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Abstract: Breast cancer has become the most diagnosed cancer in women globally, with 2.3 million
new diagnoses each year. Accurate early staging is essential for improving survival rates with
metastatic spread from loco regional to distant metastasis, decreasing mortality rates by 50%. Current
guidelines do not advice the routine use of positron emission tomography (PET)-computed tomogra-
phy (CT) in the staging of early breast cancer in the absence of symptoms. However, there is a growing
body of evidence to suggest that the use of PET-CT in this early stage can benefit the patient by
improving staging and as a result treatment and outcomes, as well as psychological burden, without
increasing costs to the health service. Ongoing research in PET radiomics and artificial intelligence is
showing promising future prospects in its use in diagnosis, staging, prognostication, and assessment
of responses to the treatment of breast cancer. Furthermore, ongoing research to address current
limitations of PET-CT by improving techniques and tracers is encouraging. In this narrative review,
we aim to evaluate the current evidence of the usefulness of PET-CT in the management of breast
cancer in different settings along with its future prospects, including the use of artificial intelligence
(AI), radiomics, and novel tracers.
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1. Introduction

Breast cancer is the most diagnosed cancer in women worldwide [1]. Furthermore,
there are 685,000 related deaths yearly, making it the fifth leading cause of mortality
worldwide [1]. The heterogeneous nature of the disease, with differing subtypes, increases
the complexity of the disease; however, the combination of early detection programmes
with improvements in the accuracy of staging and imaging techniques has increased the
survival rates for breast cancer patients by enabling improved planning and treatment
options compared to when surgery was the primary method of treatment [2]. At present,
the five-year survival rate for women diagnosed within the UK is 85% when diagnosed at
an early stage; however, this decreases to 26.6% when diagnosed at stage IV [3]. Thus, it is
important to stage the patients accurately to ensure the best possible patient outcomes. The
literature suggests that approximately 2–10% of breast cancers will be metastatic in nature
at the time of diagnosis, with clear signs and symptoms permitting accurate diagnosis and
treatment [4]. It is suggested that only 5–7% newly diagnosed breast cancer have occult
metastasis [5–7]. In early breast cancer (T1 to T2), the incidence of distant metastases is <2%
in comparison to more advanced tumours (T3 and T4) where it is as high as 15–20% [8–10].
Hence, the general consensus in most of the national and international guidelines, such as
the National Institute for Care Excellence, the National Comprehensive Cancer Network
(NCCN 2023), and the European Society for Medical Oncology (ESMO2023), is not to use
routine staging to diagnose occult distant metastasis in early breast cancer patients without
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any specific symptoms [10–12]. There is a lack of a generalised consensus on indications as
well as the type of staging investigations used in breast cancer management. Most centres
use computed tomography (CT) of the thorax, abdomen, and pelvis, with a combination of
other modalities such as magnetic resonance imaging (MRI) or bone scans. Currently, there
are limited data on the usefulness of functional imaging modalities such as PET-CT scans
as staging investigations in early and locally advanced breast cancer [13]. Current NCCN
guidelines suggest that PET-CT may be helpful when standard imaging is equivocal and
suggest that it may also be helpful in identifying unsuspected regional nodal disease or
distant metastases when used in addition to standard tests. However, the guideline is not
advisings its use in stages I and II and operable stage III breast cancer, as there is a high false-
negative rate for the detection of subcentimetre lesions and low-grade disease and false
positives in patients without locally advanced disease [11]. Its use in patients with stage
III disease or when performing standard staging yields suspicious results, suggesting its
main benefits lie in identifying unsuspected regional nodal disease and distant metastasis
in locally advanced disease alongside standard staging [11]. However, there is increasing
evidence for the usefulness of PET-CT in early-stage breast cancer [14,15]. Survival rates
are 76–99% for locoregional metastases versus 20–28% for distant metastases, showing a
decrease of 50% and therefore proving the importance of the accurate staging and early
detection of cancer in increasing treatment options [1].

