Next Issue
Volume 13, May
Previous Issue
Volume 13, March
 
 

Mar. Drugs, Volume 13, Issue 4 (April 2015) – 49 articles , Pages 1621-2558

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
809 KiB  
Article
UPLC-MSE Profiling of Phytoplankton Metabolites: Application to the Identification of Pigments and Structural Analysis of Metabolites in Porphyridium purpureum
by Camille Juin, Antoine Bonnet, Elodie Nicolau, Jean-Baptiste Bérard, Romain Devillers, Valérie Thiéry, Jean-Paul Cadoret and Laurent Picot
Mar. Drugs 2015, 13(4), 2541-2558; https://doi.org/10.3390/md13042541 - 22 Apr 2015
Cited by 24 | Viewed by 7391
Abstract
A fast and high-resolution UPLC-MSE analysis was used to identify phytoplankton pigments in an ethanol extract of Porphyridium purpureum (Pp) devoid of phycobiliproteins. In a first step, 22 standard pigments were analyzed by UPLC-MSE to build a database including [...] Read more.
A fast and high-resolution UPLC-MSE analysis was used to identify phytoplankton pigments in an ethanol extract of Porphyridium purpureum (Pp) devoid of phycobiliproteins. In a first step, 22 standard pigments were analyzed by UPLC-MSE to build a database including retention time and accurate masses of parent and fragment ions. Using this database, seven pigments or derivatives previously reported in Pp were unequivocally identified: β,β-carotene, chlorophyll a, zeaxanthin, chlorophyllide a, pheophorbide a, pheophytin a, and cryptoxanthin. Minor amounts of Divinyl chlorophyll a, a chemotaxonomic pigment marker for prochlorophytes, were also unequivocally identified using the database. Additional analysis of ionization and fragmentation patterns indicated the presence of ions that could correspond to hydroxylated derivatives of chlorophyll a and pheophytin a, produced during the ethanolic extraction, as well as previously described galactosyldiacylglycerols, the thylakoid coenzyme plastoquinone, and gracilamide B, a molecule previously reported in the red seaweed Gracillaria asiatica. These data point to UPLC-MSE as an efficient technique to identify phytoplankton pigments for which standards are available, and demonstrate its major interest as a complementary method for the structural elucidation of ionizable marine molecules. Full article
Show Figures

Figure 1

655 KiB  
Article
New Polyphenols from a Deep Sea Spiromastix sp. Fungus, and Their Antibacterial Activities
by Siwen Niu, Dong Liu, Peter Proksch, Zongze Shao and Wenhan Lin
Mar. Drugs 2015, 13(4), 2526-2540; https://doi.org/10.3390/md13042526 - 22 Apr 2015
Cited by 28 | Viewed by 7041
Abstract
Eleven new polyphenols namely spiromastols A–K (111) were isolated from the fermentation broth of a deep sea-derived fungus Spiromastix sp. MCCC 3A00308. Their structures were determined by extensive NMR data and mass spectroscopic analysis in association with chemical conversion. [...] Read more.
Eleven new polyphenols namely spiromastols A–K (111) were isolated from the fermentation broth of a deep sea-derived fungus Spiromastix sp. MCCC 3A00308. Their structures were determined by extensive NMR data and mass spectroscopic analysis in association with chemical conversion. The structures are classified as diphenyl ethers, diphenyl esters and isocoumarin derivatives, while the n-propyl group in the analogues is rarely found in natural products. Compounds 13 exhibited potent inhibitory effects against a panel of bacterial strains, including Xanthomanes vesicatoria, Pseudomonas lachrymans, Agrobacterium tumefaciens, Ralstonia solanacearum, Bacillus thuringensis, Staphylococcus aureus and Bacillus subtilis, with minimal inhibitory concentration (MIC) values ranging from 0.25 to 4 µg/mL. The structure-activity relationships are discussed, while the polychlorinated analogues 13 are assumed to be a promising structural model for further development as antibacterial agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Fungi)
Show Figures

Graphical abstract

1337 KiB  
Article
Xyloketal B Suppresses Glioblastoma Cell Proliferation and Migration in Vitro through Inhibiting TRPM7-Regulated PI3K/Akt and MEK/ERK Signaling Pathways
by Wen-Liang Chen, Ekaterina Turlova, Christopher L. F. Sun, Ji-Sun Kim, Sammen Huang, Xiao Zhong, Yong-Yuan Guan, Guan-Lei Wang, James T. Rutka, Zhong-Ping Feng and Hong-Shuo Sun
Mar. Drugs 2015, 13(4), 2505-2525; https://doi.org/10.3390/md13042505 - 22 Apr 2015
Cited by 55 | Viewed by 7977
Abstract
Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a [...] Read more.
Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a marine compound obtained from mangrove fungus Xylaria sp. (No. 2508) from the South China Sea, and has displayed antioxidant activity and protective effects on endothelial and neuronal oxidative injuries. In this study, we used a glioblastoma U251 cell line to (1) explore the effects of xyloketal B on cell viability, proliferation, and migration; and (2) investigate the underlying molecular mechanisms and signaling pathways. MTT assay, colony formation, wound healing, western blot, and patch clamp techniques were employed. We found that xyloketal B reduced cell viability, proliferation, and migration of U251 cells. In addition, xyloketal B decreased p-Akt and p-ERK1/2 protein expressions. Furthermore, xyloketal B blocked TRPM7 currents in HEK-293 cells overexpressing TRPM7. These effects were confirmed by using a TRPM7 inhibitor, carvacrol, in a parallel experiment. Our findings indicate that TRPM7-regulated PI3K/Akt and MEK/ERK signaling is involved in anti-proliferation and migration effects of xyloketal B on U251 cells, providing in vitro evidence for the marine compound xyloketal B to be a potential drug for treating glioblastoma. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

