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Abstract: Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The
BRAF V600E mutation, found in 8–12% of CRC patients, exacerbates this by conferring poor prognosis
and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular
substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this
mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we
explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell
lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction,
and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular
response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants,
irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in
viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET
showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type
samples, the response varied depending on the mutation status. Significant differences emerged
in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater
resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy
between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The
bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr
cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET.
Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach
in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC
cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a
comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.

Keywords: colorectal cancer; BRAF mutation; HAMLET; bioactive milk compound; mitochondrial
function; ex vivo treatment; precision medicine
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1. Introduction

Colorectal cancer (CRC) stands as the third most prevalent neoplasm, with over
1.9 million cases annually, and is the second most lethal, accounting for nearly a million
deaths each year [1,2]. Despite advances in diagnostics, screening, lifestyle awareness,
and combined therapeutic regimens that have elevated the 5-year overall survival rate to
65% [3], the 5-year survival rate drastically drops to 13% for patients who either present
with distant disease at diagnosis or develop it later [4,5].

A deeper understanding of the biology and heterogeneity of CRC is the next chal-
lenge for precision medicine. Researchers intend to categorize CRC based on genetic and
molecular markers [6].

A notable molecular variation, the BRAF V600E mutation (mt), prevalent in 8–12%
of CRC patients, is linked to a poor prognosis and diminished treatment responsiveness.
This mutation, often associated with alterations in the MAPK pathway and the tumor envi-
ronment, frequently coexists with other molecular markers, thus complicating therapeutic
approaches [7,8].

Numerous studies consistently suggest that patients whose tumors carry the BRAF
V600E mutation show reduced response rates to EGFR inhibitors, regardless of whether
these drugs are administered alone or alongside chemotherapy. This diminished efficacy
remains evident even in tumors with a RAS wild-type (wt) status, underlining the ther-
apeutic challenges specific to the BRAF V600E mutation. For those with BRAF V600E
mutant mCRC, FOLFOX- and bevacizumab-based chemotherapy is still the preferred
initial treatment strategy [9–12].

In the ongoing search for innovative therapeutic agents, particularly for challenging
cases of CRC, the HAMLET complex (human alpha-lactalbumin made lethal to tumor
cells) has emerged as a potential game-changer. Derived from components of human
breast milk, HAMLET has a unique ability to selectively target cancer cells while leaving
healthy cells unharmed [13,14]. This is critical in BRAF mutant CRC, which often resists
standard therapies [15]. Our previous findings with HAMLET have demonstrated a
pronounced different effect on the BRAF mutant cell line than others, revealing its dose-
dependent cytotoxic effects on CRC cells, predominantly leading to necrotic death, and
altered mitochondrial functions in specific cell lines [16].

A breakthrough approach in CRC research involves ex vivo patient biopsies, where
tumor tissues are cultivated outside the body to assess treatment responses. This method
offers a window into individual tumor drug sensitivity and emphasizes the heterogeneity
intrinsic to CRC tumors [17]. However, maintaining intrinsic tumor characteristics in an
ex vivo environment presents significant challenges. With the increasing emphasis on
precision medicine, it is imperative to comprehend the advantages and disadvantages of ex
vivo patient biopsies in treating CRC [18,19].

In light of our initial observations, we aimed to evaluate the effects of combining
HAMLET with the standard chemotherapy FOLFOX on BRAF mutant CRC cell lines and
ex vivo explant models to assess whether the response to HAMLET is driven by the BRAF
mutation or by mutation-independent mechanisms such as mitochondrial function.

2. Materials and Methods
2.1. Patient Cohort and Explant Formation of Human Colorectal Cancer Biopsy

We included adult patients diagnosed with colorectal cancer who underwent surgery
at the Hospital of the Lithuanian University of Health Sciences Kaunas Clinics between 2021
and 2022. Each patient provided informed consent, and this research received full ethical
approval from the Kaunas Regional Biomedical Research Ethics Committee (approval
number BE-2-64, dated 1 August 2019). All procedures performed in this study complied
with the relevant regulations following the Declaration of Helsinki.

During the specified time period, 754 colorectal surgeries were performed at our insti-
tution, of which a selected group of 32 cases met the specific inclusion criteria of this study.
The strict parameters of our selection process required us to exclude surgeries performed
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from Wednesday to Friday to coincide with the timing of ex vivo experimental evaluations,
as well as emergency surgeries, cases of recurrent cancer, and cases involving neo-adjuvant
therapy, diverticulosis, or inflammatory bowel disease (IBD). Our methodology was further
refined by omitting cases from the initial pilot study, accounting for patients who declined
to participate, and adjusting for a pause in this study due to the impact of the COVID-19
pandemic on reagent availability. The study design is detailed in Chart 1.
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Chart 1. Overall flow chart design of colorectal surgeries in 2021 and 2022 and inclusion for study.
IBD—inflammatory bowel disease. * We only included patients operated on Monday or Tuesday due
to methodology.

After colorectal cancer resection surgery, pathologists evaluated the excised section of
the large bowel. After assessing the tissue and determining the localization of the tumor,
a piece of the tumor was cut and placed in a cold cell culture medium (minimal essential
medium (MEM)) with 10% fetal bovine serum (FBS) and antibiotics/with a mixture of
antimycotics. A piece of tissue was brought to a vertical flow laminar, and, furthermore, all
manipulations were performed under sterile conditions with sterile tools and reagents.