In addition to accurate staging, it is also important to assess tumour response to
systemic treatment, which permits appropriate surgical treatment planning for breast
cancer patients. Various studies have evaluated the role of PET-CT in assessing tumour
response in order to tailor treatment options. Currently, the characterisation of tumour
biology is dependent on invasive procedures such as tissue biopsy. However, sampling a
lesion may not truly represent whole-tumour heterogeneity and it is almost impractical
to carry out biopsies of every lesion, especially in the metastatic setting, to aid treatment
planning. Radiomics is a rapidly evolving field of medical image analysis involving the
extraction of quantitative metrics hidden within the pixels of medical images and routinely
not visible to the human eye and studies have evaluated radiomic data from PET-CT in
various settings. Likewise, artificial intelligence, which includes machine learning and
deep learning, is also rapidly changing the scope of medical imaging.

In this narrative review, we aim to evaluate the current evidence of the useful-
ness of PET-CT in the management of breast cancer in different settings, along with its
future prospects.

2. Materials and Methods

The authors searched the MEDLINE and Pubmed databases for published peer-
reviewed literature using the relevant MeSH terms of “PET-CT” OR “FDG-PET” AND
“breast cancer” OR “breast” AND “radiomics” OR “artificial intelligence”. Articles pub-
lished in English language were reviewed. Various levels of evidence were reviewed, such
as randomised control trials, cohort studies, and case control studies.

3. Results and Discussions
3.1. PET-CT in Primary Cancer Diagnosis

PET-CT is not a routinely used form of imaging in the detection of primary breast
cancer. This is due to the high rate of false-negative results, especially with lesions less than
1 cm in size and with low-grade tumours [16]. Another major limiting factor is the higher
cost involved with PET-CT. The sensitivity and specificity of PET-CT for the diagnosis of
breast cancer is variable in different study settings and ranges from 48–96 and 73–100%,
respectively [17]. Grueneisen et al., compared MRI, PET-CT, and PET-MRI in breast cancer
patients. PET-MRI and MRI showed higher accuracy in identifying the tumour size than
PET-CT (82%, 82% and 68%, respectively). This study also showed that both PET-MRI and
MRI showed higher accuracy in detecting multifocal and multicentric breast cancer than
PET-CT (89%, 89%, and 56%, respectively) [18].
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In spite of the limited role of PET-CT in establishing the diagnosis of breast cancer,
studies have suggested that PET-CT can provide useful histopathological features of cancer,
which may have some important influence on planned treatment. Some studies have
suggested a positive correlation between FDG uptake, Ki 67 level, and oestrogen receptor
(ER) and progesterone receptor (PR) status [19]. In a retrospective study of 548 patients by
Koo et al., it was identified that triple-negative and HER2-positive tumours had 1.67-fold
(p < 0.001) and 1.27-fold (p = 0.009) higher SUVmax (standardised uptake value) values,
respectively, than luminal A tumours after adjustment for invasive tumour size, lymph
node involvement status, and histologic grade on multivariate analysis [20]. Hogan et al.,
evaluated the usefulness of PET-CT in invasive lobular cancers (ILCs) as these cancers are
more difficult to detect than invasive ductal cancers (IDCs) on imaging with a mammogram,
ultrasound, and MRI [21,22]. Furthermore, many studies have shown that the ILCs have
lower standardised uptake values in comparison with IDCs [23,24]. Hence, metastasis from
ILCs may be less appreciable in comparison to metastasis from IDCs [25]. Hogan et al., in a
study of 146 ILC patients showed that FDG PET is more likely to identify asymptomatic,
clinically occult distant metastasis in stage III IDC than in stage III ILC [21].

3.2. PET-CT in Breast Cancer Staging

The current literature has very limited evidence in terms of assessing the clinical
usefulness of PET-CT in breast cancer staging and most of the studies evaluating the role of
PET are retrospective in nature with limited numbers of patients.

