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Abstract: Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major
concern in Jordanian hospitals in terms of infection control. The purpose of this study was to identify
the resistance patterns of Staphylococcus aureus strains isolated from surfaces of critical locations
within the Al-Karak Governmental Hospital in 2019. Additionally, the study aimed to conduct whole-
genome sequencing on the isolates. Materials and Methods: In February 2019, fourteen S. aureus strains
were isolated from surfaces in critical sites in the Al-Karak Governmental Hospital. These isolates
underwent antibiogram testing to determine their resistance profile. Genome sequencing using
the Illumina MiSeq platform was applied to the extracted DNA from these isolates. The genomic
data, including coding sequences, were analyzed to identify lineage, resistance genes, and plasmids.
Results: The antibiogram results revealed that 11 of the 14 isolates were resistant to oxacillin, 6 to
linezolid, and 1 to rifampicin, while none showed resistance to chloramphenicol. Eleven isolates were
identified as MRSA, with a novel spa type (t4407) not previously reported in Jordan. High-quality
sequencing data were obtained for only one isolate, i.e., A29, the genome showed 2,789,641 bp with a
32.7% GC content and contained 2650 coding sequences. Genomic analysis indicated the ST6 lineage,
mecA gene (SCCmec type IVa(2B)), and a hybrid plasmid (pJOR_blaZ) carrying the blaZ gene for
β-lactam resistance. Genomic data were deposited in NCBI (CP104989). The A29 genome closely
resembled an MRSA genome isolated from a Danish hospital in 2011. The SNP analysis revealed
identical antimicrobial resistance genes in these two genomes. Conclusions: This study unveils the
first genomic sequence of an MRSA isolate from Jordan, marked by distinctive genotypic traits. The
findings enhance our understanding of the MRSA types circulating in Jordan and the region and
substantiate the phenomenon of intercontinental MRSA transmission.
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1. Introduction

Staphylococcus aureus, a Gram-positive bacterium that primarily infects humans and
animals, can cause minor skin diseases such as scalded skin, impetigo, boils, pimples, and
abscesses [1]. It also causes fatal diseases such as endocarditis, bacteremia, meningitis,
pneumonia, and sepsis [1]. Methicillin-resistant S. aureus (MRSA) is a growing global
health threat and was recognized by the WHO as a priority 2 ‘high’ pathogen on its first
list of priority pathogens [2]. In the United States, in 2017, MRSA was estimated to cause
323,700 infections in hospitalized patients with 10,600 estimated deaths and USD 1.7 billion
as an estimate of the healthcare cost [3]. MRSA is also among ESKAPE pathogens that can
spread antimicrobial resistance genes through horizontal gene transfer (HGT) via mobile
genetic elements (MGEs) [4]. One of the most important examples of MGEs in MRSA is the
Staphylococcal cassette chromosome (SCCmec) carrying the mec gene (mecA, mecB, and mecC)
that encodes a specific penicillin-binding protein (PBP2a) leading to the β-lactam resistance,
and site-specific recombinase genes ccrAB or/and ccrC mediating correct excision and
integration of SCCme [5].

Despite enhanced preventive measures and surveillance, MRSA remains an enduring
challenge in Jordanian healthcare settings. Limited published reports exist to unveil
the genotypes of MRSA in Jordan, indicating a significant gap in our understanding
of the specific genetic characteristics of circulating strains [6–17]. Alzoubi et al. (2014)
investigated 210 nasal swabs from children aged 6–11 years and predominantly identified
SCCmec type IV, with t223 as the primary spa type [18]. Bazzoun et al. (2014) studied
60 hospital isolates and found t044 to be the most common spa type of isolated MRSA strains,
although the specific type of SCCmec was not determined [19]. Another study by Aqel
et al. examined 716 nasal swabs from healthcare workers, adults, and children, primarily
discerning SCCmec types IVa and Vc and highlighting t223 as the dominant MRSA spa
type [13]. Focusing on the health implications in diabetic patients, Al-Bakri et al. examined
87 diabetic foot ulcer samples, identifying SCCmec type IVe as the predominant type of
MRSA, and the percentage distribution of spa types among isolates as t9519 (76%), t223
(14·7%), and t044 (5·9%) [9]. Khalil et al. analyzed S. aureus isolates from children in Jordan
using genotyping techniques such as MLST. Their findings highlighted the predominance
of the ST80 type in MRSA strains. Specifically, ST80-SCCmec type IV emerged as the
dominant strain [20].