Since the large intestine contains various intestinal bacteria and the excised part of the
intestine was evaluated under non-sterile conditions, the tissue inevitably became infected
with various bacteria and fungi. To stop the growth of bacteria or fungi but not harm
the cells, the nutrient medium was supplemented with commonly used and non-toxic
doses of antibiotics: penicillin/streptomycin and amphotericin B solution, metronidazole,
cefuroxime, and gentamicin, as well as 10% FBS.

The piece of tissue was washed three times with a nutrient medium to remove as
many microorganisms and blood cells as possible. After washing, the tissue was cut with
2 mm diameter biopsy needles, trying to avoid tearing the tissue. Colon cancer pieces of a
uniform size of approximately 2 mm3 were obtained. Each piece was individually placed
in a well of a 96-well plate with a nutrient medium and incubated for 24 h. The pieces were
incubated in an incubator that maintained a temperature of 37 ◦C, 95–98% humidity, and a
5% CO2-saturated environment (Figure 1).
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Figure 1. Establishing the explant model: 1—a piece of tumor and healthy tissue is collected after
operation and examination; 2—the pieces are washed three times under sterile conditions; 3—the
pieces are cut into 2 mm pieces with a biopsy needle, avoiding shredding as much as possible; 4—we
are left with 2 mm3 explants; 5—every single explant is placed into a well of 96-well plate; and
6—incubation at 37 ◦C, 95—98% humidity, and 5% CO2 atmosphere.

2.2. Mutation Analysis—RT PCR

Genomic DNA was extracted from CRC tissue using a DNeasy Blood and Tissue kit
(Qiagen, Hilden, Germany). Purified DNA was quantified and assessed for purity using
UV spectrophotometry. For BRAF V600E mutation detection, we used predesigned TaqMan
assays (Life Technologies, Carlsbad, CA, USA) (rs113488022) with a TaqMan Universal PCR
Master Mix, No UNG (Life Technologies, Carlsbad, CA, USA) and an approximately 20 ng
per well DNA sample. Amplification was performed using the ABI 7500 fast Real-Time
PCR system. Genotype assignments were manually confirmed via visual inspection with
the ABI 2.3 software compatible with the TaqMan® system. After initial genotyping, 25%
of all samples in each group were included in a repetitive analysis, which showed a 100%
concordance rate.

2.3. Cell Cultures

We purchased the WiDr (colorectal adenocarcinoma) cell line from CLS Cell Lines
Service in Germany and the HT-29 (colorectal adenocarcinoma) cell line from the American
Type Culture Collection (ATCC) in the United States. The HT-29 cell line was cultured
in McCoy’s 5A medium, supplemented with 10% fetal bovine serum and 1% penicillin–
streptomycin, all obtained from GIBCO. The WiDr cell line was maintained in a 1:1 mixture
of Ham’s F-12K (Kaighn’s) medium and Dulbecco’s Modified Eagle Medium, enriched
with 5% fetal bovine serum and 1% penicillin–streptomycin. Both cell lines were incubated
at 37 ◦C in an atmosphere containing 5% CO2.

2.4. Formation of the HAMLET Complex

We prepared the HAMLET complex by combining human alpha-lactalbumin with oleic
acid (obtained from Sigma-Aldrich in Steinheim, Germany), following the heat treatment
method outlined in the literature [20]. We first dissolved human alpha-lactalbumin in
phosphate-buffered saline and then shook the solution at 50 ◦C for 15 min. Subsequently,
we added oleic acid to the mixture and continued the incubation with shaking for another
10 min at the same temperature. We allowed the solution to cool down to room temperature
before centrifuging to remove any excess oleic acid. Finally, we stored the HAMLET
complex at −80 ◦C for future use.
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2.5. Explant Treatment with HAMLET

After 24 h of incubation, 60 µM of HAMLET was added into the appropriate wells, and
the plate was incubated for 24 h. The dose was chosen according to previous experiments
with explants, which showed a statistically significant effect only when treated with 60 µM
of HAMLET for 24 h. Subsequently, the medium was changed to a medium supplemented
with 10% resazurin. The explant metabolizes the purple-colored compound, resazurin, into
a pink-colored compound, resorufin, which can be measured with a spectrometer using
570 nm and 620 nm filters. Since resazurin is a non-toxic compound, the measurements
were made 24 and 48 h after HAMLET treatment.

Alternatively, after a 24 h treatment with HAMLET, the explant samples were collected,
and the oxygen consumption and extracellular acidification rates were measured.

2.6. Mitochondrial Respiration

We studied the mitochondrial respiration, specifically, oxygen consumption, of ex vivo
tissue samples and two colon cancer cell lines harboring BRAF mutations (HT-29 and WiDr)
using the high-resolution respirometry system Oxygraph-2k (OROBOROS Instruments,
Innsbruck, Austria) at 37 ◦C. The medium for the measurements contained 0.5 mM of EGTA,
3 mM of MgCl2, 60 mM of K-lactobionate, 20 mM of taurine, 10 mM of KH2PO4, 20 mM
of HEPES, and 110 mM of sucrose, adjusted to pH 7.1 at 37 ◦C. To permeabilize the cell
membranes, 16 µg/mL of digitonin was added. We documented the non-phosphorylating
state 2 (V0) respiration rate in the medium containing the tissue samples, mitochondrial
complex I substrates (5 mM of glutamate + 2 mM of malate), and the complex II substrate
succinate (12 mM). After adding 1 mM of ADP, we assessed the state 3 respiration rate
(VADP). All respiration rates were normalized to the dry weight of the tissue in milligrams.