As many studies have shown that the yield of any staging investigation to diagnose
asymptomatic distal metastasis in early-stage breast cancer is very low, the current con-
sensus only advises the use of PET-CT when conventional imaging is equivocal and the
patient has stage IIIB breast cancer [11]. However, in a study of 225 patients, Niikura et al.,
showed that FDG PET-CT has 97.4% sensitivity and 91.2% specificity compared with the
85.9% sensitivity and 67.3% specificity of conventional techniques, including CT, US, and
bone scanning, in detecting distant metastases [14]. It is important to note that in this study
a good proportion of patients were found to have stage I to stage IIIB breast cancer (41.3%).
In another study, Riedl et al., reviewed 134 patients under the age of 40 who underwent
FDG PET-CT for staging and found that FDG PET-CT identified unexpected extra-axillary
regional nodal and distant metastases in 21% of patients, including 15 patients (11%) show-
ing extra-axillary lymph nodal disease, 20 (15%) showing distant metastases, and 7 cases
showing both [15]. It is interesting to see that a significant proportion of these patients had
disease stages outside the current guideline recommendations (15% with stage I, 33% with
stage IIA, 35% with stage IIB and 17% with stage III) [15].

Bone metastasis is one of the most common types of metastasis in breast cancer. Bone
metastasis can be lytic, sclerotic, mixed, or intramedullary, without obvious bone changes [13,26].
FDG-PET is better than bone scanning in identifying lytic and intramedullary metastases,
although FDG-PET is less efficient in identifying sclerotic bone metastases. However, these
non-avid lesions are often identified in the CT component of FDG-PET scans [27,28].

FDG PET-CT had a sensitivity and negative predictive value of 100% in comparison
to a sensitivity of 92% and negative predictive value of 83% obtained with conventional
imaging in terms of excluding local recurrence or distant metastases in a study of 77 PET-CT
scans in 39 breast cancer patients [28]. The same study showed that PET-CT had a specificity
of 76.9% and positive predictive value of 89%, which was comparable to conventional CT,
with its specificity of 76.9% and positive predictive value of 88% [28].

3.3. PET-CT and Lymph Node Metastases

Currently, the most common image modality used to assess lymph nodes remains US
of axilla with a biopsy of abnormal-looking lymph nodes in the preoperative workup of
early breast cancer patients. In clinically node-negative patients, a sentinel lymph node
biopsy remains the gold standard in terms of staging axilla accurately. Davidson et al., in
a study of 324 women with breast cancer demonstrated that FDG PET-CT had a positive
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predictive value for detecting metastases in axillary lymph nodes of 85.5% and a negative
predictive value of 72.9% [29]. Zhang et al., in their meta-analysis of 11 studies showed that
FDG PET-CT and MRI had similar sensitivity and specificity in identifying axillary lymph
node metastases. The sensitivity of FDG PET-CT ranged from 37 to 90% and specificity
ranged from 80 to 100%. Likewise, MRI had a sensitivity range of 40–100% and specificity
range of 73–100%. Hence, in the meta-analysis, both FDG PET-CT and MRI had high
specificity for axillary lymph node metastases [30]. Zhang et al., suggest that, because of the
higher specificity of FDG PET-CT and MRI, these methods can potentially replace sentinel
lymph node biopsy in some breast cancer patients. Kutluturk et al., suggested that the
accuracy of FDG PET-CT for detecting axillary lymph node metastases is higher with larger
tumour sizes [31]. On the contrary, Kim et al., in their series of 262 patients, found that the
sensitivity, specificity, and positive and negative predictive values of FDG PET-CT were
higher in the subset of patients under the age of 75 years with a tumour size of <15 mm [32].
Parisse-Di Martino et al., reviewed a subset of patients with discordant results with an
ultrasound scan and FDG PET-CT to assess axillary lymph nodes from a larger series of
560 breast cancer patients. They found that more than half of the patients in this group with
PET-CT displayed axillary lymph node metastases, but with normal ultrasound scanning
had an axillary lymph node size of <1 cm [33]. Further, in a recent retrospective study by
Kong and Choi (2021), 221 preoperative patients who underwent SLNB and axillary lymph
node dissection (ALND) had their FDG PET-CT imaging, histology, and follow-up findings
reviewed. The researchers found a positive predictive value of 100% for FDG PET-CT and
an ability to detect lymph node involvement with 70% sensitivity [34]. The suggested
reasons for false-positive results obtained on PET-CT are previous biopsy, other tumours
such as lymphoma, infective and inflammatory conditions, and vaccines [35]. Considering
the expense and radiation dose associated with PET-CT, US remains the modality of choice
at present for assessing axillary lymph nodes.