The use of SCCmec and spa typing has been in use for the last two decades for MRSA
classification and epidemiological studies [5,21,22]. However, advancements in whole-
genome sequencing (WGS) technology and the continuous reduction in its cost have made it
an attractive alternative to conventional typing methods. WGS not only enhances precision
but also provides a comprehensive understanding of genetic relatedness in MRSA and
other bacteria. While admitting the importance of WGS, PCR-based methods will still play
a role in molecular epidemiology due to their simplicity and cost effectiveness. Adhering to
nomenclature rules for SCCmec, especially for diverse isolates, ensures a seamless transition
to advanced technologies. Whole-genome sequencing of MRSA isolates will improve
diagnosis, management, and infection reduction of MRSA [21,23–26].

In order to better understand the genetic traits and epidemiology of MRSA strains in
Jordan, it is crucial to conduct whole-genome sequencing on a larger scale to characterize
MRSA isolates. The aim of the current study was to analyze MRSA strains that were found
on critical surfaces within the Al-Karak Governmental Hospital. This involved conducting
antibiogram testing on the isolated S. aureus strains, followed by whole-genome sequencing
and bioinformatic analysis. Our main goal was to identify strain typing, resistance, and
virulence genes. The broader objective of this research was to enhance our understanding
of the genetic characteristics and resistance mechanisms of MRSA in the region.
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2. Materials and Methods
2.1. Media

Blood agar, mannitol salt agar, and antibiotic susceptibility discs were obtained from
Oxoid Ltd., Basingstoke, Hampshire, UK. MacConkey’s Agar was obtained from Conda
SA laboratories, Pronadisa, Spain. The brain-heart infusion broth was obtained from Alpha
Chemika, Mumbai, India. The Muller Hinton broth and Muller Hinton agar were purchased
from Biolab, Budapest, Hungary. Lastly, lysostaphin was sourced from Sigma-Aldrich,
Eschenstrasse 5, D-82024 TAUFKIRCHEN, Germany.

2.2. Sample Collection

The surveillance of the MRSA cohort was conducted in February 2019 at the Al-Karak
Governmental Hospital. Samples were collected from hospital surfaces, including door
handles from the doors of the intensive care unit, basin handles in the outpatient clinics,
blood bank, and elevator surfaces. The samples were obtained by rubbing and rotating
sterile swabs moistened with nutrient broth. Then, they were immediately inoculated on
the surface of 5% blood agar, MacConkey agar plates, and Mannitol salt agar (MSA) plates,
and incubated at 37 ◦C for at least 48 h. The preliminary identification of the Staphylococcal
isolates was based on the yellow colonies obtained on MSA, the positive catalase test, and
the Gram staining showing Gram-positive cocci [27]. A total of 14 preliminary identified S.
aureus isolates were recorded.

2.3. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility testing was carried out using the disc diffusion method
following the National Committee for Clinical Laboratory Standards [28]. Fresh S. aureus
isolates were prepared by inoculating a loopful of bacterial suspension in sterile Mueller–
Hinton broth and incubating at 37 ◦C for 2–4 h until the turbidity was consistent with a
0.5 McFarland standard. The bacterial suspension was then evenly spread on Mueller–
Hinton agar plates. The antibiotic discs tested included ampicillin (10 µg), cefotaxime
(30 µg), cefoxitin (30 µg), oxacillin (1 µg), ceftazidime (30 µg), clindamycin (2 µg), linezolid
(30 µg), amikacin (30 µg), gentamicin (10 µg), rifampicin (5 µg), and chloramphenicol
(30 µg). The diameter of the inhibition zone of each antimicrobial was measured and
classified as susceptible, intermediate, and resistant. S. aureus ATCC25923 was used as a
control for the experimental conditions [29].

