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Abstract: Background and Objective: In the landscape of heart failure, non-cardiac comorbidities
represent a formidable challenge, imparting adverse prognostic implications. Holter ECG monitoring
assumes a supplementary role in delineating myocardial susceptibility and autonomic nervous sys-
tem dynamics. This study aims to explore the potential correlation between Holter ECG parameters
and comorbidities in individuals with ischemic cardiomyopathy experiencing heart failure (HF),
with a particular focus on the primary utility of these parameters as prognostic indicators. Materials
and Methods: In this prospective inquiry, a cohort of 60 individuals diagnosed with heart failure
underwent stratification into subgroups based on the presence of comorbidities, including diabetes,
chronic kidney disease, obesity, or hyperuricemia. Upon admission, a thorough evaluation of all
participants encompassed echocardiography, laboratory panel analysis, and 24 h Holter monitoring.
Results: Significant associations were uncovered between diabetes and unconventional physiolog-
ical indicators, specifically the Triangular index (p = 0.035) and deceleration capacity (p = 0.002).
Pertaining to creatinine clearance, notable correlations surfaced with RMSSD (p = 0.026), PNN50
(p = 0.013), and high-frequency power (p = 0.026). An examination of uric acid levels and distinctive
Holter ECG patterns unveiled statistical significance, particularly regarding the deceleration capacity
(p = 0.045). Nevertheless, in the evaluation of the Body Mass Index, no statistically significant findings
emerged concerning Holter ECG parameters. Conclusions: The identified statistical correlations
between non-cardiac comorbidities and patterns elucidated in Holter ECG recordings underscore
the heightened diagnostic utility of this investigative modality in the comprehensive evaluation of
individuals grappling with HF. Furthermore, we underscore the critical importance of the thorough
analysis of Holter ECG recordings, particularly with regard to subtle and emerging parameters that
may be overlooked or insufficiently acknowledged.

Keywords: ischemic cardiomyopathy; Holter ECG; comorbidities; chronic heart failure

Medicina 2024, 60, 342. https://doi.org/10.3390/medicina60020342 https://www.mdpi.com/journal/medicina

https://doi.org/10.3390/medicina60020342
https://doi.org/10.3390/medicina60020342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0001-8942-1909
https://orcid.org/0000-0001-8544-9904
https://orcid.org/0000-0002-2610-6482
https://orcid.org/0000-0002-4956-2595
https://orcid.org/0000-0002-9438-8565
https://orcid.org/0000-0003-1234-6933
https://orcid.org/0000-0002-5719-7591
https://doi.org/10.3390/medicina60020342
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina60020342?type=check_update&version=1


Medicina 2024, 60, 342 2 of 24

1. Introduction

Heart failure (HF) is an intricate clinical syndrome that arises from anomalies, be
they structural or functional, within the myocardium. This results in elevated intracardiac
pressures and/or a reduction in the cardiac output [1]. The imperative task of accurately
diagnosing and tailoring treatment demands the identification of the underlying etiology
responsible for cardiac dysfunction [2]. The classification of heart failure is no easy feat,
given its inherent heterogeneity. The current stratification based on the left ventricular
ejection fraction (LVEF) split into subtypes—heart failure with a reduced ejection fraction
(HFrEF), heart failure with a mildly reduced ejection fraction (HFmrEF), and heart failure
with a preserved ejection fraction (HFpEF)—offers a glimpse into this complexity [3]. A
novel classification, HF with improved EF, factors into temporal changes in the LVEF [4–6].

In tandem with the New York Heart Association (NYHA), functional classification,
which assesses heart failure severity based on symptoms, alternative prognostic markers
such as N-terminal pro-B-type natriuretic peptides (NT-proBNP), becomes pivotal. This is
especially true considering the heightened risk for hospitalization and mortality, even in
individuals with mild symptoms [1,3]. The extensively researched NT-proBNP serves as a
prognostic biomarker, providing diagnostic and prognostic insights into HF with a reduced
ejection fraction, and its predictive capacity extends to the broader population [7–11].

While imaging techniques unravel structural changes indicative of the myocardial
substrate, Holter monitoring plays a complementary role in offering insights into both
myocardial vulnerability and autonomic nervous system dynamics. Recent interest focuses
on dynamic Holter-derived ECG markers, such as ventricular late potentials (VLPs), dis-
cerned through a signal-average electrocardiogram. VLPs hold implications for predicting
sudden cardiac death and lethal arrhythmias, particularly in the context of organic heart
diseases [12–15]. The combined assessment of VLPs with T-wave alternans (TWA) and
heart rate variability (HRV) provides a more comprehensive evaluation [15–18].

HRV analysis, a non-invasive method for assessing autonomic function, proves valu-
able in predicting cardiovascular death across diverse clinical populations [19–21]. How-
ever, the nuanced nature of HRV indexes is often underappreciated, leading to potential
misconceptions. In 2006, Baver et al. introduced a methodological advancement to differen-
tiate vagal and sympathetic nervous system roles [21–23]. A reduced heart rate deceleration
capacity emerged as a robust predictor of mortality, independent of LVEF [24–29].

T-wave alternans (TWA), a prevalent manifestation of cardiac electrical alternans
characterized by repolarization dispersion, acts as a biomarker in predicting malignant
arrhythmias and sudden cardiac death [30–33]. Substantial empirical evidence underscores
its efficacy in predicting outcomes, demonstrating clinical relevance across diverse patient
cohorts, including those with heart failure and ischemic cardiomyopathy [33–35].

Comorbidities, notably diabetes, hyperuricemia, chronic kidney disease (CKD), and
obesity, present a significant challenge in HF, contributing to adverse prognostic implica-
tions [36,37]. This research exclusively delves into these non-cardiovascular comorbidities,
scrutinizing their role in the emergence of T-wave alternans, VLPs, and alterations in the
HRV and the acceleration and deceleration capacity, influenced by various underlying
mechanisms [30,38–40].

2. Materials and Methods
2.1. Study Design and Investigations

We conducted a prospective investigation involving 60 consecutively enrolled patients
presenting with heart failure (HF) and left ventricular ejection fraction (LVEF) of less than
50%. The study was conducted at St. Spiridon County Hospital in Iasi, Romania, spanning
from May 2023 to October 2023. Throughout their hospitalization in the Cardiology
Department, we diligently monitored the participants’ conditions. All study subjects had a
pre-existing diagnosis of systolic heart failure with LVEF of less than 50%. To adhere to
predetermined eligibility criteria and to prevent instances of acute heart failure or acute
decompensation of chronic heart failure, participants were required to demonstrate clinical
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stability for a minimum of one month before the collection of biomarker samples and the
initiation of Holter ECG/24 h monitoring.

Importantly, candidates had to exhibit an absence of rapid or gradual onset of symp-
toms and signs indicative of heart failure of sufficient severity to necessitate the initiation
or escalation of treatment, including intravenous therapies. Additionally, participants
were mandated to display an absence of indications corresponding to the principal clinical
presentations, specifically, acute decompensated heart failure, acute pulmonary edema,
isolated right ventricular failure, or cardiogenic shock.

Inclusion of participants in the study was contingent upon a verified etiology of
ischemic heart failure. The classification of ischemic heart failure was based on the concur-
rent manifestation of clinical heart failure and the confirmation, through historical medical
records, of atherosclerotic coronary lesions surpassing 75%, as determined by coronary
arteriography. Each subject underwent coronary angiography at least one month prior
to inclusion, revealing a minimum of 75% atherosclerotic coronary lesions in at least one
coronary artery. Consequently, participants exhibited a pathological spectrum inclusive of
unicoronary, bicoronary, or tricoronary lesions at the point of enrollment.