Another recent study by Yararbas et al., showed a significant rate of upstaging based
on the identification of extra-axillary regional lymph nodes and distant metastases and
it was shown that 18.6% of patients with stage IIA, 30% with stage II B, and 46.3% with
stage IIIA breast cancer had upstaging after FDG PET-CT [36]. Ko et al., in another study of
195 breast cancer patients with stage II A to stage IIIC disease showed an overall upstaging
rate for regional nodal metastases and/or distant metastases of 37% after FDG PET-CT.
This included an upstaging of 24% in stage II A, 39% in stage II B, 54% in stage IIIA, 27% in
stage IIIB, and 37% in stage IIIC [37]. Seo et al., showed (retrospective study of 249 patients)
that FDG PET-CT had a higher positive predictive value (PPV) of 87.1% in diagnosing
internal mammary chain lymph node metastasis in stage III cancer [38].

3.4. PET-CT and Distant Metastases

The significant benefits of PET-CT are shown in detecting distant metastases. A recent
prospective study by Vogsen et al. (2021) found that of the 103 patients enrolled, 23% were
diagnosed with distant metastases via [18F] FDG-PET-CT. This resulted in surgery being
omitted in 18 cases, with 16 patients being upstaged and receiving a subsequent change in
treatment. Thus, a sensitivity of 100% and specificity of 95% were demonstrated [39]. This
is reflective of the study of Ko et al. (2020), which found that 37% of patients with clinical-
stage breast cancer IIA-IIIC who underwent FDG PET-CT had more extensive disease [37].
This included 23% with regional lymph node metastases and 14% with distant metastases,
which resulted in a direct upstaging and change of treatment. Bone metastasis is one of
the common types of distant metastasis in breast cancer. PET-CT may help to identify
focal areas of FDG uptake much earlier than bone scintigraphy. Hansen et al., analysed
lesion-based sensitivity of FDG PET-CT, low-dose CT and bone scintigraphy and showed
that lesion-based sensitivity was 98.2% and 98.8% for early and delayed FDG PET-CT,
respectively, compared with 79.9% for low-dose CT and 76% for bone scanning and 98.6%
for combined low-dose CT and bone scanning [40]. In this study, only 51.2% of osteolytic
metastases were detected via bone scanning. In another retrospective study of 198 patients,
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PET-CT showed higher accuracy than CT for detection of bone metastases, demonstrating
increased metabolic activity prior to structural changes [41]. Another meta-analysis by
Rong et al., consisting of 668 patients in 7 studies shown that PET-CT has a sensitivity of
0.93 and specificity of 0.99 in detecting bone metastases in comparison to a sensitivity of
0.81 and specificity of 0.98 for bone scintigraphy [42].

3.5. PET-CT and Prognosis

With the current era of personalised and tailored treatment, prognostic evaluation of
breast cancer is important in planning the appropriate management. Many studies have
shown that FDG uptake positively correlates with aggressive tumour behaviour and poor
prognosis [43,44]. Baba S et al., showed that higher uptake was associated with larger
tumours, higher nuclear grade, and triple-negative receptor status [43]. Meta-analysis by
Diao et al., of 3574 patients in 15 studies for event-free survival found that patients with
higher primary standardised uptake values (SUVmax) showed a poorer survival prognosis,
with a pooled HR of 1.96 [45]. Kitajima et al., assessed the relationship between FDG-PET
findings and immune microenvironment in breast cancer in a series of 502 patients and
found that high SUVmax was related to shorter recurrence-free survival (RFS) than those
with low SUVmax in low tumour-infiltration lymphocytes (TIL)patient group. [46].