2.4. DNA Isolation and Whole-Genome Sequencing (WGS)

Whole-genome sequencing (WGS) was performed for the 14 isolates; however, high-
quality data were obtained for only one isolate, i.e., A29. The DNeasy kit obtained from
Qiagen (Hilden, Germany) and containing buffers solution labeled as lysis buffer, AL, AW1,
AW2, and AE was used to extract the DNA, and all staphylococcal isolates were cultured in
brain-heart infusion broth at an optical density (OD) of 1.0 to ensure an adequate concentra-
tion of bacterial cells for downstream processing. The culture obtained was centrifuged, and
the bacterial pellets were collected. Bacterial cells, approximately equivalent to 2 × 109 cells
or ~1.0 mL of OD 1.0 culture, were harvested for the cell harvesting and lysis step. These
cells were transferred to a microcentrifuge tube and subsequently centrifuged for 10 min at
5000× g. The supernatant was discarded following this centrifugation, ensuring that the
bacterial pellet was left undisturbed. The obtained pellet was then resuspended in 180 µL
of a freshly prepared lysis buffer. This buffer consisted of 2.25 mL of TE buffer (10 mM
Tris HCl and 1 mM EDTA), 30 µL Triton X-100, 250 µL Lysostaphin (0.05 µg/mL), and
50 mg of Lysozyme (20 mg/mL final concentration). The obtained mixture was incubated
at 37 ◦C for 1 h, with vortexing performed every 15 min to promote thorough mixing. At
the end of the incubation period, 200 µL of AL buffer from the Qiagen DNeasy kit was
added to the mixture. The solution was then vortexed for around 15 s. After ensuring a
uniform mixture, the tube was placed in a 56 ◦C water bath for 30 min, with a vortex at
the midpoint to guarantee consistent exposure to the heat. Following this step, 200 µL of
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ethanol (99% purity) was added to the mixture. This mixture was then thoroughly mixed
using a vortex. The entire solution, including any precipitates, was transferred to a labeled
DNeasy mini-column located within a 2 mL collection tube. Centrifugation was followed
for 1 min at 6000× g. After centrifugation, the flow-through was discarded, and the DNeasy
mini-column was transitioned to a fresh 2 mL collection tube. To the column, 500 µL of
buffer AW1 was added, which was followed by 1-min centrifugation at 6000× g. This
flow-through was also discarded, and the column was transferred to a new collection tube.
The exact process was repeated using 500 µL of buffer AW2, but this time centrifuged at
20,000× g for 3 min to ensure the membrane was sufficiently dried. In the DNA elution
phase, the column was moved to a microcentrifuge tube. Directly to the DNeasy membrane,
200 µL of buffer AE was added and allowed to sit at room temperature for one minute.
After incubation, centrifugation at 6000 ×g for 1 min was performed to elute DNA. Care
was taken while discarding the column to prevent the transfer of any flow-through. Finally,
the successfully isolated DNA was securely stored at −20 ◦C, ready for shipping to the
USA for sequencing.

For WGS, we prepared the DNA library using a Nextera XT library preparation kit and
a Nextera XT index kit (Illumina, San Diego, CA, USA) following the manufacturer’s in-
structions. Sequencing was performed on an Illumina MiSeq instrument in compliance with
the manufacturer’s protocol. Bioinformatic analysis of raw sequencing reads, including
quality control measures to filter out low quality, was performed using BioNumerics v8.1
(BioMerieux, Sint-Martens-Latem, Belgium), genome assembly using the SPAdes algorithm,
and subsequent analysis was performed using default BioNumerics parameters.