Exclusion criteria involved patients who declined to provide informed consent upon
admission and those unable to undergo a comprehensive physical and/or echocardio-
graphic examination due to factors like recent thoracic surgery, severe thoracic malforma-
tions, or heightened sensory perception (hyperesthesia). Patients with active malignancies
or those under antineoplastic medication, individuals with comorbid conditions associated
with a life expectancy of less than one year, and patients taking potentially arrhythmogenic
medications were also excluded. Additionally, patients with concurrent acute or chronic
inflammatory processes, thyroid disorders, recent major surgical procedures, untreated
neuropsychiatric disorders, or NT-proBNP values upon admission falling below the rec-
ommended cutoff of 125 pg/mL by the European Society of Cardiology were excluded.
Furthermore, specific patient groups with attributes that could potentially confound the
interpretation of study outcomes were excluded. This criterion encompassed individuals
with a recent history of acute coronary syndrome within 21 days prior to admission, those
with a documented history of sustained ventricular tachycardia or sudden cardiac death,
patients in atrial fibrillation, and individuals with cardiac pacemakers. The study’s scope
did not include individuals under the age of 18 or pregnant women.

After obtaining informed consent, patients underwent an extensive clinical assess-
ment, standard laboratory investigations, and a series of noninvasive diagnostic proce-
dures. These noninvasive diagnostic methods included an ECG, 24 h Holter monitoring,
signal-averaged electrocardiography (SAECG), and a transthoracic echocardiographic
examination.

Our comprehensive patient assessment involved a detailed examination of medical
history, a standard physical examination, and a thorough review of patients’ medical
records or archival data from the hospital. This review encompassed the extraction of
relevant sociodemographic information, specific behavioral conditions, underlying medical
conditions, current medication regimens, clinical observations, and laboratory findings.
To ensure scientific rigor and reproducibility in our statistical analysis, we opted to utilize
data collected exclusively at the time of patient enrollment, considering the potential
variability in biomarker concentrations and clinical parameters such as blood pressure,
weight, height, and body mass index over time. The confirmation of comorbidities was
based on either pre-existing records in the patients’ personal files or diagnoses made during
their hospitalization, adhering to established diagnostic criteria.

We systematically conducted an extensive array of standardized laboratory tests cover-
ing diverse parameters, including NT-proBNP, D-dimers, complete blood count, renal and
hepatic function, C-reactive protein, sodium, potassium, magnesium, microalbuminuria,
uric acid, total protein test, thyroid function markers, serum iron, ferritin, HbA1c, and
glycemia. The primary objective of this thorough battery of laboratory tests was to rule out
potential underlying causes, such as infection, electrolyte imbalances, hepatic dysfunction,
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hypoalbuminemia, anemia, or thyroid disorders. NT-proBNP levels were quantified using
the PATHFAST Cardiac Biomarker Analyzer (LSI Medience Corporation, Tokyo, Japan),
employing a chemiluminescent enzyme immunoassay and the MAGTRATION® method.
The manufacturer’s designated reference range for NT-proBNP fell within <15–128 pg/mL.

Initiating a thorough evaluation, each patient underwent a detailed echocardiography
assessment utilizing the GE VividTM V7 ultrasound system (General Electric, Boston, CA,
USA). The determination of LVEF followed the standardized protocol, employing Simpson’s
method within the two-dimensional echocardiographic apical four-chamber view.

Patients underwent 24 h Holter ECG monitoring utilizing a twelve-channel CardioScan
DMS 300–3L, a digital recorder with ten wires manufactured by DM System Company Ltd.,
Beijing, China. Subsequently, all recorded data underwent meticulous manual scrutiny,
with a particular focus on assessing T-wave alternans, heart rate variability, and acceleration
and deceleration capacity. The analysis was facilitated by the CardioScan Holter Analysis
Software, specifically CardioScan 12, developed by DM Software Inc., headquartered in
Beijing, China.

It is noteworthy that this analysis rigorously excluded ectopic beats or those originating
from sources outside the sinus rhythm. Furthermore, individuals characterized by a high
incidence of atrial and ventricular ectopic beats, specifically exceeding a frequency of more
than 10 beats per hour, were deliberately excluded from the study’s participant pool. In
alignment with our commitment to scientific rigor, periods marked by noise, artifacts,
premature beats, and post-extrasystolic pauses underwent meticulous screening and were
subsequently excluded from further investigation. In the pursuit of a comprehensive
examination, we harnessed the capabilities of the SAECG device, DM System Company
Ltd., Beijing, China, making use of its 3-channel (orthogonal lead) setup paired with a
7-wire recorder. The exploration into late potentials strictly adhered to a standardized
protocol [41]. Similarly, the assessment of ventricular late potentials in the time domain
consistently employed the CardioScan 12 software.

2.2. Definitions

In adherence to the guidelines outlined by the ESC, the diagnosis of HF required
the manifestation of clinical symptoms such as dyspnea, fatigue, and ankle edema. This
diagnosis was further substantiated by observable signs of heart failure and the objective
confirmation of cardiac dysfunction through the measurement of NT-pro BNP levels equal
to or exceeding 125 pg/mL, supported by echocardiographic assessment [1]. For a compre-
hensive assessment, a 24 h HOLTER ECG and evaluation of LVP were subjected to manual
interpretation using the Cardioscan 12 software.

HRV analysis was omitted in cases where recordings exhibited more than 10% artifacts.
Both time and frequency domain analyses of HRV, along with the assessment of deceleration
and acceleration capacity, were automatically computed and documented [42]. The time-
domain indices included parameters such as the standard deviation of RR intervals for
the entire duration (SDNN; normal values below 50 ms), the standard deviation of the
averages of NN intervals in each 5 min segment across the entire recording (SDANN;
normal values below 40 ms), the mean of the 5 min normal-to-normal intervals throughout
the complete recording (SDANN index; normal values below 30 ms), the square root of the
mean of the squares of the successive differences between adjacent NN intervals (RMSSD;
normal values below 15), the ratio of NN50 to the total count of NN intervals (PNN50;
normal values below 0.75%), and the total count of all NN intervals divided by the height
of the histogram of all NN intervals, measured on a discrete scale with bins of 7.8125 ms
(triangular index) [43]. The frequency-domain indices included specific frequency bands:
high frequency (hF), spanning the range of 0.15 to 0.4 Hz; low frequency (lF), covering
the range from 0.04 to 0.15 Hz; and very low frequency (vlF), extending from 0.0033 to
0.04 Hz [44].

The determination of deceleration capacity (DC) and acceleration capacity (AC) was
based on an innovative phase-rectified signal averaging methodology designed for the
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examination of quasi-periodic oscillations within noisy and non-stationary signal data.
The relative counts of deceleration and acceleration sequences, each comprising 1 to 10
RR intervals, were categorized into three risk-stratified groups: low-risk (values falling
between 4.5 ms and 10 ms), intermediate-risk (ranging from 2.5 ms to 4.49 ms), and high-risk
(ranging from 0 to 2.49 ms), as previously described in the literature [42].

Time-domain analysis was applied to evaluate TWA across all available channels.
TWA was identified as the maximum observed value within any channel, with a T-wave
alternans value equal to or exceeding 60 µV considered as indicative of a positive finding.

For the acquisition of SAECG, each study participant underwent a 3-lead resting elec-
trocardiogram using the Holter ECG DMS 300-4L device. A total of 500 cardiac cycles were
recorded, typically within a time frame of 12 to 15 min. Following this, the late potential
assessment was repeated using the software integrated into the same device. The QRS
waveforms underwent bi-directional filtering within the frequency range of 40–250 Hz.
Ventricular late potentials were identified by analyzing the filtered QRS complex, consid-
ering criteria such as a filtered QRS complex duration (fQRS) exceeding 114 milliseconds,
the presence of low-amplitude signals (LAS) lasting more than 38 milliseconds within the
terminal portion of the QRS complex, and a root mean square (RMS) voltage within the
terminal 40 milliseconds falling below 20 microvolts (µV). A diagnosis of ventricular late
potentials was confirmed if at least two out of the three criteria were met [45,46] (Figure 1).
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Figure 1. The Holter ECG/24 h parameters analyzed: HRV—Heart Rate Variability, SDNN—standard
deviation of RR intervals for the entire duration, SDANN—standard deviation of the averages of
NN intervals in each 5 min segment across the entire recording, SDNN index—mean of the 5 min
normal-to-normal intervals throughout the complete recording, RMSSD—square root of the mean of
the squares of the successive differences between adjacent NN intervals, PNN50—ratio of NN50 to
the total count of NN intervals, vlF—very low frequency, lF—low frequency, hF—high frequency,
TWA—T-wave alternans, (fQRS)—filtered QRS complex, LAS—low-amplitude signals, RMS—root
mean square.