3.6. PET-CT and Treatment Response

The ability to predict responses to neoadjuvant therapy and to identify non-responders
early in the treatment would be of great clinical utility in breast cancer management.
Currently there is no single gold-standard tool available in our clinical practice. However, a
number of studies have shown encouraging results for PET-CT in predicting the response to
neoadjuvant systemic therapy. Factors such as higher baseline glycolytic activity and bigger
reduction in SUVmax after initial cycles of chemotherapy suggest a pathological response
after neoadjuvant chemotherapy [47]. Han S et al., in a recent meta-analysis of 1630 patients
in 21 studies showed that a pooled hazard ratio of metabolic responses on disease-free
survival was 0.21 for interim PET scans and 0.31 for post-treatment PET scan [48]. The same
meta-analysis demonstrated that pooled HRs for interim and post-treatment PET regarding
the influence of metabolic responses on overall survival were 0.20 and 0.26, respectively.
This suggests that use of PET-CT for the evaluation of response to NAC provides significant
predictive value for disease recurrence and survival.

3.7. PET-CT and Disease Recurrence

A meta-analysis of 1752 patients in 26 studies with suspicious recurrence of breast
cancer by Xiao et al., showed that the pooled sensitivity, specificity, positive likelihood
ratio, negative likelihood ratio, and diagnostic odds ratio of FDG PET-CT were 0.90, 0.81,
4.64, 0.12, and 46.52, respectively, and concluded that FDG PET-CT is valuable in detecting
cancer relapse. In this meta-analysis, recurrence was suspected because of the elevation
of tumour markers (56.8%), suspicion when undergoing conventional imaging modalities
(33.9%), and suggestive clinical symptoms or physical examinations (9.4%) [49]. Another
study by Hildebrandt et al., showed that, in 100 patients with suspected recurrence, the area
under the receiver operating curve for distant recurrence was 0.99 for FDG PET-CT, 0.84
for contrast-enhanced CT, and 0.86 for the combination of contrast-enhanced CT and bone
scintigraphy [50]. Vogsen et al., in a prospective study of 225 patients with suspected breast
cancer recurrence, showed that the sensitivity, specificity, and AUC-ROC for diagnosing
distant metastases via PET-CT were 1.00, 0.88, and 0.98, respectively [51].

Rising tumour markers during post treatment surveillance is a challenging situation
to identify breast cancer recurrence. Dong Y et al., in a retrospective study showed that
FDG PET-CT was more sensitive in terms of detecting the malignant foci and had better
patient-based sensitivity and specificity (95% and 71.4%, respectively) when compared
with the sensitivity and specificity of conventional imaging techniques (78.9% and 57.1%)
in this setting [52]. Corso et al., retrospectively reviewed 561 breast cancer patients who
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underwent surgery with curative intent and had raised tumour markers and they found
the increased tumour marker levels detected in asymptomatic patients during adjuvant
therapies and follow-up to be significantly predictive of distant metastases identified using
FDG PET-CT [53].

3.8. Impact of Indeterminate Lesions on PET-CT

Even though the accurate staging of breast cancer helps to plan and tailor treatment
appropriately, there is variation in diagnostic accuracy for different imaging modalities.
FDG PET-CT may have higher accuracy in terms of diagnosing distant metastases than
conventional imaging modalities, but it is not completely free from false results. Incidental
findings may generate additional tests, causing potential delay in treatment and more
importantly anxiety in patients [54]. Vogsen et al., reviewed 225 eligible patients with
suspicious cancer recurrence where FDG PET-CT was carried out. In this study, indications
for PET-CT were local recurrence in 20% of patients and clinical symptoms in 80% patients.
FDG PET-CT was positive for metastases in 32% and negative in 68% patients. A biopsy
confirmed metastases in 72.2% of patients with positive FDG PET-CT. Interestingly, 18/225
(8%) patients showed non-breast malignancy on FDG PET-CT [48]. This was similar
to the rate of non-breast malignancies identified in other studies [54–58]. FDG-PET-CT
provided a high posterior probability of positive test, and a negative test was able to
rule out distant metastases in women with clinically suspected recurrent breast cancer.
Furthermore, one-fifth of patients examined for incidental findings detected at FDG-PET-CT
were diagnosed with clinically relevant conditions. Further examinations of false-positive
incidental findings in one of six women should be weighed against the high accuracy for
diagnosing metastatic breast cancer [51].