2.7. Cell Viability Flow Cytometric Analysis

We used the MTT colorimetric assay (obtained from Thermo Fisher Scientific and
Carl Roth in Steinheim, Germany and Karlsruhe, Germany) to assess cell viability and
the cytotoxic effects of HAMLET over 48 h. We initially seeded cells into 96-well plates at
densities appropriate for each cell line, ranging from 8000 to 20,000 cells per well. After
24 h, we treated the cultures with the HAMLET complex and incubated them for another
6 h. We then replaced the growth medium and allowed the cells to incubate for another
18 h before adding the MTT reagent. After incubation for 3–4 h at 37 ◦C, we dissolved the
formazan crystals in dimethyl sulfoxide, measured the absorbance at 570/620 nm, and
compared it with a control group.

2.8. Clonogenic Assay

For the clonogenic assay, we plated cells at a density of 100 to 200 cells per well in
24-well plates. After allowing 24 h for attachment, we administered various concentrations
of the HAMLET complex for 6 h. Then, we changed the medium and incubated the cells
for 8 days. After incubation, we fixed and stained the colonies with crystal violet and
counted those with more than 50 cells using an inverted microscope and compared the
results with controls.

2.9. Flow Cytometric Analysis

We used the Flow Cellect Mito Damage Kit and Annexin V-PE Apoptosis Detection Kit
obtained from EMD Millipore in the United States. To perform the flow cytometric analysis
and understand how cells responded to HAMLET, we seeded 100,000 to 130,000 cells per
well. After one day, we treated these cells with different concentrations of HAMLET for 6 h.
We then detached the cells, stained them with Annexin V-PE and 7-AAD, and analyzed
them using the Guava Personal Cell Analysis Flow Cytometer and CytoSoft software
(version 2.1.4; Guava; EMD Millipore, Burlington, MA, USA).
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2.10. Drug Combination Effect Calculation

The combination effect of the HAMLET complex and FOLFOX (5-fluorouracil (5-FU)
+ oxaliplatin) was measured via MTT assay and calculated using the Combenefit (v2.021)
software [21]. Bliss theory was chosen for the calculation theory based on the assumption
that both drugs work independently but can increase each other’s cytotoxic effects [22].
Varying doses of HAMLET (1, 3, and 5 µM) and FOLFOX (5-FU (µM) + oxaliplatin (µM):
3.125 + 0.078; 6.25 + 0.156; 12.5 + 0.3125; 25 + 0.625; 50 + 1.25; 100 + 2.5; 200 + 5; 400 + 10;
and 800 + 20) were used.

2.11. Glycolytic and Mitochondrial Activity Determination

The mitochondrial and glycolytic activity of WiDr and HT-29 cells was measured
with a Seahorse XFp Analyzer (Agilent Technologies, Santa Clara, CA, USA) using the
Seahorse XFp Cell Mito Stress Test Kit (Agilent Technologies) according to the manufac-
turer’s instructions. All the assay and data interpretation details are available in the User
Guide [23]. Briefly, the cells were seeded into Agilent Seahorse XFp miniplates at a density
of 1.5 × 103 to 3 × 103 cells/well and kept in the cell culture medium indicated above. The
cells were incubated for 4 d until 50–80% confluency was reached. One hour before the
measurement, the medium was replaced with Seahorse XF Assay Medium supplemented
with 2 mmol/L of L-glutamine, 1 mmol/L of sodium pyruvate, and 10 mmol/L of glu-
cose, and the cells were placed in a non-CO2 incubator. Just before the measurement, the
medium was changed again to fresh Assay Medium with the same supplements. The final
inhibitor concentrations in the wells were 1.5 µM oligomycin, 1 µM carbonyl cyanide-4-
phenylhydrazone, 0.5 µM antimycin A, and 0.5 µM rotenone. The oxygen consumption
rate (OCR) and extracellular acidification rate were normalized to the total cellular protein
content determined directly in the plate using the Bradford assay. The data were analyzed
using Wave software 2.6.1 (Agilent Technologies), and graphical images were created
employing SigmaPlot vs. 13 (Systat Software, Slough, UK).

2.12. Statistical Analysis

We carried out our statistical analyses using GraphPad Prism 6 with SigmaPlot. To
analyze non-parametric datasets, we applied the Mann–Whitney U test. We examined the
correlations between qualitative measures in comparative cohorts using the chi-square (χ2)
test, while Student’s t-test was employed for interval and categorical data assessments. The
significance level was set at p < 0.05.

3. Results
3.1. Colorectal Cancer Patients’ Explant Characteristics

We analyzed 32 patients with colorectal carcinoma (mostly moderately differentiated,
G2 (84.4%)). The mean age of CRC patients was 68.06 ± 11.95, with a gender distribution
of 21 females and 11 males. BRAF mutations were identified in four patients, accounting
for 12.5% of the cohort. The serum markers CEA and CA 19-9 were predominantly below
normal limits in 65.6% and 87.5% of patients, respectively. The primary site of cancer was
predominantly the rectum, with six patients undergoing neoadjuvant treatment. A detailed
analysis of the TNM staging, postoperative Clavien–Dindo complications, and patient
follow-up data are outlined in Table 1.