2.5. Genome Annotation

The final draft genome sequence was annotated using RAST [30,31] and the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) [32]. The annotated genes from the RAST
server were downloaded as a Microsoft Excel sheet, and their genomic characteristics were
compared. The RAST server was used to retrieve antibiotic-resistant genes for S. aureus
A29, after which a comparison was performed. Antimicrobial resistance and virulence
genes associated with their genomic location were detected using ResFinder 4.4.2 [33],
VirulenceFinder 2 [34–37], and MobileElementFinder tools [38]; these tools are available
from the Centre for Genomic Epidemiology (www.genomicepidemiology.org/services/),
accessed on 1 November 2023. By default, the analyzed genome was uploaded with
the default settings. The plasmid Inc groups, multilocus sequence typing (MLST), spa
typing, and SCCmec typing were identified using the PlasmidFinder, MLST 2.0 software,
spaTyper [39], and SCCmecFinder-1.2, respectively. These tools are also available at the
Centre for Genomic Epidemiology (www.genomicepidemiology.org/services/), accessed
on 1 November 2023. To compare the complete sequence of the plasmid carrying the bla-Z
gene, the BRIG tool was used [40].

2.6. Single Nucleotide Polymorphism (SNP) Analysis

The CSIPhylogeny tool, developed by the Centre for Genomic Epidemiology (www.
genomicepidemiology.org/services/), accessed on 14 January 2024, at DTU in Lyngby,
Denmark, was employed for the identification of single nucleotide polymorphisms (SNPs)
within the A29 genome to the CP047021 reference genome [41]. The tool default settings
were used: a minimum depth of 10, a relative depth of 10, and a minimum SNP quality of 30.
This comparative analysis involved aligning the genomic sequence of the A29 isolate with
the established Danish reference genome (CP047021). The resultant SNP calls, formatted in
variant call format (VCF), were acquired and subsequently juxtaposed with the cataloged
antimicrobial resistance (AMR) genes within the CP047021 genomes.

www.genomicepidemiology.org/services/
www.genomicepidemiology.org/services/
www.genomicepidemiology.org/services/
www.genomicepidemiology.org/services/
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3. Results
3.1. Sources and Antibiograms of the Isolates

The current study was conducted in a cohort sampling in February 2019 at Al-Karak
Hospital, Karak Governorate, Jordan. In the study, we isolated 14 S. aureus strains from
surfaces of critical areas located within the Al-Karak Governmental Hospital. The study
sampled various surfaces including the handles of water taps, doors, and drawers inside the
ICU, blood bank unit, and the microbiology lab. The 14 S. aureus strains exhibited varying
resistance patterns against several antibiotics. The resistance patterns for the 14 isolates
were as follows: ampicillin (100%), cefotaxime (71.4%), oxacillin (78.5%), ceftazidime
(92.9%), clindamycin (50%), linezolid (42.9%), amikacin (50%), gentamicin (35.7%), and
rifampicin (7%). Nine out of twelve isolates showed resistance to cefoxitin (0.69%), while
all isolates demonstrated susceptibility to chloramphenicol (Figure 1). The isolate A29
showed multidrug resistance phenotypes resistant to ampicillin, amikacin, cefotaxime,
cefoxitin, ceftazidime, gentamicin, linezolid, and methicillin. It showed susceptibility to
chloramphenicol, clindamycin, and rifampicin.
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3.2. Whole-Genome Sequencing Results and A29 Genome Annotation

The preliminary evaluation of the WGS data for the 14 isolates of S. aureus showed
that 9 (50%) were mecA positive (Figure 1); also, 13 isolates (92.9%) were shown to be
spa type t4407. The study aimed to sequence the entire genome of all isolates. However,
high-quality sequencing data were only obtained for A29, which was deposited in NCBI
under the accession number CP104989 (Table 1). The genomic sequence consisted of
2,789,641 bp, with a GC content of 32.7%. The number of coding and RNA sequences
was 2650 and 67, respectively. The quality assessment revealed an N50 value of 53,762 bp,
signifying that half of the genome is represented by contigs of this length or longer. The
low L50 value of 19 bp indicates the high quality of the obtained genomic data, reflecting
the average contig length needed to cover half of the genome. The quality criteria were
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N50: 53,762 and L50 of 19 bp length. BLAST analysis (blastn) of the A29 genome to
nucleotides database at NCBI identified the nearest hit, a strain M2024 (accession number
CP047021.1), isolated from a skin infection, (https://www.ncbi.nlm.nih.gov/biosample/
SAMN13612188), accessed on 1 January 2024, of a patient in a Danish hospital in 2011 [42].
Genome annotation was performed using the RAST server. It showed 1243 genes divided
into 27 subsystems, including cofactors, cell wall, virulence, and phages, as illustrated
in Figure S1. The strain carried two antibiotic resistance genes against β-lactams, i.e.,
mecA and blaZ; Furthermore, it incorporated 12 virulence genes, i.e., aur: aureolysin; lukD:
leukocidin D component; lukE: leukocidin E component; splA: serine protease SplA; splB:
serine protease SplB; splE: serine protease SplE; hlgA: gamma-hemolysin chain II precursor;
hlgB: gamma-hemolysin component B precursor; hlgC: gamma-hemolysin component C;
sak: staphylokinase; scn: staphylococcal complement inhibitor; sea: enterotoxin A (Table S1,
Supplementary Information).