3.9. PET-CT and Cost Effectiveness

Ko et al., in their study of 195 patients with stage IIA-IIIC breast cancer, compared
the cost implications and radiation exposure associated with FDG PET-CT against those
with CT of chest, abdomen, and pelvis with bone scan. They found that the costs for
both were comparable and with reduced radiation exposure associated with PET-CT [37].
Another recent study by Hyland et al., 564 patients with stage II-III breast cancer data were
reviewed to compare the cost implications of staging procedures and concluded that FDG
PET-CT reduced false-positive risk by half (22.1% vs. 11.1%) and decreased the workup of
incidental findings, allowing for an earlier treatment start, and also found that PET-CT was
cost-effective and may be cost-saving in some settings [59].

3.10. PET-CT and Future Prospects

The usefulness of PET-CT in breast cancer is mainly limited due to lower sensitivity
in terms of identifying smaller tumours of less than 1 cm and low uptake in lower-grade
cancers. Studies are evaluating various techniques as well as testing a range of tracers
to improve the limitations associated with PET-CT. One of the improved techniques is
using total-body PET scanners, which come with ultrahigh sensitivity. This allows them
to provide comparable images with significantly lower activity due to a higher signal-to-
noise (SNR) ratio. Total-body PET will enable higher sensitivity (up to 68 times higher
than PET-CT) and will yield a higher SNR value and allow for a 40-fold reduction in
radioactivity dose [60]. It is also reported that total-body PET scans reduce the imaging
time by a factor of 24 [60]. Shorter acquisition time also results in less movement-induced
blurring. Total-body scanners also address another limitation of PET-CT in identifying
smaller lesions, as they are associated with ultrahigh sensitivity, good spatial resolution,
and long scan range. Furthermore, the novel, four-dimensional (4D) dynamic whole-body
PET acquisition method improves tumour characterisation [61]. Another advantage of
a total-body scanner is the 10-fold reduction in the file size of raw PET data, permitting
faster data processing, reconstruction, and transport [62]. A longer acquisition delay
permits researchers to carry out scans at later time points after tracer injection and this
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may be helpful in identifying smaller lesions and cancers with low avidity. Another major
advantage of total-body scanners is their ability to differentiate between residual disease
and post-therapy changes. Another important development to address limitations of PET
based imaging is to implement multi-tracer PET studies using cocktail injections where
two radiopharmaceuticals are injected prior to a single PET acquisition [63]. Sodium
fluoride (NaF) reflects osteoblastic activity with high potential for detecting osteoblastic
metastases when combined with FDG. New PET tracers such as 89Zr-trastuzumab and 89Zr-
pertuzumab were developed for measuring Her2 expression in the primary and metastatic
lesions non-invasively [64].

3.10.1. Artificial Intelligence and PET-CT Radiomics

With the paradigm shift towards personalised medicine, the identification of reliable
and non-invasive biomarkers able to predict tumour heterogeneity is pivotal in improving
patient treatment. At present, tumour biology is deciphered using invasive procedures
such as biopsy, which has limitations. Biopsy results from one lesion or one part of the
lesion may not necessarily represent the whole-tumour heterogeneity [65,66]. Another
limitation of using invasive biopsy to identify tumour biology is the inability to sample all
suspicious distant metastatic lesions in order to identify any clonal difference. Radiomics is
an emerging technique in the field of medical image analysis and is used to assess tumour
biology non-invasively by identifying mineable variables hidden in the pixels of images
not routinely visualised by the human eye (Figure 1). This helps to avoid the requirement
multiple and repeated biopsies to aid treatment planning in breast cancer [67–69].
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Current research into artificial intelligence (AI) and radiomics in the area of PET-CT
and other areas of medical imaging focuses on the interpretation of images for diagnosis
and staging, a task which, when traditionally conducted by humans, it is known to be
time-consuming and subject to observer variability [70].