937 KiB  
Article
Synthesis and in Vitro Antiproliferative Evaluation of Some B-norcholesteryl Benzimidazole and Benzothiazole Derivatives
by Jianguo Cui, Binbin Qi, Chunfang Gan, Zhipin Liu, Hu Huang, Qifu Lin, Dandan Zhao and Yanmin Huang
Mar. Drugs 2015, 13(4), 2488-2504; https://doi.org/10.3390/md13042488 - 22 Apr 2015
Cited by 34 | Viewed by 4930
Abstract
Taking orostanal (a compound from a Japanese marine sponge, Stelletta hiwasaensis) as a lead compound, some novel B-norcholesteryl benzimidazole and benzothiazole derivatives were synthesized. The antiproliferative activity of the compounds against human cervical carcinoma (HeLa), human lung carcinoma (A549), human liver carcinoma [...] Read more.
Taking orostanal (a compound from a Japanese marine sponge, Stelletta hiwasaensis) as a lead compound, some novel B-norcholesteryl benzimidazole and benzothiazole derivatives were synthesized. The antiproliferative activity of the compounds against human cervical carcinoma (HeLa), human lung carcinoma (A549), human liver carcinoma cells (HEPG2) and normal kidney epithelial cells (HEK293T) was assayed. The results revealed that the benzimidazole group was a better substituent than benzothiazole group for increasing the antiproliferative activity of compounds. 2-(3β′-Acetoxy-5β′-hydroxy-6′-B-norcholesteryl)benzimidazole (9b) with the structure of 6-benzimidazole displays the best antiproliferative activity to the cancer cells in all compounds, but is almost inactive to normal kidney epithelial cells (HEK293T). The assay of compound 9b to cancer cell apoptosis by flow cytometry showed that the compound was able to effectively induce cancer cell apoptosis. The research provided a theoretical reference for the exploration of new anti-cancer agents and may be useful for the design of novel chemotherapeutic drugs. Full article
Show Figures

Graphical abstract

1261 KiB  
Article
Activation of the Silent Secondary Metabolite Production by Introducing Neomycin-Resistance in a Marine-Derived Penicillium purpurogenum G59
by Chang-Jing Wu, Le Yi, Cheng-Bin Cui, Chang-Wei Li, Nan Wang and Xiao Han
Mar. Drugs 2015, 13(4), 2465-2487; https://doi.org/10.3390/md13042465 - 22 Apr 2015
Cited by 27 | Viewed by 7164
Abstract
Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony [...] Read more.
Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 15 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 15 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways. Full article
Show Figures

Graphical abstract

440 KiB  
Article
Seaweed Polysaccharides (Laminarin and Fucoidan) as Functional Ingredients in Pork Meat: An Evaluation of Anti-Oxidative Potential, Thermal Stability and Bioaccessibility
by Natasha C. Moroney, Michael N. O'Grady, Sinéad Lordan, Catherine Stanton and Joseph P. Kerry
Mar. Drugs 2015, 13(4), 2447-2464; https://doi.org/10.3390/md13042447 - 20 Apr 2015
Cited by 65 | Viewed by 8941
Abstract
The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in horse heart oxymyoglobin (OxyMb) [...] Read more.
The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork (longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in horse heart oxymyoglobin (OxyMb) (0.1 and 1 mg/mL). The DPPH activity of fresh and cooked minced LTL containing L (100 mg/g; L100), F100 and L/F100,300, and bioaccessibility post in vitro digestion (L/F300), was assessed. Theoretical cellular uptake of antioxidant compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts as functional ingredients in pork. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Graphical abstract

894 KiB  
Article
Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization
by Jakub Zdarta, Łukasz Klapiszewski, Marcin Wysokowski, Małgorzata Norman, Agnieszka Kołodziejczak-Radzimska, Dariusz Moszyński, Hermann Ehrlich, Hieronim Maciejewski, Allison L. Stelling and Teofil Jesionowski
Mar. Drugs 2015, 13(4), 2424-2446; https://doi.org/10.3390/md13042424 - 20 Apr 2015
Cited by 63 | Viewed by 9673
Abstract
Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of [...] Read more.
Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

660 KiB  
Article
Synthesis and Bioactivity of Luffarin I
by Aitor Urosa, Isidro S. Marcos, David Díez, Anna Lithgow, Gabriela B. Plata, José M. Padrón and Pilar Basabe
Mar. Drugs 2015, 13(4), 2407-2423; https://doi.org/10.3390/md13042407 - 20 Apr 2015
Cited by 14 | Viewed by 6468
Abstract
The first synthesis of Luffarin I, sesterterpenolide isolated from sponge Luffariella geometrica, has been accomplished from commercially available sclareol. The key strategy involved in this synthesis is the diastereoselective reduction of an intermediate ketone. Luffarin I against human solid tumor cell lines [...] Read more.
The first synthesis of Luffarin I, sesterterpenolide isolated from sponge Luffariella geometrica, has been accomplished from commercially available sclareol. The key strategy involved in this synthesis is the diastereoselective reduction of an intermediate ketone. Luffarin I against human solid tumor cell lines showed antiproliferative activities (GI50) in the range 12–17 μM. Full article
(This article belongs to the Special Issue Marine Secondary Metabolites)
Show Figures