In the examination, DM was defined as a condition characterized by a morning-
fasting glucose level equal to or exceeding 126 mg/dL, a glycated hemoglobin (HbA1c)
level of 6.5% or higher, or the use of antidiabetic medications. For statistical analysis,
the parameter utilized was the HbA1c concentration. Hyperuricemia was defined as an
elevated serum urate concentration exceeding 6 mg/dL in females and 7 mg/dL in males.
CKD was established following the Kidney Disease Outcomes Quality Initiative guidelines,
indicating impairment in renal function with a glomerular filtration rate (GFR) of less than
60 mL/min per 1.73 m2, the presence of kidney damage markers, or both, persisting for at
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least 3 months, irrespective of the underlying etiology [47]. Body Mass Index (BMI) was
calculated by dividing an individual’s weight in kilograms by the square of their height
in meters [43].

2.3. Statistical Analysis

Utilizing version 4.3.2 of the R programming language, the statistical analysis com-
menced with an assessment of data distribution via the Shapiro–Wilk test. For normally
distributed continuous variables, the presentation involved mean ± standard deviation
(SD). Conversely, non-normally distributed continuous variables were summarized de-
scriptively using the median and interquartile range (IQR: 25–75%). Categorical variables
were depicted through frequencies and percentages. Group differences were evaluated
employing the independent samples t-test for normally distributed variables and the Mann–
Whitney U test for variables deviating from normal distribution. To explore the correlation
between parameters, Pearson’s correlation coefficient (Pearson’s r) was employed, while
instances not meeting parametric assumptions utilized Spearman’s rank correlation coef-
ficient (Spearman’s ρ) to elucidate the relationship between variables. Categorical group
comparisons were conducted through the chi-squared test. The threshold for statistical
significance was set at a p-value of less than 0.05 (p < 0.05).

3. Results
3.1. Baseline Characteristics

This research involved a cohort of 60 patients, with 25% being female, all diagnosed
with Heart Failure, with an LVEF < 50% of ischemic etiology. The mean age of the study
population was 66 ± 11 years, and they presented with various concomitant medical
conditions, which will be detailed in this investigation. Specifically, 32% of the patients
were identified as having diabetes (n = 19), 25% were diagnosed with chronic kidney disease
(n = 15), 37% exhibited hyperuricemia (n = 22), and a significant 77% (n = 46) were classified
as overweight or obese. It is important to note that, as previously explained, comprehensive
blood test analyses indicated the absence of anemia, infection, electrolyte imbalances, and
showed normal liver and thyroid functions among the patients. Additionally, none of the
patients were using medications known to induce arrhythmogenic effects. Subsequently,
we present the comparative analysis of selected echocardiographic parameters between
patients with and without diabetes (Table 1), obesity, CKD, and hyperuricemia.

Within the realm of our academic inquiry, it is pertinent to bring attention to the
findings derived from our analysis employing PW tissue Doppler imaging. Notably, a
substantial reduction in systolic myocardial velocity (S′) values (p = 0.005) was unveiled
in the cohort of patients diagnosed with diabetes (Table 1). Additionally, it is crucial to
underscore the conspicuous abbreviation of the MV deceleration time in the same group
(p = 0.006).

In the context of other conventional echocardiographic parameters, no statistically
significant disparities were detected between the two study groups regarding the left ven-
tricular diastolic dimension, left ventricular systolic and diastolic volumes, the ejection
fraction, E/A ratio, E/e′, mitral annular plane systolic excursion (MAPSE), cardiac output,
or left atrium area. In our investigation of echocardiographic parameters among individ-
uals with and without obesity, notable distinctions were observed in the left ventricular
diastolic diameters (58.0 (53.3–63.8) mm vs. 51.0 (48.3–52.0) mm; p = 0.002) and there was
a marginal difference in the left ventricular diastolic volumes (211.0 (175.0–263.0) mL vs.
160.0 (137.0–222.0) mL; p = 0.058). Conversely, in the context of additional conventional
echocardiographic parameters, no statistically significant variances were discerned between
the cohorts of individuals with and without obesity regarding the left ventricular systolic
volume (136.0 (121.0–179.0) mL vs. 101.0 (89.0–150.0) mL; p = 0.062), ejection fraction
(31.5 ± 9.4% vs. 31.9 ± 10.4%; p = 0.908), E/A ratio (1.0 (0.7–1.6) vs. 0.8 (0.6–1.7);
p = 0.529), E/e′ (11.1 (8.0–14.7) vs. 12.1 (10.8–18.4); p = 0.368), MAPSE (12.2 ± 2.4 mm
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vs. 12.9 ± 3.8 mm; p = 0.405), cardiac output (5.09 ± 1.31 L/min vs. 4.50 ± 1.49 L/min;
p = 0.162), or left atrium area (22.7 (18.3–27.9) cm2 vs. 20.5 (16.0–24.8) cm2; p = 0.165).

Table 1. Comparison of echocardiographic measures in individuals with and without diabetes.

Characteristic All Sample (n = 60) Patients with Diabetes
(n = 19)

Patients without
Diabetes (n = 41) p-Value

LVEDD (mm) 56.0 (51.0–63.0) 58.0 (52.5–26.5) 55.0 (50.0–63.0) 0.540
LVEF (%) 31.7 ± 9.6 28.7 ± 8.3 33.0 ± 9.9 0.108

LVEDV (mL) 206.0 (166.0–262.0) 194.0 (174.0–263.0) 129.0 (96.0–168.0) 0.697
LVESV (mL) 132.0 (104.0–177.0) 156.0 (126.0–178.0) 129.0 (96.0–168.0) 0.174

E/A 0.9 (0.6–1.7) 1.5 (0.7–2.0) 0.9 (0.6–1.4) 0.157
E/e′ 11.5 (8.1–16.3) 12.1 (7.7–15.4) 11.1 (8.2–17.0) 0.905

E/E′ lateral 9.6 (6.5–13.8) 9.1 (5.8–12.5) 9.7 (6.7–16.0) 0.455
E/E′ septal 12.7 (8.73–17.4) 13.6 (9.1–18.1) 12.7 (8.8–17.3) 0.757

MV Dec T (ms) 171.0 (141.0–207.0) 150.0 (115.0–163.0) 195.0 (148.0–222.0) 0.006
S′ lateral (mm/s) 0.7 ± 0.2 0.5 ± 0.1 0.7 ± 0.2 0.005
S′ septal (mm/s) 0.6 (0.5–0.8) 0.5 (0.4–0.6) 0.7 (0.5–0.8) 0.072

LA area (cm2) 21.4 (18.0–26.0) 25.8 (24.2–27.9) 19.7 (17.3–25.1) 0.061
MAPSE (mm) 12.3 ± 2.8 11.5 ± 2.3 12.7 ± 2.9 0.106

Cardiac output (L/min) 4.9 ± 1.3 5.2 ± 1.5 4.8 ± 1.2 0.218

LVEDD—left ventricular end-diastolic diameter, LVEF—left ventricular ejection fraction, LVEDV—left ventricular
end-diastolic volume, LVESV—left ventricular end-systolic volume, E/A—peak velocity of blood flow during left
ventricular relaxation in early diastole/peak velocity of flow in late diastole caused by atrial contraction, E/e′—left
ventricular transmitral early diastolic filling velocity/left ventricular early diastolic myocardial velocity, E/E′

lateral—peak velocity of blood flow during left ventricular relaxation in early diastole/lateral left ventricular early
diastolic myocardial velocity, E/E′ septal—left ventricular transmitral early diastolic filling velocity/septal wall of
left ventricular early diastolic myocardial velocity, MV Dec T—mitral valve deceleration time, S′ lateral—systolic
excursion velocity of the lateral wall of the left ventricle, S′ septal—systolic excursion velocity of the septum of the
left ventricle, LA area—left atrium area, MAPSE—mitral annular plane systolic excursion. Normally distributed
data were presented as mean ± standard deviation and compared using the independent samples t-test. For
non-normally distributed data, values were expressed as median (interquartile range) and compared using the
Mann–Whitney U test. The threshold for statistical significance was set at p < 0.05.