In our Kaplan–Meier survival analysis (Figure 2), we observed that patients with BRAF
wt mutations had a longer median survival of 32.68 ± 1.58 months (95% CI: 29.58–35.78)
compared with 18.5 ± 4.76 months (95% CI: 9.16–27.84) in patients with BRAF mutant types.
However, the difference in the survival curves was not statistically significant (p = 0.247).
Notably, follow-up was longer in the BRAF wt group (22.29 ± 10.53 months; range: 1–35)
than in the BRAF mt group (14.42 ± 7 months; range: 2–24).
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Table 1. Colorectal cancer patient clinicopathological characteristics. CEA—carcinoembryonic
antigen; CA19-9—carbohydrate antigen 19-9, and APR—abdominoperineal resection.

Patient Demographics N (%)

Gender Female, 21 (65.6%)
Male, 11 (34.4%)

Age at diagnosis <60 years, 5 (15.6%)
≥60 years, 27 (84.4%)

BRAF mutation status Wild type, 28 (87.5%)
BRAF mutant, 4 (12.5%)

CEA Normal <5.8, 21 (65.6%)
Elevated ≥5.8, 11 (34.4%)

Ca 19-9 Normal <37, 28 (87.5%)
Elevated ≥37, 4 (12.5%)

Localization
Right colon, 8 (25.0%)
Left colon, 8 (25.0%)
Rectum, 16 (50.0%)

Surgery type

Right hemicolectomy, 9 (28.1%)
Left hemicolectomy, 2 (6.2%)
Sigmoid resection, 6 (18.8%)
Rectal resection, 11 (34.4%)
APR, 4 (12.5%)

Tumor differentiation
Well-differentiated G1, 3 (9.4%)
Mod. differentiated G2, 27 (84.4%)
Poorly differentiated G3, 2 (6.2%)

TNM stage

Stage I, 7 (21.9%)
Stage II, 15 (46.9%)
Stage III, 7 (21.9%)
Stage IV, 3 (9.4%)

pT stage

pT1, 1 (3.1%)
pT2, 9 (28.2%)
pT3, 21 (65.6%)
pT4, 1 (3.1%)

pN Stage
pN0, 20 (62.5%)
pN1, 10 (31.3%)
pN2, 2 (6.2%)

V—vascular invasion (−) 24 (75.0%)
(+) 8 (25.0%)

L—invasion into lymphatic vessels (−) 25 (78.1%)
(+) 7 (21.9%)

Clavien–Dindo
postoperative complications
at 30-day follow-up

Grade 0 (no complications), 23 (71.9%)
Grade I, 1 (3.1%)
Grade II, 3 (9.4%)
Grade IIIA, none
Grade IIIB, 4 (12.5%)
Grade IV, none
Grade V, 1 (3.1%)

Median postoperative hospital stay 7 days (range: 3–27 days)
Follow-up months 21.06 mo ± 10.73 (min. 1–max. 35)
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3.2. Colorectal Cancer Explant Viability

In our study, we observed that both HAMLET and FOLFOX, when used alone, ex-
erted similar cytotoxic effects on CRC explants, regardless of the BRAF mutation status.
Specifically, HAMLET reduced the viability of both wild-type and mutant BRAF explants
to approximately 87% at 24 h and 86% wt and 84% mt at 48 h. Similarly, FOLFOX treatment
reduced the viability of the BRAF wt explants to 85% at 24 h and 79% at 48 h, while the mt
explants showed a comparable reduction to 78% at 48 h.

However, the combination of HAMLET and FOLFOX showed a more pronounced
effect on the BRAF wt group. This combined treatment reduced the viability of BRAF wt
explants to 80% at 24 h and to 69% at 48 h, indicating a synergistic effect. In contrast, the
same combination did not significantly alter the viability of BRAF mt explants (Figure 3).

3.3. Explant Mitochondrial Respiration

In our investigation of mitochondrial respiration in human CRC tissue explants, we
evaluated the impact of HAMLET (60 µM) on mitochondrial function. Our assays focused
on measuring the mitochondrial respiration rate at 37 ◦C, utilizing glutamate/malate
(Complex I) and succinate (Complex II) as substrates. We observed that HAMLET tended to
inhibit mitochondrial respiration in both BRAF mutant and wild-type CRC tissue samples,
though this inhibition was not statistically significant (p > 0.05).

Specifically, in CRC samples without the BRAF mutation, HAMLET treatment led
to a 39% reduction in the non-phosphorylating (V0) respiration rate (from 12 ± 2.646 to
7.3 ± 3.215 pmolO/s/mg dry weight) and a 33.3% decrease in the state 3 (VADP) respira-
tion rate (from 13 ± 1 to 8.67 ± 3.786 pmolO/s/mg dry weight). In contrast, tissue samples
with the BRAF mutation exhibited a more substantial impact, with a 71% reduction in
the V0 respiration rate (from 12 ± 4.243 to 3.5 ± 0.7 pmolO/s/mg dry weight) and a
60% decrease in the VADP respiration rate (from 12.5 ± 3.54 to 5 ± 1.41 pmolO/s/mg
dry weight). These findings suggest a differential response in mitochondrial respiration
inhibition by HAMLET between BRAF mt and wt CRC samples, with a greater extent of
inhibition observed in the BRAF mt samples (Figure 4b).