Figure 1

1315 KiB  
Article
Dihydroaustrasulfone Alcohol Inhibits PDGF-Induced Proliferation and Migration of Human Aortic Smooth Muscle Cells through Inhibition of the Cell Cycle
by Yao-Chang Chen, Zhi-Hong Wen, Yen-Hsien Lee, Chu-Lun Chen, Han-Chun Hung, Chun-Hong Chen, Wu-Fu Chen and Min-Chien Tsai
Mar. Drugs 2015, 13(4), 2390-2406; https://doi.org/10.3390/md13042390 - 17 Apr 2015
Cited by 13 | Viewed by 5730
Abstract
Dihydroaustrasulfone alcohol is the synthetic precursor of austrasulfone, which is a marine natural product, isolated from the Taiwanese soft coral Cladiella australis. Dihydroaustrasulfone alcohol has anti-inflammatory, neuroprotective, antitumor and anti-atherogenic properties. Although dihydroaustrasulfone alcohol has been shown to inhibit neointima formation, its [...] Read more.
Dihydroaustrasulfone alcohol is the synthetic precursor of austrasulfone, which is a marine natural product, isolated from the Taiwanese soft coral Cladiella australis. Dihydroaustrasulfone alcohol has anti-inflammatory, neuroprotective, antitumor and anti-atherogenic properties. Although dihydroaustrasulfone alcohol has been shown to inhibit neointima formation, its effect on human vascular smooth muscle cells (VSMCs) has not been elucidated. We examined the effects and the mechanisms of action of dihydroaustrasulfone alcohol on proliferation, migration and phenotypic modulation of human aortic smooth muscle cells (HASMCs). Dihydroaustrasulfone alcohol significantly inhibited proliferation, DNA synthesis and migration of HASMCs, without inducing cell death. Dihydroaustrasulfone alcohol also inhibited platelet-derived growth factor (PDGF)-induced expression of cyclin-dependent kinases (CDK) 2, CDK4, cyclin D1 and cyclin E. In addition, dihydroaustrasulfone alcohol inhibited PDGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whereas it had no effect on the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/(Akt). Moreover, treatment with PD98059, a highly selective ERK inhibitor, blocked PDGF-induced upregulation of cyclin D1 and cyclin E and downregulation of p27kip1. Furthermore, dihydroaustrasulfone alcohol also inhibits VSMC synthetic phenotype formation induced by PDGF. For in vivo studies, dihydroaustrasulfone alcohol decreased smooth muscle cell proliferation in a rat model of restenosis induced by balloon injury. Immunohistochemical staining showed that dihydroaustrasulfone alcohol noticeably decreased the expression of proliferating cell nuclear antigen (PCNA) and altered VSMC phenotype from a synthetic to contractile state. Our findings provide important insights into the mechanisms underlying the vasoprotective actions of dihydroaustrasulfone alcohol and suggest that it may be a useful therapeutic agent for the treatment of vascular occlusive disease. Full article
Show Figures

Figure 1

1335 KiB  
Article
Avarol Induces Apoptosis in Pancreatic Ductal Adenocarcinoma Cells by Activating PERK–eIF2α–CHOP Signaling
by Takushi Namba and Rika Kodama
Mar. Drugs 2015, 13(4), 2376-2389; https://doi.org/10.3390/md13042376 - 16 Apr 2015
Cited by 20 | Viewed by 6897
Abstract
Avarol is a sesquiterpenoid hydroquinone with potent cytotoxicity. Although resolving endoplasmic reticulum (ER) stress is essential for intracellular homeostasis, erratic or excessive ER stress can lead to apoptosis. Here, we reported that avarol selectively induces cell death in pancreatic ductal adenocarcinomas (PDAC), [...] Read more.
Avarol is a sesquiterpenoid hydroquinone with potent cytotoxicity. Although resolving endoplasmic reticulum (ER) stress is essential for intracellular homeostasis, erratic or excessive ER stress can lead to apoptosis. Here, we reported that avarol selectively induces cell death in pancreatic ductal adenocarcinomas (PDAC), which are difficult to treat owing to the availability of few chemotherapeutic agents. Analyses of the molecular mechanisms of avarol-induced apoptosis indicated upregulation of ER stress marker BiP and ER stress-dependent apoptosis inducer CHOP in PDAC cells but not in normal cells, suggesting that avarol selectively induces ER stress responses. We also showed that avarol activated the PERK–eIF2α pathway but did not affect the IRE1 and ATF6 pathways. Moreover, CHOP downregulation was significantly suppressed by avarol-induced apoptosis. Thus, the PERK–eIF2α–CHOP signaling pathway may be a novel molecular mechanism of avarol-induced apoptosis. The present data indicate that avarol has potential as a chemotherapeutic agent for PDAC and induces apoptosis by activating the PERK–eIF2α pathway. Full article
Show Figures

Graphical abstract

1078 KiB  
Article
New Prenylated Aeruginosin, Microphycin, Anabaenopeptin and Micropeptin Analogues from a Microcystis Bloom Material Collected in Kibbutz Kfar Blum, Israel
by Shira Elkobi-Peer and Shmuel Carmeli
Mar. Drugs 2015, 13(4), 2347-2375; https://doi.org/10.3390/md13042347 - 15 Apr 2015
Cited by 30 | Viewed by 6673
Abstract
Thirteen new and eighteen known natural products were isolated from a bloom material of an assembly of various Microcystis spp. collected in November, 2008, from a commercial fishpond near Kibbutz Kfar Blum, the Jordan Valley, Israel. The new natural products included the prenylated [...] Read more.
Thirteen new and eighteen known natural products were isolated from a bloom material of an assembly of various Microcystis spp. collected in November, 2008, from a commercial fishpond near Kibbutz Kfar Blum, the Jordan Valley, Israel. The new natural products included the prenylated aeruginosin KB676 (1), microphycin KB921 (2), anabaenopeptins KB906 (3) and KB899 (4) and micropeptins KB928 (5), KB956 (6), KB970A (7), KB970B (8), KB984 (9), KB970C (10), KB1048 (11), KB992 (12) and KB1046 (13). Their structures were elucidated primarily by interpretation of their 1D and 2D nuclear magnetic resonance spectra and high-resolution mass spectrometry. Marfey’s and chiral-phase high performance liquid chromatography methods were used to determine the absolute configurations of their chiral centers. Aeruginosin KB676 (1) contains the rare (2S,3aS,6S,7aS)-Choi and is the first prenylated aeruginosin derivative described in the literature. Compounds 1 and 511 inhibited trypsin with sub-μM IC50s, while Compounds 1113 inhibited chymotrypsin with sub-μM IC50s. The structures and biological activities of the new natural products and our procedures of dereplication are described. Full article
Show Figures