Unlike the first two comorbidities under investigation, CKD and hyperuricemia did
not exhibit statistically significant changes in echocardiographic parameters. Henceforth,
there were no discernable statistically significant discrepancies identified between the
cohorts of subjects afflicted with and without CKD concerning the left ventricular diastolic
dimension (57.0 (51.5–59.0) mm vs. 56.0 (51.0–64.0) mm; p = 0.388), left ventricular systolic
volume (129.0 (117.0–152.0) mL vs. 136.0 (96.0–212.0) mL; p = 0.326) and diastolic volume
(181.0 (172.0–205.0) mL vs. 215.0 (165.0–278.0) mL; p = 0.109), ejection fraction (29.8 ± 10.1%
vs. 32.3 ± 9.5%; p = 0.389), E/A ratio (1.0 (0.5–1.7) vs. 0.9 (0.7–1.7); p = 0.663), E/e′

(11.3 (8.9–19.9) vs. 11.7 (8.0–14.5); p = 0.322), MAPSE (11.6 ± 2.6 mm vs. 12.6 ± 2.8 mm;
p = 0.247), cardiac output (4.5 ± 1.4 L/min vs. 5.0 ± 1.3 L/min; p = 0.232), or left atrium
area (23.1 (17.8–25.7) cm2 vs. 20.7 (18.3–26.5) cm2; p = 0.778).

Moreover, within the cohorts of subjects with and without hyperuricemia, no statisti-
cally significant differences were noted in relation to the aforementioned parameters: the
left ventricular diastolic dimension (56.5 (49.5–60.0) mm vs. 55.5 (51.3–63.0) mm; p = 0.612),
left ventricular systolic volume (153.0 (122.0–178.0) mL vs. 131.0 (95.3–173.0) mL; p = 0.290)
and diastolic volume (213.0 (182.0–254.0) mL vs. 195.0 (164.0–263.0) mL; p = 0.514), ejection
fraction (29.4 ± 8.7% vs. 33.0 ± 10.0%; p = 0.168, E/A ratio (1.2 (0.6–2.3) vs. 0.9 (0.7–1.5);
p = 0.395), E/e′ (11.9 (9.6–15.8) vs. 11.1 (8.0–16.4); p = 0.365), MAPSE (12.4 ± 2.3 mm vs.
12.3 ± 3.0 mm; p = 0.845), cardiac output (5.3 ± 1.4 L/min vs. 4.7 ± 1.2 L/min; p = 0.137),
or left atrium area (25.2 (18.5–28.0) cm2 vs. 20.4 (17.5–25.5) cm2; p = 0.147).

3.2. Holter ECG Parameters

Our study subsequently advanced to perform comparative assessments between
the mentioned patient characteristics and the parameters obtained from a 24 h Holter
ECG monitoring phase. This segment of our inquiry involved a thorough examination
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of Holter ECG parameters in association with various comorbidities. Specifically, we
investigated measures of heart rate variability, including the SDNN, SDANN, SDNN
index, RMSSD, PNN50, Triangular index, VLF, LF, and HF, along with the acceleration and
deceleration capacity. Additionally, parameters related to TWA and LVP were scrutinized.
Table 2 presents average NT-proBNP values and the NYHA class distribution for our
patient cohort. In Table 2, data are provided for the entire study cohort and subgroups
of patients, categorized into those with and without diabetes. Normally distributed data
were expressed as mean values with corresponding standard deviations and subjected to
statistical comparison using the independent samples t-test. Non-normally distributed data
were represented as median values along with the interquartile range, and comparisons
were conducted utilizing the Mann–Whitney U test. Differences in categorical variables
were assessed using the chi-squared test.

Table 2. Patient characteristics and Holter ECG parameters in patients with and without diabetes.

Characteristic All Sample
(n = 60)

Patients with Diabetes
(n = 19)

Patients without Diabetes
(n = 41) p-Value

NYHA class

I—4 (7%) I—0 (0%) I—4 (10%)

0.136
II—33 (55%) II—9 (47%) II—24 (58%)
III—21 (35%) III—10 (53%) III—11 (27%)

IV—2 (3%) IV—0 (0%) IV—2 (5%)

NTproBNP (pg/mL) 2568 (634–6193) 3598 (1767–8006) 1990 (553–5733) 0.211

LVP (%)
Yes—26 (43%) Yes—6 (43%) Yes—20 (43%)

0.211No—34 (57%) No—13 (57%) No—21 (57%)

SDNN (ms) 76.0 (55.5–106.0) 68.0 (51.0–88.5) 80.0 (63.0–107.0) 0.252

SDANN (ms) 69.3 ± 29.8 69.1 ± 34.8 69.5 ± 27.6 0.961

SDNN index (ms) 34.0 (27.0–51.0) 29.0 (24.0–40.0) 38 (31.0–52.0) 0.171

RMSSD 25.0 (15.8–36.5) 28.0 (17.5–36.0) 22.0 (15.0–38.0) 0.395
PNN50 (%) 3.5 (0.0–10.0) 5.0 (1.0–9.0) 3.0 (0.0–10.0) 0.445

Triangular Index (ms) 17.4 (12.6–24.6) 14.9 (11.6–17.2) 19.6 (13.2–26.6) 0.035

vlF (Hz) 898 (592–1765) 678 (275–1926) 958 (702–1759) 0.194

lF (Hz) 181.0 (93.9–457.0) 121.0 (85.8–468.0) 193.0 (108.0–366.0) 0.581

hF (Hz) 91.4 (37.7–182.0) 104.0 (50.1–192.0) 65.9 (29.5–178.0) 0.394

Deceleration capacity (ms) 4.0 ± 1.9 2.9 ± 1.6 4.5 ± 1.8 0.002

Acceleration capacity (ms) −4.0 (−5.6–−3.0) −3.6 (−4.5–−3.0) −4.3 (−5.8–−3.0) 0.132

TWA (%)
Yes—12 (20%) Yes—5 (43%) Yes—7 (43%)

0.405No—48 (80%) No—14 (57%) No—34 (57%)

SDNN—standard deviation of RR intervals for the entire duration, SDANN—standard deviation of the averages of
NN intervals in each 5 min segment across the entire recording, SDNN index—mean of the 5 min normal-to-normal
intervals throughout the complete recording, RMSSD—square root of the mean of the squares of the successive
differences between adjacent NN intervals, PNN50—ratio of NN50 to the total count of NN intervals, vlF—very
low frequency, lF—low frequency, hF—high frequency, NTproBNP—amino-terminal pro-brain natriuretic peptide,
LVP—late ventricular potentials, TWA—T wave alternans.

In our study cohort, 55% of patients, specifically 33 individuals, experienced dyspnea
categorized under NYHA class II, while 35% (21 patients) were classified under NYHA class
III. A minor percentage of 7% (four patients) had NYHA class I, and only 3% (two patients)
were identified under NYHA class IV. The mean NT-proBNP level in our study cohort was
quantified at 2568 pg/mL, with values spanning a range from 634 to 6193 pg/mL. Both TWA
and LVP exhibited no statistically significant differences between patients with diabetes
and those without diabetes, as indicated by p-values of 0.405 and 0.221, respectively.