Table 1. The genomic project properties for A29 MRSA isolated from Al-Karak Hospital, Jordan, 2019.

Property

Isolate name Alkarak2019-A29

Finishing quality 34

Libraries used Nextera XT

Sequencing platforms Illumina MiSeq

Fold coverage 20

Assembly method SPAdes

GenBank ID CP104989

GenBank date of release 23 February 2023

BIOPROJECT PRJNA879252

BioSample SAMN30801668

Locus tag N4G46

Source material identifier Inanimate object

Project relevance Medical

Genome properties

Genome size (bp) 2,789,696

DNA G + C content 33.5%

Number of contigs 56

N50 136,095

SEED subsystems (RAST annotation) 273

No. of coding sequences 2650

No. of RNAs 67

3.3. Typing Results of A29 and Plasmids

Multilocus type sequencing (MLST) was performed by uploading the obtained WGS
FASTA file to the MLST-2.0 server. The results indicated that the strain belonged to ST6
(arcC 12, aroE 4, glpF 1, gmk 4, pta 12, tpi 1, and yqiL 3). The spa type of our strain was
detected using the spatyper [39]. The strain has spa type t4407 (Table 2). The acquisition
of mobile SCCmec is a defining feature of MRSA that exhibits β-lactam resistance [22].
The strain was positive for SCCmec type IVa (2B) (Table 2). The prediction of SCCmec in
the A29 genome according to homology with the database sequences is shown in Table 2.
SCCmecFinder-1.2 identified that this SCCmec contained ccrA2 and ccrB2 as a ccr gene
complex and mecA, dmecR1, and IS1272 as a mec gene complex. The expected whole SCCmec

https://www.ncbi.nlm.nih.gov/biosample/SAMN13612188
https://www.ncbi.nlm.nih.gov/biosample/SAMN13612188
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element in A29 has a 99.99% identity with 100% coverage to SCCmec type IVa identified
in (i) an MRSA strain M2024 identified from a patient in Denmark in 2011 (GenBank:
CP047021.1), (ii) the MRSA strain ER02947.3 identified from human blood sample in the
USA in 2015 (GenBank: CP030412), and (iii) the S. warneri strain DY39 detected in China
from milk of dairy cow with mastitis in 2012 (GenBank: KU170612) (Figure 2).

Table 2. Comparison of A29 genome to the nucleotide database NCBI, results of strain typing (SCCmec
and spa), and identification of the plasmid replicon type.

I. Whole-genome BLAST results

Hit no. Query position in A29 genome Closest hit (Acc. Code) Identity (%) Seq. length Query Cover

1 Whole genome CP047021.1 99.96 2791940 99%

II. SCCmec Typing results

Hit no. Query position in A29 genome Closest hit (Acc. Code) Identity (%) Seq. length Gene Name

1 2402. . .3892 AB063172 99.93 1491/1491 subtype-IVa (2B)

2 7844. . .9193 AB096217 100.00 1350/1350 ccrA2

3 9194. . .10,843 AB097677 99.94 1650/1650 ccrB2

4 14,516. . .15,502 AB033763 100.00 987/987 dmecR1

5 12,685. . .14,527 AM292304 100.00 1843/1843 IS1272

6 15,599. . .17,608 AB505628 100.00 2010/2010 mecA

III. Acquired antimicrobial resistance genes

Hit no. Query position in A29 genome Closest hit (Acc. Code) Identity (%) Seq. length Gene Name