Figure 1

1022 KiB  
Review
Fucoidan and Cancer: A Multifunctional Molecule with Anti-Tumor Potential
by Farzaneh Atashrazm, Ray M. Lowenthal, Gregory M. Woods, Adele F. Holloway and Joanne L. Dickinson
Mar. Drugs 2015, 13(4), 2327-2346; https://doi.org/10.3390/md13042327 - 14 Apr 2015
Cited by 236 | Viewed by 22602
Abstract
There is a wide variety of cancer types yet, all share some common cellular and molecular behaviors. Most of the chemotherapeutic agents used in cancer treatment are designed to target common deregulated mechanisms within cancer cells. Many healthy tissues are also affected by [...] Read more.
There is a wide variety of cancer types yet, all share some common cellular and molecular behaviors. Most of the chemotherapeutic agents used in cancer treatment are designed to target common deregulated mechanisms within cancer cells. Many healthy tissues are also affected by the cytotoxic effects of these chemical agents. Fucoidan, a natural component of brown seaweed, has anti-cancer activity against various cancer types by targeting key apoptotic molecules. It also has beneficial effects as it can protect against toxicity associated with chemotherapeutic agents and radiation. Thus the synergistic effect of fucoidan with current anti-cancer agents is of considerable interest. This review discusses the mechanisms by which fucoidan retards tumor development, eradicates tumor cells and synergizes with anti-cancer chemotherapeutic agents. Challenges to the development of fucoidan as an anti-cancer agent will also be discussed. Full article
Show Figures

Figure 1

1681 KiB  
Article
Xyloketal B Attenuates Atherosclerotic Plaque Formation and Endothelial Dysfunction in Apolipoprotein E Deficient Mice
by Li-Yan Zhao, Jie Li, Feng Yuan, Mei Li, Quan Zhang, Ji-Yan Pang, Bin Zhang, Fang-Yun Sun, Hong-Shuo Sun, Qian Li, Lu Cao, Yu Xie, Yong-Cheng Lin, Jie Liu, Hong-Mei Tan, Guan-Lei Wang and Yun-Ying Huang
Mar. Drugs 2015, 13(4), 2306-2326; https://doi.org/10.3390/md13042306 - 14 Apr 2015
Cited by 20 | Viewed by 6210
Abstract
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction [...] Read more.
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction and decrease in nitric oxide (NO) bioavailability are critical for the development of atherosclerotic lesion. We thus examined whether xyloketal B had an influence on the atherosclerotic plaque area in apolipoprotein E-deficient (apoE/−) mice fed a high-fat diet and investigated the underlying mechanisms. We found in our present study that the administration of xyloketal B dose-dependently decreased the atherosclerotic plaque area both in the aortic sinus and throughout the aorta in apoE/− mice fed a high-fat diet. In addition, xyloketal B markedly reduced the levels of vascular oxidative stress, as well as improving the impaired endothelium integrity and NO-dependent aortic vasorelaxation in atherosclerotic mice. Moreover, xyloketal B significantly changed the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt without altering the expression of total eNOS and Akt in cultured human umbilical vein endothelial cells (HUVECs). Here, it increased eNOS phosphorylation at the positive regulatory site of Ser-1177, while inhibiting phosphorylation at the negative regulatory site of Thr-495. Taken together, these findings indicate that xyloketal B has dramatic anti-atherosclerotic effects in vivo, which is partly due to its antioxidant features and/or improvement of endothelial function. Full article
Show Figures

Figure 1

1294 KiB  
Article
Piscidin is Highly Active against Carbapenem-Resistant Acinetobacter baumannii and NDM-1-Producing Klebsiella pneumonia in a Systemic Septicaemia Infection Mouse Model
by Chieh-Yu Pan, Jian-Chyi Chen, Te-Li Chen, Jen-Leih Wu, Cho-Fat Hui and Jyh-Yih Chen
Mar. Drugs 2015, 13(4), 2287-2305; https://doi.org/10.3390/md13042287 - 14 Apr 2015
Cited by 33 | Viewed by 7584
Abstract
This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice [...] Read more.
This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice were infected with (NDM-1)-producing K. pneumonia and multi-drug resistant Acinetobacter baumannii, and subsequently treated with TP3, TP4, or antibiotics for different periods of time (up to 168 h). Mouse survival and bacterial colony forming units (CFU) in various organs were measured after each treatment. Toxicity was determined based on observation of behavior and measurement of biochemical parameters. TP3 and TP4 exhibited strong activity against K. pneumonia and A. baumannii in vitro. Administration of TP3 (150 μg/mouse) or TP4 (50 μg/mouse) 30 min after infection with K. pneumonia or A. baumannii significantly increased survival in mice. TP4 was more effective than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to be non-toxic, and did not affect mouse behavior. TP3 and TP4 are able at potentiate anti-Acinetobacter baumannii or anti-Klebsiella pneumonia drug activity, reduce bacterial load, and prevent drug resistance, indicating their potential for use in combating multidrug-resistant bacteria. Full article
(This article belongs to the Special Issue Marine Peptides and Their Mimetics)
Show Figures