Unexpectedly, there was a notable resemblance in heart rate variability parameters
between the two groups, despite the well-documented impact of diabetes on the auto-
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nomic nervous system. However, we did identify a statistically significant correlation
between diabetes and the Triangular index (p = 0.035). Hence, the inquiry arises as to
whether a diminished Triangular Index, in contrast to other established HRV parameters,
exhibits an association with an elevated risk of cardiovascular mortality and might rep-
resent the foremost modifiable parameter for HRV. This consideration is pertinent given
that the Triangular Index is comparatively less scrutinized in comparison to conventional
HRV parameters. In the context of the acceleration and deceleration capacity within our
study cohort, we did not observe any statistically significant differences in the accelera-
tion capacity. However, a robust and statistically significant association was established
between diabetes and the deceleration capacity (p = 0.002), an important aspect that will be
discussed later.

In Table 3, we have outlined the existence of additional comorbidities, namely obesity,
CKD, and hyperuricemia. To explore the associations and correlations between these
comorbidities and pertinent variables, including creatinine clearance, BMI, and uric acid
levels, a correlation analysis was conducted.

Table 3. The relationship between creatinine clearance, body mass index, uric acid, and Holter
ECG Parameters.

Characteristic Creatinine Clearance Body Mass Index Uric Acid

SDNN (ms) Spearman’s ρ = −0.068
p-value = 0.605

Spearman’s ρ = 0.167
p-value = 0.203

Spearman’s ρ = −0.107
p-value = 0.416

SDANN (ms) Pearson’s r = −0.103
p-value = 0.425

Pearson’s r = 0.143
p-value = 0.277

Pearson’s r = −0.063
p-value = 0.632

SDNN index (ms) Spearman’s ρ = −0.014
p-value = 0.917

Spearman’s ρ = 0.038
p-value = 0.774

Spearman’s ρ = −0.102
p-value = 0.437

RMSSD Spearman’s ρ = −0.287
p-value = 0.026

Spearman’s ρ = 0.065
p-value = 0.621

Spearman’s ρ = 0.029
p-value = 0.825

PNN50 (%) Spearman’s ρ = −0.318
p-value = 0.013

Spearman’s ρ = 0.088
p-value = 0.505

Spearman’s ρ = 0.105
p-value = 0.423

Triangular index (ms) Spearman’s ρ = 0.041
p-value = 0.758

Spearman’s ρ = 0.167
p-value = 0.203

Spearman’s ρ = −0.207
p-value = 0.112

vlF (Hz) Spearman’s ρ = 0.019
p-value = 0.886

Spearman’s ρ = −0.066
p-value = 0.618

Spearman’s ρ = −0.032
p-value = 0.810

lF (Hz) Spearman’s ρ = 0.08
p-value = 0.949

Spearman’s ρ = −0.031
p-value = 0.812

Spearman’s ρ = 0.003
p-value = 0.979

hF (Hz) Spearman’s ρ = −0.287
p-value = 0.026

Spearman’s ρ = 0.020
p-value = 0.882

Spearman’s ρ = −0.011
p-value = 0.933

Deceleration capacity (ms) Pearson’s r = 0.005
p-value = 0.967

Pearson’s r = −0.131
p-value = 0.317

Pearson’s r = −0.260
p-value = 0.045

Acceleration capacity (ms) Spearman’s ρ = −0.037
p-value = 0.777

Spearman’s ρ = −0.038
p-value = 0.771

Spearman’s ρ = 0.229
p-value = 0.078

SDNN—standard deviation of RR intervals for the entire duration, SDANN—standard deviation of the averages
of NN intervals in each 5 min segment across the entire recording, SDNN index—mean of the 5 min normal-
to-normal intervals throughout the complete recording, RMSSD—square root of the mean of the squares of the
successive differences between adjacent NN intervals, PNN50—ratio of NN50 to the total count of NN intervals,
vlF—very low frequency, lF—low frequency, hF—high frequency.

Within the realm of creatinine clearance, the most prominent modifications in HRV pa-
rameters were observed, showcasing a statistically significant positive correlation with HRV
measures. This correlation was evident with RMSSD (p = 0.026, Spearman’s
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ρ = −0.287), PNN50 (p = 0.013, Spearman’s ρ = −0.318) and, in relation to the frequency
domain parameters, a correlation was identified with high-frequency (hF) power (p = 0.026,
Spearman’s ρ = −0.287).

Significantly, our investigation did not reveal substantial alterations in HRV parame-
ters when comparing patients with obesity to those without obesity.

Regarding the association between uric acid levels and distinct Holter ECG patterns,
our analysis brought to light statistical significance concerning the deceleration capacity
(p = 0.045, Pearson’s r = −0.260). It is noteworthy that, although not reaching the same
level of statistical significance, a notable correlation was observed with the acceleration
capacity (p = 0.078, Spearman’s ρ = 0.229), a finding we consider relevant to report due to
its potential clinical significance.

In the case of LVP and TWA, the data exhibited a non-normal distribution and, con-
sequently, were presented as the median (interquartile range). Group comparisons were
conducted using the Mann–Whitney U test. The analysis, depicted in Tables 4 and 5, demon-
strated a lack of statistically significant associations between the examined parameters and
the comorbidities under investigation.

Table 4. Comparison between patients with and without LVP.

Characteristic LVP
(n = 26)

No LVP
(n = 34) p-Value

Creatinine clearance
(mL/min/1.73 m2) 78.5 (55.0–98.5) 91.5 (64.0–102.0) 0.412

Body mass index
(kg/m2) 27.6 (25.1–30.1) 28.5 (25.4–31.4) 0.748

Uric acid
(mg/dL) 6.7 (5.62–8.8) 6.0 (5.2–8.1) 0.165

LVP—late ventricular potentials.

Table 5. Comparison between patients with and without TWA.

Characteristic TWA
(n = 12)

No TWA
(n = 48) p-Value

Creatinine clearance
(mL/min/1.73 m2) 87.0 (57.3–91.5) 85.0 (59.0–103.0) 0.427

Body mass index
(kg/m2) 29.1 (25.9–32.1) 28.2 (25.1–30.8) 0.598

Uric acid
(mg/dL) 6.2 (5.3–8.5) 6.3 (5.5–8.2) 0.978

TWA—T-wave alternans.

3.3. Examination of Statistically Significant Parameters

Our findings revealed a significant reduction in the Triangular Index and deceleration
capacity in individuals with diabetes, as illustrated in the Table 2. Subsequently, our
investigation aimed to perform a focused analysis to clarify the specific correlations between
these parameters, as outlined in Figures 2 and 3.
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Figure 3. Deceleration capacity (ms) differences between chronic heart failure patients with (n = 19)
and without diabetes (n = 41). The interquartile range is depicted by the rectangular box, with the
first quartile (Q1, 25%) and the third quartile (Q3, 75%) represented as the bottom and top boundaries,
respectively. The median value of the dataset is indicated by the horizontal line inside the box, and
each dot corresponds to an individual datapoint.

Individuals identified with diabetes (Median: 14.9, IQR: 11.6–17.2) exhibited a notably
reduced triangular index in comparison to those without diabetes (Median: 19.6, IQR:
13.2–26.6) with statistical significance (U = 256, p = 0.035).

Participants diagnosed with diabetes (2.9 ± 1.6) exhibited a significantly lower decel-
eration capacity compared to individuals without diabetes (4.5 ± 1.8) (t = −3.23, df = 58,
p = 0.002).

As mentioned earlier, our study unveiled substantial correlations between creatinine
clearance and various HRV parameters. Specifically, those showing statistical significance
have been thoroughly examined and are detailed in Figures 4–6.
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Figure 5. The association between creatinine clearance levels (mL/min) and PNN50 (%) in patients
with chronic heart failure is illustrated. Each data point corresponds to an individual and the orange
line signifies the regression line or line of best-fit.

A statistically significant, weak-to-moderate negative correlation was noted between
RMSSD and creatinine clearance levels (Spearman’s ρ = −0.287, p = 0.026).

Furthermore, a statistically significant, moderate negative relationship was observed
between PNN50 and creatinine clearance (Spearman’s ρ = −0.318, p = 0.013).

Finally, a statistically significant negative association, characterized as weak-to-moderate
(Spearman’s ρ = −0.287, p = 0.026), was identified between these variables.