With the current development of artificial intelligence, the development of algorithms,
tools and applications is rapidly evolving in the field of nuclear medicine [71]. A study by
Yoon et al., carried out a texture-based analysis of intratumoural metabolic heterogeneity to
identify the presence of invasive components in a retrospective analysis of 65 patients with
ductal carcinoma in situ (DCIS) who underwent FDG PET-CT. They found that a lower
area under the curve (AUC) of cumulative SUV histograms, a parameter reflecting higher
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intratumoural heterogeneity, was associated with the underestimation of invasive disease
and suggested sentinel lymph node biopsy in this subset of patients [72]. A number of
studies have already analysed a range of radiomic parameters to predict tumour biology
with variable results [73–78]. Several studies have evaluated the potential use of PET-
generated radiomic features and artificial intelligence to predict the response to neoadjuvant
chemotherapy with varying degrees of success [74,76,79]. Song and colleagues proposed
a machine learning (ML)-based radiomic model, developed by analysing FDG PET-CT,
with a view to predicting axillary lymph node metastases in a study of 100 patients with
invasive ductal breast cancer and demonstrated that the model showed 90.9% sensitivity,
71.4% specificity, and 80% accuracy in the preoperative detection of axillary lymph node
metastases [80]. Another potential area where AI and PET radiomics will be useful is in
assessing treatment response, especially in patients with multiple metastases. The manual
segmentation of all metastatic lesions is time-consuming. Moreau and colleagues showed
very promising results in this field by training two deep learning models to automatically
segment metastatic lesions on the baseline and follow up PET-CT in 60 patients with 87%
sensitivity and 87% specificity in terms of assessing treatment response [81]. Huang et al.,
and Ha et al., applied AI to FDG PET to obtain prognostic data and showed the good
correlation of radiomic variables and tumour molecular subtypes, immunohistochemistry,
and relapse-free survival [74,82].

Dedicated breast PET (dbPET) provides high-resolution molecular imaging acquired
from uncompressed breast tissue using a high-resolution full-ring dedicated breast tomo-
graph and a study by Satoh et al., showed that a deep learning model had been trained
to 93% sensitivity and specificity in comprehending breast cancer and non-breast cancer
in 160 breasts, compared with 77–89% sensitivity and 79–100% specificity obtained from
two expert radiologists [83]. PET radiomics has the potential to improve diagnosis, staging,
pathological characterisation, treatment response assessment, and prognostication in breast
cancer patients [84].

3.10.2. Novel Tracers in PET-CT

Breast cancer is a very heterogeneous disease and a number of biomarkers such as
oestrogen receptor (ER), progesterone receptor (PR), Human Epidermal Growth Factor
Receptor 2 (Her2) and Ki-67 do have influence on ideal treatment options and progno-
sis. There are a several limitations with the current means of assessment of histological
characteristics and biomarkers based on invasive biopsy techniques. It is not always possi-
ble or practical to identify the receptor status of the disease, especially when the lesions
are difficult to biopsy in the metastatic setting. It is also not uncommon to see that the
receptor status of secondary lesions may be different from that of the primary tumour
and it is not feasible to biopsy every new lesion that appears. A number of studies have
tried using receptor-specific nuclear imaging techniques to assess tumour characteristics
non-invasively.