Figure 1

1071 KiB  
Article
Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance
by Yongchao Zhang, Yun-Kai Zhang, Yi-Jun Wang, Saurabh G. Vispute, Sandeep Jain, Yangmin Chen, Jessalyn Li, Diaa T. A. Youssef, Khalid A. El Sayed and Zhe-Sheng Chen
Mar. Drugs 2015, 13(4), 2267-2286; https://doi.org/10.3390/md13042267 - 14 Apr 2015
Cited by 19 | Viewed by 7663
Abstract
Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, [...] Read more.
Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

944 KiB  
Article
Neuroprotective Effects of the Cultivated Chondrus crispus in a C. elegans Model of Parkinson’s Disease
by Jinghua Liu, Arjun H. Banskota, Alan T. Critchley, Jeff Hafting and Balakrishnan Prithiviraj
Mar. Drugs 2015, 13(4), 2250-2266; https://doi.org/10.3390/md13042250 - 14 Apr 2015
Cited by 44 | Viewed by 12230
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the elderly people, currently with no cure. Its mechanisms are not well understood, thus studies targeting cause-directed therapy or prevention are needed. This study uses the transgenic Caenorhabditis elegans PD model. We [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the elderly people, currently with no cure. Its mechanisms are not well understood, thus studies targeting cause-directed therapy or prevention are needed. This study uses the transgenic Caenorhabditis elegans PD model. We demonstrated that dietary supplementation of the worms with an extract from the cultivated red seaweed Chondrus crispus decreased the accumulation of α-synulein and protected the worms from the neuronal toxin-, 6-OHDA, induced dopaminergic neurodegeneration. These effects were associated with a corrected slowness of movement. We also showed that the enhancement of oxidative stress tolerance and an up-regulation of the stress response genes, sod-3 and skn-1, may have served as the molecular mechanism for the C. crispus-extract-mediated protection against PD pathology. Altogether, apart from its potential as a functional food, the tested red seaweed, C. crispus, might find promising pharmaceutical applications for the development of potential novel anti-neurodegenerative drugs for humans. Full article
(This article belongs to the Special Issue Marine Functional Food)
Show Figures

Figure 1

739 KiB  
Article
Molecular and Chemical Analysis of the Lipopolysaccharide from Aeromonas hydrophila Strain AH-1 (Serotype O11)
by Susana Merino, Rocío Canals, Yuriy A. Knirel and Juan M. Tomás
Mar. Drugs 2015, 13(4), 2233-2249; https://doi.org/10.3390/md13042233 - 14 Apr 2015
Cited by 18 | Viewed by 6544
Abstract
A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and [...] Read more.
A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and the presence of an S-layer consisting of multiple copies of a crystalline surface array protein with a molecular weight of 52 kDa in the form of a crystalline surface array which lies peripheral to the cell wall. A. hydrophila strain AH-1 is one of them. We isolated the LPS from this strain and determined the structure of the O-polysaccharide, which was similar to that previously described for another strain of serotype O11. The genetics of the O11-antigen showed the genes (wbO11 cluster) in two sections separated by genes involved in biosynthesis and assembly of the S-layer. The O11-antigen LPS is an example of an ABC-2-transporter-dependent pathway for O-antigen heteropolysaccharide (disaccharide) assembly. The genes involved in the biosynthesis of the LPS core (waaO11 cluster) were also identified in three different chromosome regions being nearly identical to the ones described for A. hydrophila AH-3 (serotype O34). The genetic data and preliminary chemical analysis indicated that the LPS core for strain AH-1 is identical to the one for strain AH-3. Full article
(This article belongs to the Special Issue Marine Lipopolysaccharides)
Show Figures

Graphical abstract

1354 KiB  
Article
Hyperoxia Elevates Adrenic Acid Peroxidation in Marine Fish and Is Associated with Reproductive Pheromone Mediators
by Ming Long Sirius Chung, Jean-Marie Galano, Camille Oger, Thierry Durand and Jetty Chung-Yung Lee
Mar. Drugs 2015, 13(4), 2215-2232; https://doi.org/10.3390/md13042215 - 14 Apr 2015
Cited by 5 | Viewed by 5386
Abstract
The development of oxidative stress in the marine ecosystem is a concurring concern in fish reproductive behavior. Marine fish being rich in polyunsaturated fatty acids (PUFA) are precursors of prostaglandin pheromone mediators but also vulnerable to lipid peroxidation. It is yet to be [...] Read more.
The development of oxidative stress in the marine ecosystem is a concurring concern in fish reproductive behavior. Marine fish being rich in polyunsaturated fatty acids (PUFA) are precursors of prostaglandin pheromone mediators but also vulnerable to lipid peroxidation. It is yet to be determined if hypoxia or hyperoxia environment, a cumulative effect in the marine ecosystem affect pheromone mediators in fish, and to understand if this is associated with the generation of oxidized lipid products of PUFA. Novel oxidized lipid metabolites, isoprostanoids (15-F2t-isoprostane, 7(RS)-7-F2t-dihomo-isoprostane, 17(RS)-17-F2t-dihomo-isoprostane, 8-F3t-isoprostane, 4(RS)-4-F4t-neuroprostane, 10-F4t-neuroprostane), isofuranoids (isofurans, 10-epi-17(RS)-SC-Δ15-11-dihomo-isofuran and neurofurans), hydroxyeicosatetraenoic acids and resolvins, PUFA (arachidonic, adrenic, eicosapentaenoic and docosahexaenoic acids) and prostaglandin pheromone mediators in fish muscle were determined in marine male and female fish muscles before and after interaction in a hypoxia or hyperoxia environment. Reproductive behaviors were also assessed. Our study showed oxidized lipid metabolites of arachidonic, eicosapentaenoic, and docosahexaenoic acids were not influenced by hypoxia and hyperoxia exposure in the fishes and no gender differences were found. However, adrenic acid and its oxidized products, 17(RS)-17-F2t-dihomo-isoprostane and 10-epi-17(RS)-SC-Δ15-11-dihomo-isofuran showed strong correspondence with male fish pheromone mediators and reproductive behavior when under oxidative stress especially, hyperoxia. The occurrence of hypoxia and hyperoxia in the marine ecosystem may not be detrimental to marine fish and instead presents as being beneficial in reproductive behavior. Full article
(This article belongs to the Special Issue Marine Lipids)
Show Figures