In assessing the efficacy of uric acid levels, our objective was to emphasize the supple-
mentary value of the acceleration and deceleration capacity (Figures 7 and 8).
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Figure 7. The association between uric acid concentrations (mg/dL) and deceleration capacity (ms)
in patients with chronic heart failure is depicted in the graph. Each data point corresponds to an
individual and the orange line signifies the best-fit regression line.

A statistically significant, weak-to-moderate inverse relationship was identified be-
tween the uric acid levels and deceleration capacity (Pearson’s r = −0.260, p = 0.045).
Additionally, a weak-to-moderate positive relationship between uric acid and the accelera-
tion capacity was observed (Spearman’s ρ = 0.229, p = 0.078), with the p-value approaching,
but slightly exceeding, the threshold for statistical significance.
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Figure 8. The correlation between uric acid concentrations (mg/dL) and acceleration capacity (ms)
in patients with chronic heart failure is illustrated in the graph. Each data point corresponds to an
individual and the orange line denotes the best-fit regression line.

4. Discussion

Significant contributors to both mortality and morbidity, ischemic cardiomyopathy and
HF, along with comorbidities, impose substantial healthcare expenditures. In developed
nations, the age-adjusted incidence of heart failure may exhibit a declining trend, potentially
attributed to the enhanced management of cardiovascular diseases. However, the overall
incidence is on the rise, primarily due to the aging demographic [48,49].

Despite the imperative role played by imaging techniques in enhancing structural
characterization, the diagnosis of HF requires the confluence of clinical symptoms and/or
signs indicative of HF alongside objective evidence of cardiac dysfunction [1]. Modern
Holter monitoring, often considered secondary in the diagnosis of HF or ischemic car-
diomypathy, reveals its potential as an invaluable instrument for investigating the intricate
factors contributing to the mechanisms of sudden death [13]. Therefore, while continu-
ous ambulatory Holter ECG monitoring has been traditionally relegated in conventional
wisdom, it also plays a crucial role in risk stratification [50,51].

As the global populace ages, there is a noticeable surge in the prevalence of non-
cardiovascular comorbidities impacting individuals with HF, including those contending
with ischemic heart failure [52,53]. The explicit consideration of ischemic heart failure
in this context introduces an additional layer of complexity, given its unique etiological
factors and potential interplay with non-cardiac comorbidities. Ischemic heart failure,
frequently arising from coronary artery disease, presents a distinct set of challenges in both
research and clinical practice [38,54]. It is imperative to underscore that a common thread
weaving through a majority of non-cardiac comorbidities linked to HF lies in their inherent
capacity to potentially induce left ventricular dysfunction and precipitate HF [40,55,56]. A
comprehensive and all-encompassing approach, reflective of the intricacies observed in
clinical practice, is indispensable for advancing our understanding of HF pathophysiology
and optimizing patient care in the realm of ischemic heart failure and its concurrent non-
cardiac comorbidities [37,56,57].

The results obtained from our investigation indicated that specific comorbidities
lead to an augmentation of certain less conventional Holter ECG parameters related to
HRV, even though other parameters maintain normal values. In the context of our study,
the triangular index and the acceleration and deceleration capacity exhibited statistically
significant deviations from normal values in specific comorbid conditions under scrutiny
(e.g., diabetes and hyperuricemia).
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Our objective was to elucidate the initial impact on the deceleration capacity and
explore its potential prognostic significance. The autonomic nervous system consists of the
sympathetic and parasympathetic branches. Dysregulation in the balance of these branches
can lead to a decrease in the deceleration capacity. Specifically, a reduction in the parasym-
pathetic (vagal) tone may hinder the heart’s ability to decelerate efficiently after exposure
to a stressor or stimulus, resulting in a diminished deceleration capacity [58,59]. Simul-
taneously, the activity of the sympathetic system may remain within normal parameters,
preserving the acceleration capacity [58,60].

Regarding the first comorbidity that we studied, specifically diabetes, the disruption
of the autonomic nervous system influences heart electrical stability, potentially causing
changes in TWA, VLPs, and HRV [57,58,60]. Fluctuations in blood glucose levels, chronic in-
flammation, oxidative stress, insulin resistance, and metabolic syndrome further contribute
to disturbances in heart rhythm [56,58]. It is crucial to note that diabetes can also induce
structural and functional alterations in the heart, referred to as diabetic cardiomyopathy.
These alterations create an environment within the heart that promotes arrhythmogenic
potential [37,57,59]. In our study, individuals diagnosed with diabetes (2.9 ± 1.6) exhibited
a notably diminished deceleration capacity compared to those without diabetes (4.5 ± 1.8),
and this difference was found to be statistically significant (t = −3.23, df = 58, p = 0.002).

Similar to our study, Wang et al. found that the deceleration capacity is significantly
reduced in individuals with diabetes, serving as a distinct indicator for identifying those
with pronounced autonomic nervous system impairment. Identifying individuals at an
elevated risk of sudden death is crucial for timely clinical intervention and treatment,
thereby mitigating or circumventing the deleterious consequences associated with auto-
nomic neuropathy. This marker, reflecting a compromised quality of life in individuals with
congestive heart failure and diabetes, underscores the importance of early preventative
measures and therapeutic interventions [61]. An additional HRV parameter found to be
altered in patients with diabetes is the triangular index. According to Hammerle et al.,
their study suggests that the triangular index may serve as a predictive indicator for car-
diovascular mortality [62]. The modification in the triangular index indicates a change in
the geometric configuration of the Poincaré plot, a widely used graphical representation in
HRV analysis. Specifically linked to the dispersion and distribution of successive interbeat
intervals, the triangular index provides insights into the modulation of heart rate dynamics
by the autonomic nervous system [62–64].

In reference to the next comorbidity, hyperuricemia, elevated uric acid levels are
frequently associated with systemic inflammation and oxidative stress, both of which
carry implications for the cardiac electrophysiological profile [65–78]. Individuals afflicted
by metabolic syndrome, a cluster of risk factors for cardiovascular disease, often exhibit
heightened uric acid levels, concurrently linked to occurrences of LVP, TWA, and reduced
HRV [37,55–57]. In certain cases, uric acid crystals may accumulate in diverse tissues,
including the heart, inducing inflammation and tissue injury. Though less common, these
deposits have the potential to influence the heart’s electrical properties [68,71,72]. As
mentioned earlier, it is noteworthy that both the acceleration and deceleration capacity
showed aberrations in individuals with elevated uric acid levels. Particularly, there is a
robust statistical significance observed in the deceleration capacity, while the acceleration
capacity demonstrated a marginally significant association.

In our investigation, noticeable modifications were identified in either the triangular
index or deceleration capacity among patients exhibiting diabetes or hyperuricemia. Im-
portantly, these alterations were not apparent in other frequently employed parameters
delineating Heart Rate Variability (HRV). Given the statistically significant nature of these
identified parameters, which have not been comprehensively explored, we advocate for
forthcoming investigations to systematically scrutinize these parameters. This recommen-
dation is based on the potential of these parameters to serve as early indicators of autonomic
nervous system dysregulation, thereby facilitating timely identification and intervention in
affected individuals.
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Concerning the third comorbidity, respectively, CKD, it has the potential to induce fluid
retention and disturbances in the electrolyte equilibrium, particularly affecting potassium
levels. Variations in potassium levels may disrupt cardiac electrophysiology, leading to
the onset of arrhythmias. CKD is marked by the accumulation of uremic toxins within the
body, resulting in multifaceted consequences for the cardiovascular system [72–74]. These
toxins can stimulate myocardial fibrosis, trigger inflammation, and induce oxidative stress,
collectively impacting the heart’s electrical properties [39,74,75].