2-[18F]-fluoro-2-deoxy-D-glucose ([18F]F-FDG) represents the most widely used radio-
pharmaceutical for PET imaging to date. Glucose metabolism is increased in breast cancer
cells compared with normal cells due to increased glycolysis (Warburg effect). However,
this technique has a number of limitations such as difficulty in appropriate interpretation
in small tumours because of the low spatial resolution of PET tomographs, the partial
volume effect, and the low sensitivity for certain tumour types due to low avidity [85].
Furthermore, [18F]F-FDG is not a specific radiotracer for cancer cells and other conditions
such as infection, inflammation, benign lumps, and fibrocystic changes can also lead to
false-positive results.

In breast cancer, increased protein synthesis is associated with increased amino acid
consumption and the overexpression of amino acid transporters in the cell membrane. L-
methyl-[11C]-methionine ([11C]C-MET) represents one of the first radiolabeled amino acids
used for the assessment of amino acid metabolism in oncologic PET imaging. Studies have
shown that [11C]C-MET uptake was reduced in responsive lesions, while it was unchanged
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or even increased in patients with progressing disease and hence may have a role in
assessing treatment responses in breast cancer patients [86]. Other [18F]-labeled amino
acids such as Anti-1-amino-3-[18F]-fluorocyclo-butane-1-carboxylic acid ([18F]-fluciclovine
or [18F]F-FACBC) is also useful in breast cancer patients. Interestingly, two different studies
showed that [18F]F-FACBC avidity is higher than [18F]FFDG avidity in invasive lobular
cancer and equal to [18F]F-FDG avidity in invasive ductal cancer [87,88].

The presence of hypoxia in many tumor types, including breast cancer, has been shown
to induce resistance to both chemotherapy and radiation therapy, representing a negative
prognostic factor. Radiolabeled nitroimidazoles represent the most widely developed
hypoxia probe for PET imaging in oncology [86].

[18F]-labeled estradiol is used for in vivo assessment of oestrogen receptor status in
both primary and metastatic lesions. Meta-analysis by Kurland et al., demonstrated that
[18F]F-FES non-invasively characterizes the ER ligand binding function in breast cancer
lesions with a sensitivity of 0.81 (0.73–0.87) and a specificity of 0.86 (0.68–0.94) compared to
the histological standard of reference [89]. The main disadvantages of [18F]F-FES include
high uptake in the liver, making it difficult to assess liver metastasis, and rapid blood
clearance, which can lead to lower tumoral uptake.

[89Zr]Zr-trastuzumab is a PET imaging radiopharmaceutical technique capable of
qualitatively and quantitatively assessing HER2 expression in both primary and metastatic
lesions in breast cancer patients. Long half-life of [89Zr] can lead to increased radiation
exposure. Recent studies have shown that [89Zr]Zr-trastuzumab PET-CT supports clinical
decision making when HER2 status cannot be determined by biopsy [90]. [64Cu]Cu-DOTA-
trastuzumab is another tracer for the Her2 marker but with shorter half-life and reduced
radiation exposure.

With the increasing use of immunotherapy with immune-check point inhibitors in
certain subsets of breast cancers such as triple-negative breast cancer, it is important
to identify new biomarkers that can predict response and resistance to immunotherapy.
New PET tracers targeting immune checkpoint proteins such as [89Zr]Zr-atezolizumab are
currently under evaluation in this setting [91].

4. Conclusions

There is a growing body of evidence to support the clinical usefulness of PET-CT
in early and locally advanced breast cancer. Accurate staging information and tumour
characterisation are important in tailoring appropriate treatment for breast cancer patients.
The limited studies assessing the cost evaluation suggest that PET-CT is cost effective as a
staging modality. Furthermore, ongoing research in PET imaging techniques and tracers to
address the current limitations of PET CT is encouraging. Ongoing research in the field of
PET derived radiomics, artificial intelligence, and new tracers is very promising, especially
in tumour characterisation, evaluating lymph node status, and predicting responses to
neoadjuvant chemotherapy. At present, PET radiomic studies are still non-standardised,
lack reproducibility, and need further validation. Larger prospective studies are needed
to confirm the clinical utility and effectiveness of PET imaging in diagnosis, staging,
pathological characterisation, prognostication, as well as treatment response assessment
in future.
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