1 15,616. . .17,626 BX571856 100 2010 mecA

2 2,694,466. . .2,695,311 AP004832 100 846 blaZ

IV. Identification of the plasmid replicons

Hit Query position in A29 genome Closest hit (Acc. Code) Identity (%) Seq. length Replicon group

rep5A 2,682,088. . .2,682,948 AP003139 100 861/861 Rep3

rep16 2,684,239. . .2,684,982 CP002115 100 744/744 Inc18

V. Spa Typing results

Hit no. Query position in A29 genome Repeats spa Type

1 2,734,797. . .2,735,002 11-10-21-17-34-22-25 t4407
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Figure 2. Schematic representation of SCCmec type IVa identified in the A29 MRSA strain (this
study) along with other closely related sequences (CP047021.1, CP030412, and KU170612) in the
GenBank NCBI database. The gray-scale connections indicate the level of sequence homology, with
the intensity corresponding to the percentage of similarity.
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3.4. Identification of Plasmids in the A29 Genome

The PlasmidFinder 2.1 tool identified one hybrid plasmid (rep5a and rep16) named
pJOR_blaZ. The blastn results of the plasmid to the nucleotide NCBI database showed
almost identical hits as follows: (i) plasmid pl1_M2024 identified in the human clinical
strain M2024 in Denmark in 2011 (CP047022.1); (ii) unnamed plasmid in the human clinical
strain NAS_AN_099 in the USA (CP062377.1). The alignment of the pJOR_blaZ to these hits
is shown in Figure 3. The plasmid replicons of isolate A29 obtained from PlasmidFinder 2.1
demonstrated two different replicons, rep5a and rep16, belonging to the replicon families
Rep3 and Inc18, respectively (Table 2). The blaZ gene is located in position 2694466 to
2695311 of the A29 genome (Table 2).
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Figure 3. Schematic representation of pJOR_blaZ plasmid identified from the MRSA strain A29
compared to the two nearest hits in the NCBI nucleotide database: pl1_M2024 (CP047022.1) and
plasmid unnamed (CP062377.1). Red lines denote coding sequence (CDS), the figure was created
with the BRIG tool.

3.5. SNP Analysis

The detected single nucleotide polymorphisms (SNPs) in the A29 genome were sys-
tematically aligned with the positions of antimicrobial resistance (AMR) genes in the Danish
reference genome (CP047021). Intriguingly, all identified SNPs were located outside the
annotated AMR genes, as shown in Table S2 (Supplementary Information). A notable ex-
ception (position 2771818 in CP047021, SNP A to G) was observed, where an SNP occurred
within the collagen adhesin cna gene, recognized as a virulence factor (Table S2).
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3.6. Comparison of Current Findings to Previous Reports

Table 3 presents a comparison between the genotypes of MRSA that were reported in
Jordan over the past decade and the results of the current study. There have been very few
studies on the genotypes present in the Jordanian environment. A literature search showed
reports of only two MLST lineages (ST80 and ST997) in a study published in 2014 [20,43].
Interestingly, the comparison revealed a new spa type, t4407, which was not previously
recorded in published studies. Table 3 displays the spa types reported in Jordan over the
past decade [9,13,15,16,43].

Table 3. Comparative analysis of MRSA genotypic profiles reported in Jordan in the last decade,
compared to the isolate currently reported (A29).