Our findings revealed a statistically significant association between CKD and the
parameters of RMSSD, pNN50, and HF in HRV analysis. The elevated values of these
parameters suggest increased parasympathetic activity, indicating a potential prevalence
of vagal (parasympathetic) tone [20,21]. Specifically, RMMSD and pNN50 signify distinct
modifications in the short-term variability of heart rate under the influence of the parasym-
pathetic nervous system. In contrast, high-frequency power is typically associated with
respiratory sinus arrhythmia, reflecting the influence of the vagus nerve on heart rate
dynamics [19,24]. In their investigation, Avula et al. concluded that CKD has the potential
to impact HRV parameters, with statistical significance identified specifically in the case of
SDNN and SDANN [74]. The modification of SDNN and SDANN in their investigation
could be attributed to the elevated representation of individuals in CKD stages IV and V,
characterized by a heightened prevalence of anemia. Such anemia may selectively impact
the overall measure of HRV without exerting a discernible influence on the respiratory
modulation of heart rate. These parameters exhibited statistical significance in the study
conducted by Kida et al. Furthermore, they concluded that altered HRV in patients with
CKD may predict major adverse cardiovascular events [75,76].

As for the last comorbidity, namely obesity, it is intricately linked to chronic low-
grade inflammation, potentially inducing an imbalance in the autonomic nervous system
and correlating with insulin resistance and metabolic syndrome [75–77]. Additionally,
obesity demonstrates a heightened prevalence of obstructive sleep apnea, a condition
acknowledged for its detrimental impact on HRV, LVPs, or TWA [43,44]. The increased
deposition of adipose tissue around the heart can disrupt the conduction system, fostering
an environment conducive to arrhythmias [44]. Moreover, the physical presence of excess
body fat may exert compressive effects on the chest, hindering the heart’s optimal expansion
and contraction, thereby potentially influencing HRV [44,79].

In contrast to previous investigations establishing an association between sympatho-
vagal imbalances and BMI in HF patients, our study revealed a lack of correlation between
BMI and HRV indices [80,81]. Certain limitations inherent to our study design may con-
tribute to this circumstance, including the limited representation of lean individuals in our
cohort. Furthermore, the study relied on BMI as an indicator of obesity without assessing
key factors such as body composition (body fat, muscle, and water composition) or body-fat
distribution. The distribution of adipose tissue, especially regarding visceral adiposity, is
recognized for its potential to yield distinct effects on autonomic function. Notably, central
obesity has been linked to modifications in HRV [44]. Additionally, variations in individual
responses to obesity and its metabolic repercussions are conceivable. The manifestation of
changes in HRV may depend on factors such as genetic predisposition, lifestyle choices, and
overall health status [43,44,76]. However, our investigation aligns with others in observing
a lack of statistical disparity between BMI and HRV, as evidenced in the results by Tacoy
et al. [43]. Yadav et al. further demonstrated that BMI exhibits a tenuous correlation with
cardiac autonomic markers of HRV. However, an elevated waist–hip ratio exhibited a robust
association with diminished cardiac parasympathetic activity and heightened sympathetic
activity in individuals characterized as obese [44]. Therefore, future investigations into
autonomic function should not singularly focus on BMI, but also consider the Waist–Hip
Ratio for a comprehensive assessment.

During our investigation, no statistically significant associations were observed be-
tween TWA or LVP and any comorbidities. This phenomenon may be attributed to diverse
factors. Variations in study outcomes may arise from dissimilarities in patient cohorts, in-
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cluding discrepancies in the duration and severity of underlying comorbidities. Conditions
such as diabetes and CKD are acknowledged for their impact on the autonomic nervous
system, potentially affecting the absence of TWA or LVP [58,73,74]. Additionally, the utiliza-
tion of medications for diverse conditions associated with diabetes, such as beta-blockers,
particularly in HF cases within our cohort, introduces an additional dimension due to their
antiarrhythmic properties, potentially influencing the expression of TWA and LVP [58,79].

In the context of TWA and LVP, the research on the influence of beta blockers is lim-
ited, contrasting with their well-established role in HRV. Beta blockers play a pivotal role
in modulating HRV by antagonizing beta-adrenergic receptors, thereby attenuating the
sympathetic nervous system’s impact on cardiac dynamics. This mechanistic intervention
induces a more uniform and diminished heart rate, resulting in a noticeable reduction
in the amplitude of HRV. The observed phenomenon is explained by the heightened pre-
dominance of the parasympathetic nervous system following beta blocker administration,
tempering the physiological oscillations intrinsic to normal heart rate fluctuations. In our
investigation, the entire patient cohort received beta blocker therapy as a fundamental
component of their therapeutic regimen mandated by the prevailing pathologies charac-
terized by HF [82,83]. Future research inquiries should systematically explore potential
correlations between heart rate variability and nuanced parameters such as beta blocker
dosage and specific beta blocker classifications. This analytical trajectory promises to
provide a comprehensive understanding of the intricate interplay between beta blocker
pharmacotherapy and cardiac autonomic regulation [82].

However, a worse outcome is not solely predicted by diminished heart rate; aug-
menting heart rate variability is also associated with an unfavorable prognosis. While
augmented HRV is commonly regarded as an indicator of autonomic nervous system
adaptability and cardiovascular well-being, its interpretation is nuanced as there are cir-
cumstances wherein increased HRV may not be advantageous and could signify underlying
health issues. This variability in HRV responses can be attributed to various factors, in-
cluding individual variations in normal HRV values influenced by age, fitness levels, and
overall health [84]. For example, instances of heightened sympathetic nervous system
activity or acute stressors may lead to increased HRV, which, in the context of chronic
stress or sympathetic overactivity, may indicate autonomic dysregulation, portraying a
compensatory response suggestive of persistent stress rather than an adaptive state [85].
Moreover, elevated HRV in the presence of specific cardiac arrhythmias or conduction
disorders may reflect increased rhythm variability without necessarily indicating improved
cardiac function. Medical conditions such as cardiac dysautonomia, prevalent in certain
neuropathic conditions or autonomic dysfunction disorders, may manifest as increased
HRV. In metabolic conditions like diabetes or metabolic syndrome, augmented HRV might
be associated with autonomic neuropathy resulting from nerve damage affecting heart
rate regulation. Hyperthyroidism, characterized by excessive thyroid hormone levels, can
contribute to increased HRV, emphasizing the delicate balance between thyroid function
and cardiovascular health. Notably, in athletes undergoing excessive endurance training
or overtraining, heightened HRV may signify physiological stress on the body, potentially
associated with adverse cardiovascular outcomes. Lastly, the age-related decline in HRV is
noteworthy, particularly in older individuals, where increased HRV may not necessarily
align with expectations of cardiovascular advantages [23,84,85].

Despite our obtained results, it is crucial to recognize that several investigations
propose an inverse relationship between the severity of coronary artery disease and HRV.
This suggests that the degree of coronary ischemia may exert a discernible influence on
HRV. Compromised perfusion to the myocardium triggers sympathetic nervous system
activation, resulting in an augmented release of stress mediators, notably, adrenaline. This
sympathoexcitation leads to an elevation in the heart rate and concurrently may contribute
to the attenuation of HRV. Additionally, it is noteworthy that the anatomical localization
of ischemic events within the cardiac milieu may introduce nuanced modulations to
autonomic function, imparting heterogeneity in the relationship between ischemia and
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HRV across distinct cardiac regions [82,83,86]. Prospective investigations involving larger
cohorts should systematically incorporate an evaluation of both the magnitude of ischemic
involvement and the specific anatomical localization of coronary artery disease.

Although our study did not evaluate long-term adverse cardiovascular outcomes,
numerous investigations have established their predictive capacity for significant adverse
cardiovascular events [58,71,77–79]. To address this limitation, we intend to incorporate
data on long-term cardiovascular events and extended follow-up in future investigations.

In considering future prospects, the utilization of Holter ECG monitoring for indi-
viduals with ischemic cardiomyopathy and HF, coupled with emerging comorbidities,
has the potential not only to refine risk stratification, but also to guide early therapeutic
interventions, contributing to an improvement in the overall quality of life. Presently,
there exists no universally accepted risk scoring system specifically tailored for the de-
termination of defibrillator implantation suitability in heart failure patients, and none of
the existing scoring systems incorporate HRV as a primary parameter [87,88]. The LVEF
assumes paramount significance in the decision-making process regarding eligibility for
defibrillator implantation, with LVEF values at or below a commonly accepted threshold
of 35%, signifying an indication for primary prevention. However, the risk assessment
in this context is often characterized by its multifactorial nature. Guidelines extend their
considerations beyond LVEF, incorporating additional variables such as the NYHA func-
tional class, NT-proBNP levels, age, comorbidities, and medication usage. Furthermore, the
underlying etiology of heart failure, whether ischemic or non-ischemic, plays a pivotal role
in prognosis, with ischemic heart disease being potentially associated with a heightened
risk of adverse events [1].