3.4. Comprehensive Analysis of HAMLET Complex Effects on CRC BRAF Mutant Cells: Viability,
Clonogenic Survival, and Induced Apoptosis/Necrosis

We then investigated why the BRAF mutant has distinctive features in viability and
respiration studies. Therefore, we chose two genetically identical colon cancer cell lines
with the BRAF mutation.
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Figure 3. The effect of 60 µM of HAMLET and/or FOLFOX (3 mM of 5-FU + 75 µM of oxaliplatin)
on CRC explant viability. (a) Explant viability 24 h after treatment; (b) explant viability 48 h after
treatment. Comparing BRAF wild-type and mutant explants. Means ± SD. N ≥ 3. Dotted line—
control group data (100%). *—p < 0.05 comparing with control group data.
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control and HAMLET-treated samples.
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In our evaluation of the effects of the HAMLET complex on different CRC cell lines (HT-
29 and WiDr (a derivative of HT-29)) with V600E BRAF mutation status, we found consistent
dose-dependent effects on viability at 2 µM, 5 µM, 10 µM, and 20 µM concentrations. At
2 µM, the viability of the WiDr cell line remained largely unaffected, while the HT-29 line
experienced an 11% reduction in viability to 89%. As the concentration increased, the
differences in resistance between the two lines became more pronounced: At 5 µM, WiDr
retained 85% viability compared with 43% for HT-29. At higher concentrations of 10 and
20 µM, WiDr’s viability dropped to 61% and 22%, respectively, while HT-29’s viability
dropped to 8% and 2% (Figure 5a).
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Figure 5. Dose-dependent responses of CRC cell lines to HAMLET complex. (a) The MTT assay
performed 24 h after a 6 h incubation revealed a dose-dependent response and higher WiDr cell line
resistance to HAMLET than HT-29. (b) The effect of HAMLET on colony formation in different BRAF
mutant CRC cell lines. Graphic representation and representative photos. (c) Apoptotic cell line
population after the effect of HAMLET. (d) Necrotic cell line population after the effect of HAMLET.
Control group data—dotted line. * p < 0.05—compared with control group data. ** p < 0.05—
comparing HAMLET’s effects on WiDr and HT-29. ***—no colony formation. **** p ≤ 0.05 when
comparing apoptosis and necrosis of the same sample. Means ± SD. N ≥ 3.

Further analysis, focusing on clonogenic potential, showed that while 2 µM of the
HAMLET complex showed no discernible reduction in colony formation for either cell
line, a drastic effect was observed at 20 µM. Herein, the colony formation of the WiDr line
dropped to 24%, while the HT-29 line showed a complete loss of its ability to form colonies
(Figure 5b).
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Flow cytometry confirmed these findings (Figure 5c,d), with a marked shift toward
apoptosis and necrosis after HAMLET treatments. The apoptotic cell population of WiDr
decreased by 10% at 10 µM and increased 1.25-fold at 20 µM, whereas HT-29 showed a
dramatic increase: 10-fold and 20-fold at 10 µM and 20 µM, respectively. The shift toward
necrosis was even more pronounced, especially for HT-29, which showed staggering 44-fold
and 47-fold increases at these concentrations.

However, in all these assays, WiDr consistently showed greater resistance. Taking
these observations together (Figure 5a–d), it is clear that WiDr’s resistance to HAMLET far
exceeds that of the HT-29 line despite having identical mutations. Such results indicate that
the response to the HAMLET complex may be controlled by factors beyond mere genomic
or mutational characteristics, prompting us to investigate the different energetics of these
cell lines.

3.5. Bliss Synergy Model Calculation

Opposite to their responses to HAMLET, both cell lines showed similar tendencies
when treated with FOLFOX. They responded to FOLFOX in a dose-dependent manner
(Figure 6a). When calculating the IC50 doses of both cell lines, there was a minimal
difference between them, with WiDr’s IC50 dose being 15.1 + 0.378 µM and HT-29’s being
14.5 + 0.363 µM (5-FU + oxaliplatin) (Figure 6a,b).
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The results of the commonly used chemotherapy drug combination of FOLFOX and
the HAMLET complex showed a slight synergy between FOLFOX and HAMLET but only
in the WiDr cell line. The highest significant synergy score obtained was when treating
cells with 3 µM of HAMLET + 1.25 of FOLFOX (50 µM of 5-FU + 1.25 µM of oxaliplatin).
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However, most of the combinations of 3 µM of HAMLET and FOLFOX showed a synergistic
tendency, while most of the combinations with 1 or 5 µM of HAMLET + FOLFOX showed
an additive tendency (Figure 7). The results suggest that these two drugs do not interfere
with each other and, in some cases, could even exert a synergistic cytotoxic effect on the
cells, which does not depend on the BRAF mutation.
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Figure 7. Heatmaps and tables of Bliss synergy and antagonism calculation. (a) WiDr cell line; (b) HT-
29 cell line. Heatmaps show decrease in viability when treating with varying doses of FOLFOX
and/or HAMLET compared with control (100% viability). Tables show synergy or antagonism index.
Higher positive number with blue color shows significant synergy, and negative number with red
color shows significant antagonism (not present). *—p < 0.05.