Reference No. Reference Sample Source MLST SCCmec Type (s) Spa Type

[6] Abdelmalek et al., 2022 University setting ND ND ND

[9] Al-Bakri et al., 2021 Diabetic foot ulcers ND III, IV, IVc, IVe
t044, t386, t267,t223,t018,

t1339, t127, t311, t037,
t605, t223, t9519

[10] Al-Dmour et al., 2023 Hemodialysis patients,
Al-Karak hospital ND ND ND

[13] Aqel et al., 2015 Healthcare workers ND IVa and Vc t223

[15] Darwish et al., 2022 Neonates, Healthcare
professionals, Amman ND ND

t044, t012, t021, t223, t934,
t253, t5075, t3534, t3767,

t11023, t12492
[16] Gharaibeh et al., 2023 Bovine mastitis ND ND t17158

[17] Jaradat et al., 2021 Public facilities, Northern
Jordan ND ND ND

[18] Alzoubi et al., 2014 Children (6–11 years) ND IV t223
[19] Bazzoun et al., 2014 Hospital isolates ND ND ND
[20] Khalil et al., 2012 Children in Jordan ST80 IV ND
[43] Harastani and Tokajian 2014 Clinical isolates, Amman ST80,

ST997 IV t044, t5849, t5849,
t5802, t6438

[44] Al-Tamimi et al., 2021 Hospitalized patients ND ND ND

This study This study Hospital objects, Al-Karak
Hospital ST6 IVa t4407

ND: not determined.

4. Discussion

In February 2019, a sampling campaign was conducted to investigate the presence of
MRSA on the surfaces of the critical sites inside Al-Karak Hospital, Al-Karak Governorate,
Jordan. Among the 14 isolates identified, 11 were confirmed as MRSA through antibiograms.
Whole-genome sequencing was performed on all 14 isolates, which revealed a novel spa
type t4407. However, only one isolate (A29) produced high-quality sequencing results.
This A29 isolate was collected from the surface of the tap water handle in the blood bank
unit. A29 was found to be multidrug resistant and was resistant to all antimicrobials tested
except chloramphenicol, rifampicin, and clindamycin.

The MLST of A29 showed that the profiles of the seven detected alleles belong to ST6,
and its spa type was t4407, which is very similar to the t304/ST6 MRSA isolates reported
in northern Europe (e.g., Denmark, Norway, and Iceland) [42]. This spa type t304/ST6
was identified in the DK2011-01 isolate (accession number: CP047021). The spa type t4407
is related to t304 but missing repeats 34 and 24 in the middle of the sequence. The A29
and CP047021 comparison exhibited 99% query coverage and 99.96% identity. The SNP
analysis indicates a strong correlation between the A29 genome and CP047021 genome,
with the conservation of AMR genes. This provides evidence of intercontinental spread of
MRSA strains. Indeed, Bartels et al. illustrated the common description of this MRSA clone
(spa type t304/ST6) and indicated its European emergence because of the influx of Syrian
refugees to Europe from the civil war [42].

The Staphylococcal cassette chromosome (SCCmec), a mobile element that carries the
main genetic factor for broad-spectrum β-lactam resistance, is a characteristic feature of
MRSA. SCCmec typing is a helpful method for assessing MRSA strain relatedness and
issues related to the genomic basis of methicillin resistance. Staphylococcal lineages resistant
to methicillin have emerged due to the acquisition and insertion of the SCCmec element on
the chromosomes of some susceptible strains [22]. SCCmec contained mainly (i) the mec
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gene (mecA, mecB, and mecC) that encodes a specific penicillin-binding protein (PBP2a) and
(ii) site-specific recombinase genes (ccrAB and/or ccrC) mediating excision and integration.
It is widely recognized that SCCmec types IV and V are familiar types of community-
acquired MRSA. In contrast, SCCmec types I, II, and III are commonly associated with
hospital-acquired MRSA [24]. A29 harbored SCCmec type IVa (containing ccrA2/ccrB2
and mecA); this type was often detected in infection with community-associated MRSA
(CA-MRSA). SCCmec type IVa MRSA was the most prevalent strain in a study performed
by Khalil et al.; samples were collected from Jordan University Hospital in Amman, Jordan,
in the period between August and October 2008 [20]. Previous reports of MRSA isolated
in Jordan showed that the prevalent SCCmec was type IVe, specifically among diabetic
foot ulcer infections [9]. Another study reported the prevalence of type IV and V among
MRSA strains [13]. Tabaja et al. have shown that CC6 was detected in some infective MRSA
isolates from the Kingdom of Saudi Arabia (KSA) and Kuwait. In KSA, CC6 represented
13% of Riyadh-infectious isolates and was associated with SCCmec type IV, typically found
in community-acquired MRSA. In Kuwait, CC6 represented 4% of Kuwait City infective
isolates and was associated with SCCmec type IV [45].