Figure 1

599 KiB  
Review
Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin
by Maria Alessandra Gammone and Nicolantonio D'Orazio
Mar. Drugs 2015, 13(4), 2196-2214; https://doi.org/10.3390/md13042196 - 13 Apr 2015
Cited by 228 | Viewed by 19742
Abstract
Nowadays the global tendency towards physical activity reduction and an augmented dietary intake of fats, sugars and calories is leading to a growing propagation of overweight, obesity and lifestyle-related diseases, such diabetes, hypertension, dyslipidemia and metabolic syndrome. In particular, obesity, characterized as a [...] Read more.
Nowadays the global tendency towards physical activity reduction and an augmented dietary intake of fats, sugars and calories is leading to a growing propagation of overweight, obesity and lifestyle-related diseases, such diabetes, hypertension, dyslipidemia and metabolic syndrome. In particular, obesity, characterized as a state of low-level inflammation, is a powerful determinant both in the development of insulin resistance and in the progression to type 2 diabetes. A few molecular targets offer hope for anti-obesity therapeutics. One of the keys to success could be the induction of uncoupling protein 1 (UCP1) in abdominal white adipose tissue (WAT) and the regulation of cytokine secretions from both abdominal adipose cells and macrophage cells infiltrated into adipose tissue. Anti-obesity effects of fucoxanthin, a characteristic carotenoid, exactly belonging to xanthophylls, have been reported. Nutrigenomic studies reveal that fucoxanthin induces UCP1 in abdominal WAT mitochondria, leading to the oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose levels through the regulation of cytokine secretions from WAT. The key structure of anti-obesity effect is suggested to be the carotenoid end of the polyene chromophore, which contains an allenic bond and two hydroxyl groups. Fucoxanthin, which can be isolated from edible brown seaweeds, recently displayed its many physiological functions and biological properties. We reviewed recent studies and this article aims to explain essential background of fucoxanthin, focusing on its promising potential anti-obesity effects. In this respect, fucoxanthin can be developed into promising marine drugs and nutritional products, in order to become a helpful functional food. Full article
(This article belongs to the Special Issue Marine Functional Food)
Show Figures

Figure 1

893 KiB  
Article
Functional Recombinants Designed from a Fetuin/Asialofetuin-Specific Marine Algal Lectin, Rhodobindin
by Jong Won Han, Min Gui Jung, Eun Young Shim, Jun Bo Shim, Young Min Kim and Gwang Hoon Kim
Mar. Drugs 2015, 13(4), 2183-2195; https://doi.org/10.3390/md13042183 - 13 Apr 2015
Cited by 5 | Viewed by 5355
Abstract
Plant lectins have attracted much attention for biomedical applications including targeted drug delivery system and therapy against tumors and microbial infections. The main problem of using lectins as a biomedical tool is a batch-to-batch variation in isoforms content. The production of lectins using [...] Read more.
Plant lectins have attracted much attention for biomedical applications including targeted drug delivery system and therapy against tumors and microbial infections. The main problem of using lectins as a biomedical tool is a batch-to-batch variation in isoforms content. The production of lectins using recombination tools has the advantage of obtaining high amounts of proteins with more precise properties, but there are only a handful of functional recombinant lectins presently available. A fetuin/asialo-fetuin specific lectin, Rhodobindin, has unique tandem repeats structure which makes it useful in exploiting for recombinant lectin. We developed three functional recombinant lectins using E. coli expression system: one from full cDNA sequence and two from fragmentary sequences of Rhodobindin. Hemagglutinating activity and solubility of the recombinant lectins were highest at OD 0.7 cell concentration at 20 °C. The optimized process developed in this study was suitable for the quality-controlled production of high amounts of soluble recombinant lectins. Full article
Show Figures

Figure 1

579 KiB  
Review
The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases
by Garry Kerch
Mar. Drugs 2015, 13(4), 2158-2182; https://doi.org/10.3390/md13042158 - 13 Apr 2015
Cited by 95 | Viewed by 13526
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in [...] Read more.
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