3.6. Glycolytic and Mitochondrial Activity Determination

The observations in Figure 5 show a remarkable divergence in cell lines despite sharing
a similar BRAF mutation profile. This prompted an investigation into whether variations in
energetic metabolism could account for these differences. Therefore, we compared the cell
lines with BRAF mutations for their mitochondrial and glycolytic activity to determine if
this was the case. To test the hypothesis, we selected the WiDr and HT-29 cell lines with the
same mutational status but different sensitivity to the HAMLET complex and compared
their mitochondrial and glycolytic activity. The data of the bioenergetic analysis are
presented in Figure 8. The basal mitochondrial respiration of HT-29 cells was significantly
higher than that of WiDr cells (the first three points in the oxygen consumption curves
in Figure 8a). However, after the addition of the ATP synthase inhibitor oligomycin (to
reveal the proton-leak-stimulated OCR), carbonyl cyanide-4-phenylhydrazone (to discover
the maximal respiratory capacity), and the respiratory chain complexes I and III inhibitors
rotenone and antimycin A (to assess the non-mitochondrial oxygen consumption), there
were no significant differences between the respiration rates of WiDr and HT-29 cells. To
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summarize the results, the WiDr cell line showed a higher resistance to HAMLET than the
HT-29 cell line. Moreover, the cellular response to HAMLET was influenced by factors
independent of the genomic characteristics of the cells or their mutational status, leading
us to characterize the two cell lines by their bioenergetic properties for further insights.

Medicina 2024, 60, x FOR PEER REVIEW 14 of 21 
 

 

fluenced by factors independent of the genomic characteristics of the cells or their muta-
tional status, leading us to characterize the two cell lines by their bioenergetic properties 
for further insights. 

 
Figure 8. Comparison of the mitochondrial and glycolytic activity of WiDr and HT-29 cells. In (a), 
mitochondrial oxygen consumption curves are presented as averages ± standard deviations of each 
measurement time point (n = 3 of 3 technical replicates). In (b), summarized mitochondrial capacity 
data are calculated from the curves in (a). * and **—statistically significant differences compared 
with WiDr; p < 0.05 and p < 0.01, respectively. In (c), glycolytic activity is monitored as pH changes 
simultaneously with the oxygen consumption rate. In (d), energy phenotype plots represent mito-
chondrial and glycolytic energy capacity distributions under normal (basal) and stressed conditions. 
* and **—statistically significant differences compared with basal conditions for the same cell type; 
p < 0.05 and p < 0.01, respectively. ^—statistically significant difference compared with the same 
parameter of WiDr; p < 0.05. OCR—oxygen consumption rate, ECAR—extracellular acidification 
rate, Oli—oligomycin, FCCP—carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone, Ro—rote-
none, and AA—antimycin A. 

Further analysis of mitochondrial function revealed a significant increase in the basal 
mitochondrial OCR of HT-29 cells compared with the WiDr line (Figure 8b). The average 
OCR in HT-29 was about two-fold higher than in WiDr. Similarly, the oligomycin-sensi-
tive or mitochondrial-ATP-production-coupled OCR was two-fold lower in WiDr cells. 
However, the spare respiratory capacity detected after permeabilizing the inner mem-
brane for H+ with carbonyl cyanide-4-phenylhydrazone and proton-leak-driven respira-
tion was not significantly different in WiDr and HT-29 cells. 
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Figure 8. Comparison of the mitochondrial and glycolytic activity of WiDr and HT-29 cells. In
(a), mitochondrial oxygen consumption curves are presented as averages ± standard deviations of
each measurement time point (n = 3 of 3 technical replicates). In (b), summarized mitochondrial
capacity data are calculated from the curves in (a). * and **—statistically significant differences
compared with WiDr; p < 0.05 and p < 0.01, respectively. In (c), glycolytic activity is monitored
as pH changes simultaneously with the oxygen consumption rate. In (d), energy phenotype plots
represent mitochondrial and glycolytic energy capacity distributions under normal (basal) and
stressed conditions. * and **—statistically significant differences compared with basal conditions for
the same cell type; p < 0.05 and p < 0.01, respectively. ˆ—statistically significant difference compared
with the same parameter of WiDr; p < 0.05. OCR—oxygen consumption rate, ECAR—extracellular
acidification rate, Oli—oligomycin, FCCP—carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone,
Ro—rotenone, and AA—antimycin A.

Further analysis of mitochondrial function revealed a significant increase in the basal
mitochondrial OCR of HT-29 cells compared with the WiDr line (Figure 8b). The average
OCR in HT-29 was about two-fold higher than in WiDr. Similarly, the oligomycin-sensitive
or mitochondrial-ATP-production-coupled OCR was two-fold lower in WiDr cells. How-
ever, the spare respiratory capacity detected after permeabilizing the inner membrane for
H+ with carbonyl cyanide-4-phenylhydrazone and proton-leak-driven respiration was not
significantly different in WiDr and HT-29 cells.