The pre-eminent long-term intervention for averting sudden cardiac death (SCD) in
individuals at high risk is the utilization of an implantable cardioverter defibrillator (ICD).
The efficacy of ICD implementation is contingent upon a thorough risk assessment [1].
Consequently, the decision to implant an ICD should be reserved for individuals demon-
strating a sustained and enduring high risk of SCD, as opposed to those presenting with a
potentially reversible SCD risk. In instances where there is a transient risk for SCD, individ-
uals may be considered suitable candidates for a wearable cardioverter defibrillator (WCD).
The WCD also serves as a viable alternative for individuals awaiting ICD implantation or
those following ICD explanation, such as cases related to infections or endocarditis [89].

A pivotal instrument in risk stratification is the Seattle Heart Failure Model, an ex-
tensively applied prognostic model that assimilates a spectrum of clinical, laboratory,
and medication-related variables. This model elucidates estimates for both one-year and
five-year mortality risks among individuals afflicted by heart failure. Its constituent el-
ements encompass demographic attributes (age, sex), physiological parameters (blood
pressure, heart rate), functional categorization (NYHA functional class), pharmaceutical
interventions, and salient laboratory metrics [90].

Certain contemporary ICDs feature automated algorithms designed to furnish compre-
hensive daily insights into HF conditions. These algorithmic tools contribute to elucidating
the bidirectional causative mechanisms between HF and ventricular arrhythmias, offering
potential in discerning predisposing factors. An illustrative case is found in the Multisensor
Chronic Evaluation in Ambulatory Heart Failure Patients (MultiSENSE) study, where a
novel HF monitoring algorithm, namely the HeartLogic index developed by Boston Sci-
entific, was employed [87,88]. This index amalgamates physiological data derived from
multiple sensors integrated into the ICD platform. The findings of the study demonstrated
that the HeartLogic index serves as a sensitive and timely predictor of imminent HF decom-
pensation. The algorithm amalgamates data from diverse sensors within the implantable
device, capturing heart sounds, thoracic impedance, heart rate variability, the respira-
tion rate, and activity levels. By perpetually monitoring these parameters, HeartLogic
establishes individualized baseline values and scrutinizes deviations to identify patterns
indicative of shifts in the heart failure status [88,91]. Upon detecting noteworthy devia-
tions from baseline values, HeartLogic generates alerts, prompting healthcare providers
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to assess the patient’s condition and adjust treatment strategies accordingly [90,91]. For
enhanced accessibility, many implantable devices featuring HeartLogic support remote
monitoring. This functionality allows healthcare providers to routinely access patient
data without necessitating in-person visits, enabling timely intervention when warranted.
The incorporation of the time-domain analysis of HRV through remote monitoring may
serve to identify patients at an elevated risk of lethal arrhythmic events and predict the
occurrence of such events [91,92]. Despite the ongoing investigation and limited integration
of novel Holter ECG parameters into studies, their inclusion within a comprehensive re-
search framework undoubtedly broadens the landscape of information related to long-term
prognostic assessments.

Limitations of the Study

The primary limitation stems from the study’s single-center design and the relatively
small patient enrollment. However, it is crucial to note the meticulous application of
comprehensive exclusion criteria, aimed at investigating various Holter ECG parameters
while minimizing the impact of concurrent comorbidities. Expanding the study to a larger
patient cohort would facilitate multivariable regression analysis and the development of
a multi-parameter risk stratification score. This pioneering study explores the intricate
interplay between Holter ECG parameters and diverse non-cardiovascular comorbidities,
paving the way for future investigations into additional comorbidities, both cardiac and non-
cardiac. The Holter ECG serves as a commendable instrument for the perpetual monitoring
of cardiac activity; nevertheless, its routine application encounters pragmatic constraints,
especially in the analysis of specific parameters, as explicated earlier. Mitigating these
limitations may necessitate advancements in technological infrastructure, the refinement of
healthcare professional training, or the innovation of more user-accessible analytical tools.
Notably, patients with HFpEF were not included, warranting exploration in future studies.
The statistical methodology considered variables like BMI, uric acid, HbA1c, and GFR in
examining correlations between comorbidities and Holter ECG parameters. Future research
should employ more sophisticated statistical models, incorporating potential confounding
factors like NTproBNP and LVEF. While the assessment of the ejection fraction is crucial for
prospective investigations, our study did not find statistical significance in the comparison
of groups based on each comorbidity, particularly regarding LVEF. An additional limitation
is the omission of considerations regarding the duration of patients’ diabetes mellitus
and the potential development of complications, such as diabetic cardiomyopathy. It is
essential to highlight that our study cohort, primarily consisting of chronic heart failure
patients, encompasses various disease stages, introducing heterogeneity that should be
considered in future investigations. Lastly, the application of heart failure algorithms within
defibrillators, notwithstanding the inclusion of robust parameters, has exhibited variable
success in substantiating enhanced survival among patients afflicted with heart failure
across diverse clinical trials. This underscores the imperativeness for additional research
endeavors aimed at comprehending the intricate determinants that influence the efficacy
of these algorithms, with a view to potentially refining their design or implementation
strategies [87,88].

5. Conclusions

Our investigation aimed to extend the clinical applicability of Holter ECG beyond pa-
tients with ischemic cardiomyopathy to those with heart failure and diverse comorbidities,
positioning it as a diagnostic and prospective prognostic tool. Less-utilized Holter ECG
parameters, including the triangular index and the acceleration and deceleration capacity,
exhibited significant diagnostic utility, particularly when conventional HRV parameters
were within normal ranges.

Notably, obesity showed no discernible association with clinically modifiable ECG
parameters, emphasizing the potential significance of measuring the waist–hip ratio over
BMI in understanding cardiovascular implications. Furthermore, specific non-cardiac
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comorbidities, such as diabetes, hyperuricemia, CKD, or obesity, did not affect TWA and
LVP in HF individuals. This suggests a potential influence of HF medications on these
parameters, warranting further investigation.

These findings underscore the importance of non-traditional Holter ECG parameters
in risk stratification for patients with various non-cardiac comorbidities, suggesting a
transformative approach in incorporating these parameters as prognostic tools for diverse
patient populations. However, comprehensive multicenter studies are essential to validate
the long-term prognostic implications.

Author Contributions: Conceptualization, S, .-T.D.; methodology, S, .-T.D., A.-D.C. and I.-I.C.-E.;
software, D.R.P. and R.S, .M.; formal analysis, S, .-T.D., D.R.P. and R.S, .M.; validation, I.-I.C.-E., I.-L.S, .
and I.-L.S, .; investigation, S, .-T.D., A.-D.C., R.-G.C. and I.T.; data curation, S, .-T.D., O.M. and M.-R.C.;
writing—original draft preparation, S, .-T.D., A.C., O.M. and B.D.; writing—review and editing, I.-I.C.-
E., I.A. and M.C.B.; visualization, I.-I.C.-E. and I.-L.S, .; supervision, I.-I.C.-E. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The extensive inquiry obtained formal endorsement from
the Ethics Committees associated with the Grigore T. Popa University of Medicine and Pharmacy
(Approval No. 185/12 May2022) and the Emergency Clinical Hospital St. Spiridon (Approval No.
47/14 April 2022). All investigative procedures adhered to the ethical principles outlined in the 1975
Declaration of Helsinki, as revised in 2013.

Informed Consent Statement: All participants provided written informed consent to partake in the
study and to permit the publication of the findings in this paper.

Data Availability Statement: The data presented in this study are available within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.;
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