1097 KiB  
Article
Diphlorethohydroxycarmalol Inhibits Interleukin-6 Production by Regulating NF-κB, STAT5 and SOCS1 in Lipopolysaccharide-Stimulated RAW264.7 Cells
by Na-Jin Kang, Sang-Chul Han, Gyeoung-Jin Kang, Dong-Hwan Koo, Young-Sang Koh, Jin-Won Hyun, Nam-Ho Lee, Mi-Hee Ko, Hee-Kyoung Kang and Eun-Sook Yoo
Mar. Drugs 2015, 13(4), 2141-2157; https://doi.org/10.3390/md13042141 - 13 Apr 2015
Cited by 43 | Viewed by 7392
Abstract
Diphlorethohydroxycarmalol (DPHC) is a phlorotannin compound isolated from Ishige okamuarae, a brown alga. This study was conducted to investigate the anti-inflammatory effect and action mechanism of DPHC in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that DPHC strongly reduces the production of [...] Read more.
Diphlorethohydroxycarmalol (DPHC) is a phlorotannin compound isolated from Ishige okamuarae, a brown alga. This study was conducted to investigate the anti-inflammatory effect and action mechanism of DPHC in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that DPHC strongly reduces the production of interleukin 6 (IL-6), but not that of tumor necrosis factor-alpha (TNF-α) induced by LPS. DPHC (12.5 and 100 μM) suppressed the phosphorylation and the nuclear translocation of NF-kappaB (NF-κB), a central signaling molecule in the inflammation process induced by LPS. The suppressor of cytokine signaling 1 (SOCS1) is a negative feedback regulator of Janus kinase (Jak)-signal transducer and activator of transcription (STAT) signaling. In this study, DPHC inhibited STAT5 expression and upregulated that of SOCS1 at a concentration of 100 μM. Furthermore, N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) (a specific NF-κB inhibitor) and JI (a specific Jak2 inhibitor) reduced the production of IL-6, but not that of tumor necrosis factor-alpha (TNF-α) in LPS-stimulated RAW 264.7 macrophages. These findings demonstrate that DPHC inhibits IL-6 production via the downregulation of NF-κB and Jak2-STAT5 pathway and upregulation of SOCS1. Full article
Show Figures

Figure 1

1004 KiB  
Article
Antifungal Compounds from Cyanobacteria
by Tânia K. Shishido, Anu Humisto, Jouni Jokela, Liwei Liu, Matti Wahlsten, Anisha Tamrakar, David P. Fewer, Perttu Permi, Ana P. D. Andreote, Marli F. Fiore and Kaarina Sivonen
Mar. Drugs 2015, 13(4), 2124-2140; https://doi.org/10.3390/md13042124 - 13 Apr 2015
Cited by 79 | Viewed by 8474
Abstract
Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such [...] Read more.
Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders. Full article
Show Figures

Figure 1

2061 KiB  
Article
Astaxanthin Attenuates Early Acute Kidney Injury Following Severe Burns in Rats by Ameliorating Oxidative Stress and Mitochondrial-Related Apoptosis
by Song-Xue Guo, Han-Lei Zhou, Chun-Lan Huang, Chuan-Gang You, Quan Fang, Pan Wu, Xin-Gang Wang and Chun-Mao Han
Mar. Drugs 2015, 13(4), 2105-2123; https://doi.org/10.3390/md13042105 - 13 Apr 2015
Cited by 72 | Viewed by 8303
Abstract
Early acute kidney injury (AKI) is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX) is a natural compound that is widely distributed in marine organisms; it is [...] Read more.
Early acute kidney injury (AKI) is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX) is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9); these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade. Full article
Show Figures

Figure 1

961 KiB  
Article
Studies toward the Total Synthesis of Itralamide B and Biological Evaluation of Its Structural Analogs
by Xiaoji Wang, Chanshan Lv, Junmin Feng, Linjun Tang, Zhuo Wang, Yuqing Liu, Yi Meng, Tao Ye and Zhengshuang Xu
Mar. Drugs 2015, 13(4), 2085-2104; https://doi.org/10.3390/md13042085 - 13 Apr 2015
Cited by 2 | Viewed by 5557
Abstract
Itralamides A and B were isolated from the lipophilic extract of Lyngbya majuscula collected from the eastern Caribbean. Itralamide B (1) showed cytotoxic activity towards human embryonic kidney cells (HEK293, IC50 = 6 μM). Preliminary studies disapproved the proposed stereochemistry [...] Read more.
Itralamides A and B were isolated from the lipophilic extract of Lyngbya majuscula collected from the eastern Caribbean. Itralamide B (1) showed cytotoxic activity towards human embryonic kidney cells (HEK293, IC50 = 6 μM). Preliminary studies disapproved the proposed stereochemistry of itralamide. In this paper, we will provide a full account of the total synthesis of four stereoisomers of itralamide B and the results derived from biological tests of these structural congeners. Full article
(This article belongs to the Special Issue Marine Peptides and Their Mimetics)
Show Figures

Graphical abstract

2239 KiB  
Article
Structural Analysis and Anticoagulant Activities of the Novel Sulfated Fucan Possessing a Regular Well-Defined Repeating Unit from Sea Cucumber
by Mingyi Wu, Li Xu, Longyan Zhao, Chuang Xiao, Na Gao, Lan Luo, Lian Yang, Zi Li, Lingyun Chen and Jinhua Zhao
Mar. Drugs 2015, 13(4), 2063-2084; https://doi.org/10.3390/md13042063 - 13 Apr 2015
Cited by 54 | Viewed by 11449
Abstract
Sulfated fucans, the complex polysaccharides, exhibit various biological activities. Herein, we purified two fucans from the sea cucumbers Holothuria edulis and Ludwigothurea grisea. Their structures were verified by means of HPGPC, FT-IR, GC–MS and NMR. As a result, a novel structural motif [...] Read more.
Sulfated fucans, the complex polysaccharides, exhibit various biological activities. Herein, we purified two fucans from the sea cucumbers Holothuria edulis and Ludwigothurea grisea. Their structures were verified by means of HPGPC, FT-IR, GC–MS and NMR. As a result, a novel structural motif for this type of polymers is reported. The fucans have a unique structure composed of a central core of regular (1→2) and (1→3)-linked tetrasaccharide repeating units. Approximately 50% of the units from L. grisea (100% for H. edulis fucan) contain sides of oligosaccharides formed by nonsulfated fucose units linked to the O-4 position of the central core. Anticoagulant activity assays indicate that the sea cucumber fucans strongly inhibit human blood clotting through the intrinsic pathways of the coagulation cascade. Moreover, the mechanism of anticoagulant action of the fucans is selective inhibition of thrombin activity by heparin cofactor II. The distinctive tetrasaccharide repeating units contribute to the anticoagulant action. Additionally, unlike the fucans from marine alga, although the sea cucumber fucans have great molecular weights and affluent sulfates, they do not induce platelet aggregation. Overall, our results may be helpful in understanding the structure-function relationships of the well-defined polysaccharides from invertebrate as new types of safer anticoagulants. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