The glycolysis activity of the cells was assessed as the extracellular acidification rate
simultaneously with the OCRs in the identical probes. The basal glycolytic activity in
HT-29 cells was significantly higher than that in WiDr, and the difference became even
more prominent after each addition of mitochondrial inhibitors (Figure 8c). In addition, cell
energy phenotype analysis indicated that unstressed HT-29 cells had the same glycolytic
activity as WiDr under maximal mitochondrial stress conditions (Figure 8d). Thus, the
more intensive glycolytic response to mitochondrial failure indicated that HT-29 cells had a
higher capacity to maintain energetic balance. On the other hand, the sensitive regulation
of bioenergetic metabolism might point to the elevated energetic demands of the HT-29
cells, possibly explaining their higher sensitivity to HAMLET treatment.
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3.7. Mitochondrial Respiration

We conducted experiments to assess HAMLET’s impact on mitochondrial respiration
in HT-29 and WiDr cancer cells, displaying similar BRAF mutant genetic characteristics.
Using glutamate/malate for complex I and succinate for complex II as substrates, we
measured the mitochondrial respiration rates at 37 ◦C. We found that HAMLET, at doses
of 2 and 5 µM, did not modify the non-phosphorylating (V0) respiration rate in either cell
type, as indicated in Figure 9a. However, HAMLET significantly diminished the state 3
(VADP) respiration rate in HT-29 cells by 17% at 2 µM and by 23% at 5 µM, while it had
no such effect on WiDr cells, as depicted in Figure 9b when compared with control cells
(p < 0.05). In HT-29 cells, pretreatment with HAMLET at 5 µM led to a 17% reduction in
the maximal mitochondrial respiration (Vmax) with complex I and II substrates, whereas
2 µM of HAMLET had no significant effect, as shown in Figure 9c against untreated cells
(p < 0.05). Neither 2 µM nor 5 µM of HAMLET influenced the maximum mitochondrial
respiration rate in WiDr cells. Adding cytochrome c to the mitochondrial mix, as seen in
Figure 9d, confirmed that HAMLET pretreatment at both concentrations did not impact the
mitochondrial respiration rate (Vcyt. c) in either cell line, suggesting no change in mitochon-
drial outer membrane permeability. Lastly, the respiratory control index (RCI), observed
in Figure 9e, remained stable in cells pre-treated with HAMLET at both concentrations
compared with the control cells in both the HT-29 and WiDr cell lines.
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(V0) respiration rate in the presence of 1 mln/mL of cells and glutamate (5 mM) plus malate (2 mM);
(b) state 3 respiration rate in the presence of ADP (1 mM; VADP); (c) mitochondrial maximal res-
piration rate in the presence of succinate (12 mM; Vsucc); (d) mitochondrial respiration rate in the
presence of cytochrome c (32 µM; Vcyt c); and (e) mitochondrial respiratory control index (RCI)
(VADP/V0)). * p < 0.05 compared with the control group.

4. Discussion

In a breakthrough approach, researchers at Lund University have pioneered the use of
HAMLET as a novel molecular agent for the treatment and prevention of CRC. HAMLET’s
ability to selectively accumulate in tumor tissue and its demonstrated efficacy in reducing
tumor burden and mortality in Apc(Min)(/+) mice heralds a new era in targeted therapies
for CRC [13,24].

In our previous study, we found resistance of BRAF mutant cancer cells to HAM-
LET [16]. One of the objectives of the current research was to determine whether this
mutation is related to the effects of this complex. According to the data from this study, in
cell lines with an identical BRAF mutation, the resistance of WiDr to HAMLET is signifi-
cantly higher than that of the HT-29 line. To date, there has been limited investigation of the
interaction between HAMLET and CRC. This gap is further bridged only by the parallel
investigation of BAMLET, a similar compound derived from bovine alpha-lactalbumin.
Behrouj and colleagues have been investigating the effect of BAMLET on cell survival
mechanisms in RAS-mutant HCT116 cells. BAMLET reduces CK1α expression, interferes
with key signaling pathways, and inhibits cellular recycling processes, leading to increased
cell death, particularly when combined with specific kinase inhibitors [25]. Compared
with the BAMLET study cell line, intriguingly, unpublished observations from our labora-
tory suggest that HCT116 cells, despite having a different mutational profile than HT-29
cells, respond positively to HAMLET, mirroring the response in HT-29. Such findings
hint that HAMLET may be broadly applicable across different CRC mutations. However,
factors other than genomic or mutational specificities may control the response to the
HAMLET complex.

One of the potential factors are mitochondrial functions and bioenergetic analysis. We
found that HAMLET’s inhibitory effect on mitochondrial respiration is cell-type-specific
within the context of BRAF mutant colorectal cancer cells. The different sensitivities to
HAMLET in BRAF mutant cells might be due to differences in their energy metabolism.
Specifically, HT-29 cells exhibit significantly higher basal mitochondrial respiration and
glycolytic activity compared with WiDr cells. Despite their mutation status, HT-29 cells are
more sensitive to HAMLET, which could be linked to their higher energetic demands, as
indicated by their more intensive glycolytic response to mitochondrial stress. This suggests
that the ability of HT-29 cells to maintain energy balance is greater than that of WiDr cells,
which might contribute to their differing responses to HAMLET treatment. The results
imply that factors beyond genomic characteristics, such as cellular energy metabolism,
play a role in the efficacy of HAMLET against colorectal cancer cells. Only one study has
investigated the interaction between HAMLET and mitochondrial respiration. The authors
posited that HAMLET induces cell death, highlighting its potential to target and kill tumor
cells via a direct effect on their mitochondrial function [26].

Our study confirms the critical role of metabolic profiles in the response of cancer
cells to treatments, as previously noted by Lin et al. [27]. Specifically, we found that HT-29
cells, which have higher glycolytic rates than WiDr cells, are more susceptible to HAMLET,
a therapeutic protein complex. This susceptibility is based not only on genetic markers
but also on distinct metabolic behaviors, a notion supported by Rebane-Klemm et al.,
who found metabolic phenotype variations in colorectal tumors with KRAS and BRAF
mutations [28]. We found that HAMLET selectively impairs mitochondrial respiration in
HT-29 cells, even though both HT-29 and WiDr cells share a BRAF mutation, suggesting that
the metabolic phenotype dictates treatment sensitivity. This is consistent with the findings
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of Cha et al. that genetic alterations such as APC loss can drive metabolic changes in cancer
cells [29]. Our results differ from the effects of vitamin C on KRAS-mutant colon cancer
reported by Cenigaonandia-Campillo et al., suggesting that different treatments may exploit
unique metabolic vulnerabilities [30]. In addition, the studies by Spier et al. and Monterisi
et al. highlight the role of mitochondrial function in cell fate and survival, emphasizing
the interplay between metabolic and genetic factors in cancer therapeutics [31,32]. Kealey
et al. also highlight the complexity of cancer cell bioenergetics, as TP53 deficiency and
KRAS signaling can alter cellular responses to various substrates, indicating that metabolic
responses are multifaceted and context-dependent [33]. Collectively, our findings highlight
the importance of an integrative approach that considers both genetic mutations and
metabolic features in the development of targeted cancer therapies.

We included a scheme that illustrates the mechanism (Figure 10) where a combination
of HAMLET and the components of FOLFOX (oxaliplatin and 5-fluorouracil) induces cancer
cell death. The diagram highlights the effect of these agents on mitochondrial function, a
critical aspect of this study’s findings. It shows that while HAMLET alone reduces ATP
production and cell respiration, its combination with oxaliplatin further disrupts these
processes, as demonstrated by our institution’s previous studies with platinum-based drugs
in various cancer cell lines or Wei Sun et al.’s study [34,35]. This combined effect impairs
mitochondrial function and increases mitochondrial membrane permeability, leading to
a synergistic escalation of cell death. The following visual representation clarifies the
underlying biochemical interactions and supports this study’s hypothesis of a combined
therapeutic effect against CRC cells.
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components (oxaliplatin and 5-fluorouracil). The combined effect of FOLFOX component oxaliplatin
and HAMLET is most likely exerted via an effect on mitochondria. HAMLET decreases cell ATP
production and cell respiration, and our previous studies show that platin-based drugs reduce ATP
production, respiration, and mitochondria membrane permeability (Caco-2, AGS, and T3M4 with
cisplatin). The combined effect of HAMLET and platin-based drugs on mitochondria can, in some
cases, have synergistic effects, leading to increased cell death via mitochondrial damage. ↑ increaced
↓ decreased.
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The results of our study on the efficacy of HAMLET in combination with FOLFOX
in CRC are consistent with the work of James M.I. et al., who reported that curcumin
safely enhances the effects of FOLFOX in a clinical setting [36]. We extend this by showing
that the HAMLET–FOLFOX combination selectively reduces viability in BRAF wild-type
explants, highlighting the potential for tailored therapies based on genetic profiles and
laying the foundation for future clinical applications. For example, a similar bioactive agent
to HAMLET is resveratrol in combination with 5-fluorouracil [37], which could be used as
an adjunct to conventional chemotherapy.

Our goal is to translate our promising in vitro and ex vivo findings into clinical trials to
evaluate the efficacy and safety of this combination therapy in CRC patients. This approach
has the potential to improve outcomes, particularly in cases resistant to conventional
treatments.

In addition, the diverse responses of CRC cell lines to treatment, which are influenced
by mitochondrial dynamics, underscore the need for personalized medicine in CRC thera-
pies [18,19]. Our research suggests that incorporating genetic and metabolic profiling into
treatment design could lead to more targeted and effective strategies, with the ultimate
goal of improving patient prognoses and treatment responses.

The drawbacks of our research include a limited sample size, which may not reflect
the diversity of the broader CRC population, affecting the generalizability of our findings.
In addition, we focused on the BRAF mutation and may have overlooked the impact of
other mutations on the efficacy of HAMLET [38]. Moreover, keeping the biopsy tissue alive
and maintaining its native characteristics outside the body is challenging. Finally, while
informative, our in vitro and ex vivo models cannot fully replicate the complex biology
of human CRC, including the tumor microenvironment and metabolic effects, which are
key to clinical translation. For instance, the examination of intra-tumoral heterogeneity
addresses the challenge of differential responses within different cancer cell subpopulations
within a single tumor [39]. Further investigations with more comprehensive models are
required to validate our findings.

To summarize, our research supports the concept that personalized medicine, tailored
to individual genetic and metabolic profiles, may improve outcomes in CRC. Despite this
study’s limitations, HAMLET, a combination therapy component for CRC, paves the way
for future research that will hopefully translate these findings into clinical practice, offering
new hope for targeted, effective treatments for patients with this challenging disease.

5. Conclusions

Our study demonstrates that HAMLET and FOLFOX together significantly lower the
viability of BRAF wild-type CRC explants via a synergistic effect. HAMLET also moderately
inhibits mitochondrial respiration in these cancer tissues. We observed varied responses to
HAMLET in CRC BRAF mt cell lines, with WiDr cells being more resistant than HT-29 cells,
highlighting the influence of bioenergetic and mitochondrial factors on drug responses.
The synergy between HAMLET and FOLFOX in WiDr cells underscores the potential of
combined therapies, emphasizing the need to consider both genetic and metabolic aspects
in CRC treatment.
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