A few studies have reported MRSA genotypes circulating in Jordan (Table 3). In
a major hospital in Amman, spa type t044 was identified as the most common among
MRSA strains [19]. Furthermore, Harastani et al. showed in the heterogenicity among the
type IV MRSA clonal complex (CC80-MRSA-IV) in Jordan and Lebanon and noted the
dominance of the spa type t044 [43]. More recently, attention has been shifted to MRSA in
livestock, particularly cattle suffering from subclinical mastitis. A new spa type (t17158)
was identified as a significant cause of mastitis in Jordanian dairy cows, signaling a potential
new reservoir for MRSA [16]. These findings show the different settings in which MRSA is
found in Jordan and emphasize the importance of continuous surveillance to understand
the changing epidemiology of MRSA, which is crucial for effective infection prevention
and control.

Our data showed the presence of mecA on the chromosome and blaZ on the hybrid
plasmid (rep5a and rep16) pJOR_blaZ. The two genes mediating the β-lactam resistance
phenotype have been reported to be common determinants of antibiotic resistance in MRSA
strains worldwide [46]. The limited data available in the literature indicate genotypic
diversity within MRSA strains in different populations and environments in Jordan (Table 3).
However, the current body of work may not fully reflect the entirety of MRSA’s landscape
or even other ESKAP members, both in the community and within hospitals in Jordan [47].
It is important to maintain surveillance and conduct further investigation to obtain a
comprehensive understanding of the present genotypes.

Isolate A29 contained various virulence factors, including genes hlg(s), lukD/E, sak, scn,
sea, and spl(s), that encode hemolysins, leukotoxins, staphylokinase, complement inhibitor,
enterotoxin, and serine proteases, respectively. Most of these virulence factors are related
to the infection process, except that the scn gene is considered an immune evasion marker,
usually found in S. aureus isolated from humans. This gene was previously reported to
help distinguish between strains of human origin and those of non-human origin [48].
Furthermore, a hybrid plasmid carrying blaZ, rep5a-rep16, was identified and blasted
against the NCBI database. The blaZ-carrying plasmid was identical to that isolated from a
Danish MRSA strain. Previous studies demonstrated a link between distinct rep sequences
and resistance genotypes [49,50]. The PlasmidFinder detected that the plasmid pJOR_blaZ
carried rep5a and rep16, the common plasmid replicon carrying blaZ gene [49].

5. Conclusions

In conclusion, our study aimed to characterize the resistance profiles of 14 S. aureus
isolates collected from various surfaces within Al-Karak governmental hospital, Jordan.
Our utilization of whole-genome sequencing (WGS) on these isolates showed a novel spa
type (t4407) that has never reported earlier in Jordan. High-quality data were obtained for
only one isolate which is A29. The genomic data obtained for this isolate yielded valuable
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insights into the genetic traits for this MRSA strain. Notably, our analysis identified a
novel MRSA type, spa type t4407 ST6-SCCmec type IVa, which had not been previously
reported in Jordan. Furthermore, our bioinformatic analysis revealed a striking resemblance
between the genome of isolate A29 and an MRSA isolate reported in Denmark in 2011. It is
worth noting that the WGS of isolate A29 has enabled a comprehensive genetic analysis
demonstrating the potential of this technology in uncovering the genetic characteristics
of pathogens and clarifying their epidemiology. Nevertheless, it is still intriguing to
consider what additional insights could be gained if high-quality data were obtained for
the remaining isolates.

Therefore, future investigations involving comprehensive WGS of MRSA isolates in
Jordan may offer a broader perspective on the genetic characteristics and transmission
dynamics of this serious pathogen. Such endeavors hold promise for advancing our
understanding of MRSA epidemiology and contributing to more effective strategies for its
control and management.
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