821 KiB  
Article
Toxin Profile of Gymnodinium catenatum (Dinophyceae) from the Portuguese Coast, as Determined by Liquid Chromatography Tandem Mass Spectrometry
by Pedro R. Costa, Alison Robertson and Michael A. Quilliam
Mar. Drugs 2015, 13(4), 2046-2062; https://doi.org/10.3390/md13042046 - 13 Apr 2015
Cited by 46 | Viewed by 7456
Abstract
The marine dinoflagellate Gymnodinium catenatum has been associated with paralytic shellfish poisoning (PSP) outbreaks in Portuguese waters for many years. PSP syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins (PSTs), a suite of potent neurotoxins. Gymnodinium catenatum was frequently [...] Read more.
The marine dinoflagellate Gymnodinium catenatum has been associated with paralytic shellfish poisoning (PSP) outbreaks in Portuguese waters for many years. PSP syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins (PSTs), a suite of potent neurotoxins. Gymnodinium catenatum was frequently reported along the Portuguese coast throughout the late 1980s and early 1990s, but was absent between 1995 and 2005. Since this time, G. catenatum blooms have been recurrent, causing contamination of fishery resources along the Atlantic coast of Portugal. The aim of this study was to evaluate the toxin profile of G. catenatum isolated from the Portuguese coast before and after the 10-year hiatus to determine changes and potential impacts for the region. Hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) was utilized to determine the presence of any known and emerging PSTs in sample extracts. Several PST derivatives were identified, including the N-sulfocarbamoyl analogues (C1–4), gonyautoxin 5 (GTX5), gonyautoxin 6 (GTX6), and decarbamoyl derivatives, decarbamoyl saxitoxin (dcSTX), decarbamoyl neosaxitoxin (dcNeo) and decarbamoyl gonyautoxin 3 (dcGTX3). In addition, three known hydroxy benzoate derivatives, G. catenatum toxin 1 (GC1), GC2 and GC3, were confirmed in cultured and wild strains of G. catenatum. Moreover, two presumed N-hydroxylated analogues of GC2 and GC3, designated GC5 and GC6, are reported. This work contributes to our understanding of the toxigenicity of G. catenatum in the coastal waters of Portugal and provides valuable information on emerging PST classes that may be relevant for routine monitoring programs tasked with the prevention and control of marine toxins in fish and shellfish. Full article
(This article belongs to the Special Issue Marine Shellfish Toxins)
Show Figures

Figure 1

481 KiB  
Article
Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives
by Ellen C. Gleeson, Janease E. Graham, Sandro Spiller, Irina Vetter, Richard J. Lewis, Peter J. Duggan and Kellie L. Tuck
Mar. Drugs 2015, 13(4), 2030-2045; https://doi.org/10.3390/md13042030 - 13 Apr 2015
Cited by 10 | Viewed by 5862
Abstract
A set of fluorophenoxyanilides, designed to be simplified analogues of previously reported ω-conotoxin GVIA mimetics, were prepared and tested for N-type calcium channel inhibition in a SH-SY5Y neuroblastoma FLIPR assay. N-type or Cav2.2 channel is a validated target for the treatment [...] Read more.
A set of fluorophenoxyanilides, designed to be simplified analogues of previously reported ω-conotoxin GVIA mimetics, were prepared and tested for N-type calcium channel inhibition in a SH-SY5Y neuroblastoma FLIPR assay. N-type or Cav2.2 channel is a validated target for the treatment of refractory chronic pain. Despite being significantly less complex than the originally designed mimetics, up to a seven-fold improvement in activity was observed. Full article
(This article belongs to the Special Issue Marine Peptides and Their Mimetics)
Show Figures

Graphical abstract

949 KiB  
Review
Marine Natural Products as Breast Cancer Resistance Protein Inhibitors
by Lilia Cherigo, Dioxelis Lopez and Sergio Martinez-Luis
Mar. Drugs 2015, 13(4), 2010-2029; https://doi.org/10.3390/md13042010 - 03 Apr 2015
Cited by 38 | Viewed by 9845
Abstract
Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute [...] Read more.
Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters. Full article
Show Figures

Figure 1

575 KiB  
Article
Two Novel Antioxidant Nonapeptides from Protein Hydrolysate of Skate (Raja porosa) Muscle
by Fa-Yuan Hu, Chang-Feng Chi, Bin Wang and Shang-Gui Deng
Mar. Drugs 2015, 13(4), 1993-2009; https://doi.org/10.3390/md13041993 - 03 Apr 2015
Cited by 35 | Viewed by 6132
Abstract
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity [...] Read more.
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs. Full article
(This article belongs to the Special Issue Marine Peptides and Their Mimetics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop