferase (IPR007269)
				Hemolysin-type calcium-hinding region		Quinonprotein alcohol dehydrogenase-
12	Beta-propeller repeat-containing protein	CabK	687	[C licheniforme UTEX B 2014]	79/90/92 87.0	like superfamily (IPR011047):
	Sem propenet repeat community protein	cubit	007	(AFV96145)		Beta-propeller repeat (IPR010620)
				Hypothetical protein		
13	Carbamoyltransferase	CabL	581	[Methylococcaceae bacterium Sn10-6]	52/68/71.08, 6.74e-150	Carbamoyltransferase (IPR003696)
	·			(WP_052700247)		•
	Ricka [2Ea 2S] iron sulphur domain			Ring-hydroxylating dioxygenase		Rieske [2Fe-2S] iron-sulphur domain
14	containing protein	CabM	502	[C. stagnale]	89/95/100, 0	(IPR017941);
	containing protein			(WP_015207391)		Pheophorbide a oxygenase (IPR013626)

^a Abbreviations: Acc. No. = accession number; Ident = identity, Sim = similarity, Qcov = query coverage, E-value = expectation value.

Idontity (9/)	Alianmant I anoth	Mismatchas	ismatches Can Onens -	Query		Subject		– F-Value	Bit Score
Identity (%)	Alignment Length	Mismatches	Gap Opens	Start	End	Start	End	E-value	BIt Score
88.78	1880	206	4	1005	2879	1337	3216	0	2298.0
84.60	448	51	10	3345	3788	3275	3708	4e-121	429.0
91.08	4954	423	9	3924	8865	3833	8779	0	6682.0
85.01	467	68	2	8478	8943	8791	9256	2e-134	473.0
89.56	5767	573	19	8886	14646	9276	15019	0	7287.0
83.51	97	16	0	14691	14787	14923	15019	2e-19	91.6
76.68	223	36	7	14832	15054	14923	15129	5e-25	110.0
87.72	6148	687	40	15058	21189	15044	21139	0	7108.0
85.66	1980	273	10	21414	23388	21468	23441	0	2073.0

Table S7. Results of the MegaBLAST search of the C. licheniforme UTEX 'B 2014' cyl gene cluster (query) against the Nostoc sp. CAVN2 cab gene cluster (subject).

Table S8. Results of the MegaBLAST search of the Nostoc sp. CAVN2 cab gene cluster (query) against the C. stagnale PCC 7417 gene cluster (subject).

I J and then (0/)	ntity (%) Alianment Length Mismatches Can Opens		Query		Subject		E Value	Dit Caara	
Identity (%)	Alignment Length	Mismatches	Gap Opens	Start	End	Start	End	E-value	bit Score
88.46	1881	207	6	1337	3216	797	2668	0	2263.0
89.75	5979	565	25	3275	9223	2853	8813	0	7601.0
86.36	396	54	0	8384	8779	8372	8767	3e-122	433.0
85.27	387	57	0	8791	9177	7981	8367	3e-122	399.0
89.64	5744	565	20	9300	15019	8799	14536	0	7284.0
82.47	97	17	0	14923	15019	14581	14677	1e-17	86.1
83.51	97	16	0	14923	15019	14722	14818	2e-19	91.6
87.07	6282	726	43	14923	21139	14863	21123	0	7023.0
86.34	1999	264	8	21468	23461	21349	23343	0	2170.0
91.51	106	8	1	23775	23880	23650	23754	2e-35	145.0
95.31	128	6	0	23871	23998	24026	24153	3e-53	204.0
87.25	659	55	13	25853	26482	24185	24843	0	725.0
90.80	1630	135	4	26727	28341	25970	27599	0	2165.0

Figure S3. Cont.

Figure S3. Cont.

Figure S3. Protein sequence alignment of CabC and homologues. The consensus sequence based on a 100% conservation rule along with a sequence logo and an identity graph is depicted at the top. The first sequence shows the *p*-aminobenzoate *N*-oxygenase (AurF) Chain A of *Streptomyces thioluteus*. Conserved glutamic acid and histidine residues responsible for di-iron coordination are depicted below this sequence.

Table S9. Oligonucleotide primers used for gap-closure and frameshift refutation.

Name	Sequence 5'–3'	Usage ^a	Comment
MP01_129-for	GGAAATTTGAACCACCGAC	А	
MP02_129-for_seq	CCTTGAACTTTACTACTAG	S	Gap-closure between contig00129
MP03_638-rev_seq	AGGTATTGGATTACGAATC	S	and contig00638
MP04_638-rev	AGTAGCAATAGCCGCCATC	А	
MP05_638-for	ATCTGCTTATGATGTAGCG	А	
MP06_638-for_seq	AGCATAGTGAACTGCGACC	S	Gap-closure between contig00638
MP07_697-rev_seq	TCCCTTTGTCTAGCAGGAC	S	and contig00697
MP08_697-rev	GCTAAACCAACAGCATATG	А	
MP09 129-for seg2	CACATTCACCACCTTCCC	S	Gap-closure between contig00129
WI 07_127-101_3cq2	Gionnenderiede	0	and contig00638
SH1_CAVN2-F	CACCCCCTTTAGAAGACCTGG	А	
SH2_CAVN2-R	GTGCATCTTCCCAAGCCTCT	А	
SH3_CAVN2-F	GTTACAAGCCCCTAAGTTCG	S	
SH4_CAVN2-F	CGTCTAGCTGGTGTTAGTGC	S	Refutation of two putative
SH5_CAVN2-F	TCCCAAGAGAATGCAGCCAG	A, S	frameshifts in 454-based assembly
SH6_CAVN2-R	GCCATCAAGCTCATTTCCCG	A, S	
SH7_CAVN2-F	GTAAGGCGCTGCAAGAACTG	A, S	
SH8_CAVN2-R	ATCTGGTTTGATGCCCCAGG	A, S	

^a Abbreviations: A = amplification, S = sequencing.

S15 of S40

				-		-	_	-	_			_				IC
	(µg/mL)														$(\mu g/mL)$	
#	E. faecium DSM-20477	E. faecium DSM-17050 (VREF)	M. tuberculosis ATCC 25618 (H37Rv)	S. aureus Newman (MSSA)	S. aureus N315 (MRSA)	S. <i>aureus</i> 1 (MRSA) ^b	<i>S. aureus</i> Mu50 (MRSA/VISA)	S. pneumoniae 7 (ATCC 49619) ^b	S. pneumoniae DSM-20566	S. pneumoniae DSM-11865 (PRSP)	E. coli 13 ^b	<i>E. coli</i> TolC-deficient	<i>E. coli</i> TolC-deficient + PMBN	K. pneumoniae 18 (KRKP) ^ь	P. aeruginosa 22 (MDR) ^ь	HaCaT⁵
1	8	2–8	8–12	1	0.25-0.5	0.08	0.5	0.2	1	2	>50	>64	2	>50	>50	2.9
2	8	4-8	2–5	0.25	0.25-0.5	n.t.	0.25-0.5	n.t.	1	0.25-0.5	n.t.	>64	1–2	n.t.	n.t.	n.t.
3	8	8	1–1.5	0.125-0.25	0.125	0.63	0.125-0.25	0.2	0.5	0.25-0.5	>50	>64	2	>50	>50	2.1
4	8	4-8	0.5–1.5	0.5	0.25-0.5	0.08	0.25	0.2	1	0.5	>50	>64	1	>50	>50	3.5
5	32	16-32	2-4	0.25	0.25	0.16	0.125	0.2	1	0.5–2	>50	>64	8–16	>50	>50	7.4
6	n.t.	8-16	4-8	n.t.	0.5	n.t.	n.t.	n.t.	n.t.	1	n.t.	n.t.	n.t.	n.t.	n.t.	n.t.
7	2	2	0.5-1.5	0.125	0.06-0.125	0.04	0.125	0.2	0.25	0.25	>50	>64	1	>50	>50	2.4
8	4	4	2–5	0.25	0.125-0.25	n.t.	0.25	n.t.	0.5–1	0.5	n.t.	>64	1	n.t.	n.t.	n.t.
9	8	4	0.5–2	0.125-0.25	0.125	0.16	0.5	0.2	0.25-0.5	0.25	>50	>64	1	>50	>50	7.5
10	4	4	2–3	0.125-0.25	0.125	0.08	0.125-0.25	0.2	0.5–1	0.25-0.5	>50	>64	1–2	>50	>50	4.0
11	n.t.	8	2-4	n.t.	0.25	0.08	n.t.	0.2	n.t.	0.25	>50	n.t.	n.t.	>50	>50	2.2
12	4	2-4	2-4	0.125-0.25	0.125	0.08	0.125	0.2	0.25-0.5	0.25	>50	>64	1	>50	>50	2.1
13	4	4	1–1.5	0.125-0.25	0.125	0.08	0.125	0.2	0.25-0.5	0.125-0.25	>50	>64	1	>50	>50	3.4
14	4	4	32-64	0.25	0.125	0.08	0.125-0.5	0.2	0.25-0.5	0.25-0.5	>50	>64	1–2	>50	>50	3.9
15	n.t.	4	2–3	n.t.	0.25	0.08	n.t.	0.2	n.t.	0.5	>50	n.t.	n.t.	>50	>50	3.8
16	2	2	1.5–2	0.125-0.25	0.06-0.125	0.08	0.125	0.2	0.25	0.5	>50	>64	0.5–1	>50	>50	2.7
17	2	2	2–5	0.125-0.25	0.06-0.125	0.08	0.125	0.2	0.25	0.25	>50	>64	0.5	>50	>50	3.4
18	2–4	2	1–1.5	0.125	0.06	0.08	0.125	0.2	0.25	0.25	>50	>64	0.5–1	>50	>50	3.6
19	4-8	8	2–3	0.125	0.125	0.08	0.125	0.2	0.5	0.25	>50	>64	1–4	>50	>50	2.5
20	n.t.	2	1.5-2	n.t.	0.125-0.25	0.08	n.t.	0.2	n.t.	0.25	>50	n.t.	n.t.	>50	>50	4.8
21	n.t.	8	>8	1–2	0.5	0.63	8	1.3	n.t.	2	>50	>64	4-8	>50	>50	7.0
22	n.t.	n.t.	>8	n.t.	n.t.	0.63	n.t.	1.3	n.t.	nt.	>50	n.t.	n.t.	>50	>50	7.5
23	n.t.	4-8	2-4	0.5	0.5	0.31	1	0.63	n.t.	n.t.	>50	>64	2	>50	>50	5.9
24	n.t.	n.t.	>8	n.t.	n.t.	0.31	n.t.	0.63	n.t.	n.t.	>50	n.t.	n.t.	>50	>50	6.7
25	4	2	2-4	0.125	0.125	0.26	0.125	0.57	0.25	0.25	>50	>64	1–2	>50	>50	2.9
26	4	2	0.5–1	0.125	0.125	0.08	0.125	0.2	0.5	0.125	>50	>64	2–4	>50	>50	1.8
27	8	2	1–2	1-4	0.5–2	0.63	2-8	1.6	2-8	4-8	>50	>64	64	>50	>50	7.3
28	16	16	>16	4	4-8	3.2	4-8	6.23	4	4	>50	>64	4	>50	>50	37.3
29	64	64	>16	2-4	4	>50	4-8	>50	2-8	2	>50	>64	8–32	>50	>50	16.5
30	>64	>64	>16	4-8	>64	>50	>64	>50	4	2-4	>50	>64	>64	>50	>50	17.5
POS	2.0 °	>64∘	0.024-0.036 d 0.125-0.25 e 0.02-0.08 f 0.2-0.8 s	0.5 °	1.0 °	2.0 ^{ch}	16°	2.0 ch	<0.03 ⁱ	>64 '	0.0062 j kl 62.5°	0.003 j	0.003 j	1.25 j 0.62 k	0.025 ¹ 250 °	3.9 m

Table S10. Basic data of biological activity for compounds 1–30 against Gram-positive as well as Gram-negative bacteria and HaCaT cells.ª

^a Abbreviations: VREF = vancomycin-resistant *E. faecium*, MSSA = methicillin-sensitive *S. aureus*, MRSA = methicillin-resistant *S. aureus*, VISA = vancomycin-intermediate *S. aureus*, PRSP = penicillin-resistant *S. pneumoniae*, PMBN = polymyxin B nonapeptide, KRKP = kanamycin-resistant *K. pneumoniae*, MDR = multi-drug resistant (for detailed resistance profile, see Pretsch *et al.* [4]), n.t. = not tested, POS = positive control; ^b Equivalent data for **10–30** have previously been reported; For further details, see Preisitsch *et al.* [5] (**10–25**) and Preisitsch *et al.* [6] (**26–30**); ^c vancomycin; ^d delamanid; ^e pretomanid (formerly known as PA-824); ^f isoniazid; ^g rifampicin; ^h fusidic acid; ⁱ ampicillin; ^j ciprofloxacin; ^k moxifloxacin; ¹ levofloxacin; ^m mitoxantrone.

Figure S4. Cont.

Figure S4. Identity and stability control of carbamidocyclophane Q (5) after the antimycobacterial bioactivity assay. HPLC-UV-MS analysis was performed on a Shimadzu LC-20A Prominence liquid chromatography system with a SPD-M20A diode array detector (DAD) coupled to a Shimadzu LCMS-8030 triple quadrupole (QqQ) mass spectrometer using a Phenomenex Kinetex PFP column (100 × 4.6 mm, 2.6 µm, 100 Å) and a binary gradient of MeOH in deionized H₂O with a flow rate of 0.8 mL/min from 60% to 80.3% MeOH in 26 min at 40 °C. Sample: 0.1 mg of 5 in 1.0 mL MeOH, 10 µL injection, solvent flow split of 10:1 after the DAD analysis and prior to QqQ measurement. (**A**) HPLC chromatogram of 5 detected at wavelength λ = 226 nm; (**B**) Online UV spectrum (λ from 200 to 400 nm) of 5 at retention time 14.1 min; (**C**) Total ion chromatograms (TICs) of 5 (positive mode in black and negative mode in magenta) and its extracted ion chromatograms (EICs) for *m*/*z* 981.05 and 985.05 (both negative mode), consistent with the monoisotopic mass peak [M – H]⁻ and the most abundant isotopic mass peak [M + 4 – H]⁻, respectively; (**D**) Measured isotopic distribution pattern of **5** referring to the [M – H]⁻ ion.

Normalized Intensity

0.025

0.020

0.015

0.010

Figure S6. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane M (**1**). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S7. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane M (1).

Figure S8. ATR-IR (film) spectrum of carbamidocyclophane M (1).

Figure S10. ¹H NMR spectrum (600 MHz, MeOH-d4) of carbamidocyclophane N (2).

Figure S11. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane N (**2**). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S12. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane N (2).

Figure S13. ATR-IR (film) spectrum of carbamidocyclophane N (2).

Figure S14. ECD spectrum of carbamidocyclophane N (2).

Figure S16. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane O (**3**). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S17. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane O (3).

Figure S18. ATR-IR (film) spectrum of carbamidocyclophane O (3).

Figure S19. ECD spectrum of carbamidocyclophane O (3).

Figure S21. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane P (**4**). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S22. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane P (4).

Figure S23. ATR-IR (film) spectrum of carbamidocyclophane P (4).

Figure S24. ECD spectrum of carbamidocyclophane P (4).

Figure S26. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane Q (**5**). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S27. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane Q (5).

Figure S28. ATR-IR (film) spectrum of carbamidocyclophane Q (5).

Figure S30. ¹H NMR spectrum (600 MHz, MeOH-d4) of carbamidocyclophane R (6).

Mar. Drugs 2016, 14, 21

Figure S31. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane R (6). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S32. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane R (6).

Figure S33. ATR-IR (film) spectrum of carbamidocyclophane R (6).

Figure S34. ECD spectrum of carbamidocyclophane R (6).

Figure S36. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane S (7). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

3.0

2.5

2.0

3.5

4.5

5.5

ppm

6.0

5.0

4.0

1.0

1.5

Figure S37. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane S (7).

Figure S38. ATR-IR (film) spectrum of carbamidocyclophane S (7).

Figure S41. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane T (8). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S42. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane T (8).

Figure S43. ATR-IR (film) spectrum of carbamidocyclophane T (8).

Figure S44. ECD spectrum of carbamidocyclophane T (8).

Figure S46. HMQC-DEPT spectrum (600 MHz, MeOH-*d*₄) of carbamidocyclophane U (9). Red signals are attributed to CH or CH₃ groups (positively phased) and blue signals to CH₂ groups (negatively phased).

Figure S47. HMBC spectrum (600 MHz, MeOH-d4) of carbamidocyclophane U (9).

Figure S48. ATR-IR (film) spectrum of carbamidocyclophane U (9).

Figure S49. ECD spectrum of carbamidocyclophane U (9).

References

- 1. Falch, B.S.; König, G.M.; Wright, A.D.; Sticher, O.; Angerhofer, C.K.; Pezzuto, J.M.; Bachmann, H. Biological activities of cyanobacteria: evaluation of extracts and pure compounds. *Planta Med.* **1995**, *61*, 321–328.
- 2. Hughes, E.O.; Gorham, P.R.; Zehnder, A. Toxicity of a unialgal culture of *Microcystis aeruginosa*. *Can. J. Microbiol.* **1958**, *4*, 225–236.
- Meffert, M.E. Cultivation and growth of two planktonic Oscillatoria spec. Mitt. Int. Ver. Theor. Angew. Limnol. 1971, 19, 189–205.
- 4. Pretsch, A.; Nagl, M.; Schwendinger, K.; Kreiseder, B.; Wiederstein, M.; Pretsch, D.; Genov, M.; Hollaus, R.; Zinssmeister, D.; Debbab, A.; *et al.* Antimicrobial and anti-inflammatory activities of endophytic fungi *Talaromyces wortmannii* extracts against acne-inducing bacteria. *PLoS ONE* **2014**, *9*, e97929.
- Preisitsch, M.; Harmrolfs, K.; Pham, H.T.L.; Heiden, S.E.; Füssel, A.; Wiesner, C.; Pretsch, A.; Swiatecka-Hagenbruch, M.; Niedermeyer, T.H.J.; Müller, R., et al. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium *Nostoc* sp. CAVN2. *J. Antibiot.* 2015, *68*, 165–177.
- Preisitsch, M.; Niedermeyer, T.H.J.; Heiden, S.E.; Neidhardt, I.; Kumpfmüller, J.; Wurster, M.; Harmrolfs, K.; Wiesner, C.; Enke, H.; Müller, R., et al. Cylindrofridins A–C, linear cylindrocyclophane-related alkylresorcinols from the cyanobacterium *Cylindrospermum stagnale*. J. Nat. Prod. 2015, doi:10.1021/acs.jnatprod.5b00768.