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Abstract: Background and Objectives: The global prevalence of chronic kidney disease (CKD) is on
the rise, posing important challenges for healthcare systems. Thus, the search for new factors
potentially involved in the pathogenesis, progression and complications of early CKD remains urgent.
Marinobufagenin (MBG) is a natriuretic endogenous cardiotonic steroid, and increased circulating
levels of it may accelerate kidney damage. In this study, we explored the possible clinical significance
of measuring urinary marinobufagenin (uMBG) in patients with non-advanced CKD. Materials and
Methods: One hundred and eight adult CKD patients (mean age 71.6 ± 10 years, 70.4% male; mean
eGFR 40.54 ± 17 mL/min/1.73 m2) were enrolled in this cross-sectional study. uMBG was measured
together with a series of clinical, anthropometric, laboratory and instrumental analyses. Twenty-five
healthy matched subjects served as controls for the uMBG measurement. Results: The uMBG values
were lower in the patients with CKD as compared to those of the controls (0.37 [IQR: 0.25–0.45] vs.
0.64 [0.46–0.78] nmol/L. p = 0.004), and a significant trend in eGFR levels was noticed across the
decreasing uMBG tertiles (p = 0.03). Regarding the correlation analyses, the uMBG values remained
robustly associated with the eGFR in multivariate models employing either uMBG or eGFR as the
dependent variable (β = 0.248; p = 0.01 and β = 0.139; p = 0.04, respectively). Besides the eGFR,
the independent predictors of uMBG values in this population were the use of statins (β = −0.326;
p = 0.001), the presence of diabetes (β = 0.243; p = 0.009) and urine sodium (β = 0.204; p = 0.01).
Conclusions: Reduced uMBG excretion may reflect impaired renal clearance, which may contribute to
the detrimental effects attributed to this hormone due to systemic accumulation. Future studies are
needed to clarify the biological mechanisms placing uMBG at the crossroad of sodium intake and
the presence of diabetes in CKD-suffering individuals and to verify whether a statin treatment may
somewhat limit the detrimental effects of MBG in the presence of impaired renal function.

Keywords: marinobufagenin; chronic kidney disease; biomarker

1. Introduction

Nowadays, the prevalence of chronic kidney disease (CKD) has reached pandemic
proportions, posing a significant burden across health care systems at the global level [1].
CKD portends an increased cardiovascular risk, which parallels the severity of renal
function impairment, with it being the highest among individuals with end-stage kidney
disease (ESKD) undergoing chronic dialysis [2]. Greater research efforts are thus needed to
improve the understanding of CKD pathophysiology, to discover alternative therapeutic
targets, as well as to identify novel biomarkers to improve cardio-renal risk prediction,
particularly in the earlier stages of disease.
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Marinobufagenin (MBG) is an endogenous cardiotonic steroid (CTS) which acts by
inhibiting the ubiquitous Na+/K+-ATPase membrane pump, triggering the activation of
specific ionic intracellular pathways [3]. The acute effects of MBG include the regulation
of the sodium and volume balance, peripheral vasoconstriction, and the enhancement
of cardiac inotropism [4]. Accordingly, the blood levels and urine excretion of MBG are
increased in experimental models of high salt intake and volume expansion; by the same
token, elevated circulating MBG levels has been found among individuals with essential
hypertension, congestive heart failure and pregnancy disorders [5].

The kidney plays a key role in maintaining systemic MBG balance by regulating
urinary excretion [3]. Hence, not surprisingly, MBG accumulates in the blood of anuric
individuals necessitating chronic dialysis [6–8], while in kidney transplant recipients, higher
circulating MBG levels be associated with the severity of the graft function impairment [9].

Of note, chronic experimental MBG administration promotes fibrosis in the kidney, an
effect that could be attenuated by selective anti-MBG antagonists [10], while, in humans,
the reversal of renal ischemia due to renal artery angioplasty leads to a parallel decrease in
MBG levels in the blood [11]. Hence, more than being regarded as a simple epiphenomenon,
higher circulating MBG levels have been looked upon as accelerators of renal damage,
and blood MBG measurements in CKD might impart additional information for risk
stratification [12].

Changes in urinary MBG excretion (uMBG) are strongly influenced by dietary sodium
intake and may reflect pathological cardiac and vascular remodeling in hypertensive
individuals [13–15]. Yet, to date, evidence is lacking regarding the impact of reduced
renal function on uMBG levels, particularly in non-advanced CKD; this hampers a definite
interpretation of the role of this hormone in the setting of renal damage and its validity as a
biomarker of disease severity.

Therefore, with this information in mind, we have designed a pilot, cross-sectional,
proof-of-concept study for the first time to evaluate the possible clinical significance of
uMBG measurement in a small cohort of individuals with non-advanced CKD in relation
to the severity of renal impairment, the presence of co-morbidities and other clinical factors
that could impact the MBG balance.

2. Materials and Methods
2.1. Patients’ Selection

Three-hundred and six consecutive adult individuals with CKD attending an out-
patient clinic in the University Hospital of Catanzaro, Italy, were screened to enter this
pilot, observational, cross-sectional study. The main inclusion criteria were having an age
>18 years, the presence of mild-to-moderate CKD (NFK stages 2–4; CKD-Epi eGFR <90
and >15 mL/min/1.73 m2) and stable renal function with no documented transitory or
permanent decrease in the eGFR (≥25% from values recorded at the previous visit) over
the 6 months preceding the study. Infections, cancer, recent cardiovascular events requiring
hospitalization, active inflammatory states, peripheral oedema, uncontrolled hypertension,
severe proteinuria (>3 g/24 h) or having previously undergone kidney transplantation
represented the main exclusion criteria. The study was approved by the Local Institutional
Review Board, and all participating subjects provided written informed consent.

2.2. Clinical Assessment

A complete baseline assessment was performed on every participant before starting
the planned outpatients visits. Clinical, demographic and anthropometric parameters were
recorded on a standardized, electronic case report form. The patients’ history and medical
therapy information was carefully collected via interview and confirmed by the checking
patients’ records. Their blood pressure was measured three times at rest, and the average
value was recorded for analysis. Laboratory parameters were measured for all the patients
according to the standard methods used in the clinical routine.
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2.3. Urine MBG (uMBG) Measurement

Urine samples were collected on the second morning and were centrifuged at 1227 g
for 15 min at 4 ◦C. Aliquots were immediately stored at −80 ◦C until they were thawed
for batch analysis. MBG was measured in the urine specimens (uMBG) using an ELISA
commercially available kit (BlueGene Biotech, Shanghai) following the manufacturer’s
instructions. All specimens were often diluted to obtain a concentration for the optimal
density according to the ELISA kit instruction. Enzymatic reactions were quantified in an
automatic microplate photometer. The measurements were taken blind and in duplicate,
and the levels are expressed as nmol/L. To minimize the potential influence of urine
dilution, all data analyses were repeated after the normalization of uMBG for urinary
creatinine. Twenty-five healthy subjects with conserved renal function, matched for age
and sex with the CKD patients, served as the controls for uMBG measurement. The control
subjects underwent a low-sodium-level diet (<2300 mg/24 h) during the day before the
study to minimize the potential bias on the MBG balance.

2.4. Statistical Analysis

Statistical analysis was performed using the SPSS package (version 24.0; IBM cor-
poration), MedCalc Statistical Software (version 14.8.1; MedCalc Software bvba) and the
GraphPad prism package (version 8.4.2, GraphPad Software, San Diego, CA, USA). Data
are shown as mean ± SD, median [IQ range] or frequency percentage, as appropriate.
Differences between groups were assessed using the unpaired t-test for normally dis-
tributed values, the Mann–Whitney U test for non-parametric values and the chi-square
test, followed by a Fisher’s exact test for frequency distributions.

Differences in clinical parameters across the tertiles of uMBG were assessed using
ANOVA for continuous covariates and chi-square tests for categorical data (p for trend).
Pearson (R) and the Spearman (Rho) correlation coefficients were employed to test the
correlations between variables, as appropriate. Before testing the correlations, all the val-
ues showing a skewed distribution were log transformed to better approximate normal
distributions. Multiple regression analyses were performed to assess the independent
relationships first by employing fully adjusted models including all univariate correlates
of uMBG values, respectively. The variables included in the equations (e.g., serum creati-
nine/eGFR) were not tested in the models, including the corresponding formulas to avoid
co-linearity. Stratified models were also built by removing single covariates to explore
possible confounding. Data are expressed as partial correlation coefficients (β) and p value.
All results are considered to be significant for p values ≤ 0.05.

3. Results
3.1. Clinical Characteristics and uMBG Measurement in the Study Cohort

The final study population consisted of 108 adult patients (mean age 71.6 ± 10 years,
70.4% male) who met the inclusion/exclusion criteria for being eligible to participate. Mean
eGFR (CKD-Epi) was 40.54 ± 17 mL/min/1.73 m2. The CKD etiology was diabetic kidney
disease in half of the population, nephroangiosclerosis in 16.7%, glomerulonephritides in
12.9%, interstitial diseases in 7.4% and rare diseases, including ADPKD, in the remaining
3.7%. The prevalence of cardiovascular comorbidities spanned from 91.6% (hypertension)
to 5.6% (history of stroke). Diabetes was present in 54.6% of the individuals. Almost all the
patients were undergoing combined anti-hypertensive therapy, which frequently included
an RAS blocker (82.4%). Roughly one half of the patients underwent diuretic therapy, while
the majority were on statins (64.8%) and hypouricemic agents (74.1%).

The uMBG values in the CKD population were significantly lower compared with
those measured in the healthy controls (0.37 [IQR: 0.25–0.45] vs. 0.64 [0.46–0.78] nmol/L.
p = 0.004 (Figure 1)). In the patients categorized for tertiles of uMBG excretion, growing
trends across increasing uMBG values were described for BMI (p = 0.01), eGFR (p = 0.03),
hemoglobin (p = 0.03), proteinuria (p = 0.04), urine sodium (p = 0.03) and urine potassium
(p = 0.04). The patients with higher uMBG excretion were also younger (p = 0.01), more



Medicina 2023, 59, 1392 4 of 10

frequently diabetics (p = 0.004), less likely to be on statin therapy (p = 0.001) and displayed
lower levels of urea (p = 0.05) and iPTH (p = 0.04).
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The complete information regarding the characteristics, co-morbidities and active
therapy for all the CKD patients and individuals stratified for uMBG tertiles are displayed
in Table 1.

Table 1. Main characteristics of the whole cohort and in patients stratified for tertiles of uMBG
(nmol/L). Statistical differences across uMBG strata (p for trend) are highlighted in bold.

All CKD
n:108

uMBG
<0.29
n:36

uMBG
0.29–0.41

n:36

uMBG
>0.41
n:36

p for Trend

Age (yrs) 71.6 ± 10 76 ± 8.8 71.6 ± 9.5 67 ± 10 0.01
Male sex (%) 70.4 69.4 72.2 69.4 0.92

Current smoking (%) 4.2 0 2.8 8.3 0.16
Diabetes (%) 54.6 27.7 61.1 75 0.004

Heart failure (%) 13.9 13.8 19.4 8.3 0.78
Ischemic heart disease (%) 30.6 22.2 36.1 33.3 0.66

Stroke (%) 5.6 11.1 2.8 2.8 0.85
Peripheral Vasculopathy (%) 21.3 27.8 13.9 22.2 0.88

Hypertension (%) 91.6 86.1 97.2 91.7 0.36
CKD etiology

-DKD 50 27.8 50 72.2 0.01
-Nephroangiosclerosis 16.7 22.2 11.1 16.7 0.70

-GNs 12.9 13.9 13.9 11.1 0.86
-Interstitial 7.4 5.5 8.3 8.3 0.72

-Rare/ADPKD 3.7 2.8 2.8 5.5 0.66
Anti-hypertensive therapy

-ACEi/ARBs (%) 82.4 80.5 80.5 86.1 0.82
-Beta-blockers (%) 56.5 41.7 44.4 83.3 0.08

-CCBs (%) 44.4 33.3 66.7 33.3 0.22
-Aldosterone antagonists (%) 5.6 11.1 2.8 2.8 0.68
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Table 1. Cont.

All CKD
n:108

uMBG
<0.29
n:36

uMBG
0.29–0.41

n:36

uMBG
>0.41
n:36

p for Trend

-Frusemide (%) 46.3 50 33.3 55.5 0.47
-Other diuretics (%) 9.3 5.5 2.8 19.4 0.21

ESAs (%) 13.9 19.4 11.1 11.1 0.79
Statins (%) 64.8 86.1 69.4 38.9 0.001

Hypouricemic agents (%) 74.1 55.5 83.3 55.5 0.22
BMI (Kg/m2) 28.7 ± 5.3 25.6 ± 5.1 28.5 ± 5.1 30.1 ± 5.7 0.01

Systolic BP (mmHg) 131.2 ± 19.2 134.6 ± 20.8 132.1 ± 20.2 126.4 ± 15.2 0.12
Diastolic BP (mmHg) 72.7 ± 10.3 71.1 ± 10.2 74.2 ± 10.8 72.1 ± 9.8 0.44

CKD-Epi eGFR
(mL/min/1.73 m2) 40.54 ± 17 34.5 ± 14.6 41.4 ± 15.4 44.6 ± 17.9 0.03

Serum Creatinine (mg/dL) 1.8 ± 0.71 1.90 ± 0.64 1.78 ± 0.69 1.73 ± 0.78 0.18
Urea (mg/dL) 76.9 ± 37.1 85.3 ± 37.5 74.9 ± 28.7 74.3 ± 45 0.05

Glycemia (mg/dL) 111.2 ± 23 109 ± 17 114.8 ± 28.1 108.6 ± 20.6 0.77
Albumin (g/dL) 4.35 ± 0.45 4.34 ± 0.55 4.35 ± 0.38 4.36 ± 0.42 0.82

Serum Sodium (mmol/L) 140.4 ± 3.4 139.5 ± 3.9 140.2 ± 3.3 141.3 ± 2.9 0.18
Serum Potassium (mmol/L) 4.75 ± 0.61 4.64 ± 0.64 4.83 ± 0.56 4.68 ± 0.32 0.65

Serum Calcium (mg/dL) 9.52 ± 0.53 9.40 ± 0.51 9.69 ± 0.45 9.46 ± 0.55 0.58
Serum Phosphate (mg/dL) 3.5 ± 0.73 3.52 ± 0.52 3.56 ± 0.56 3.60 ± 0.87 0.23

Serum Magnesium (mg/dL) 2.09 ± 0.38 1.93 ± 0.38 2.23 ± 0.31 1.83 ± 0.35 0.54
Red blood cells (n×106) 4.5 ± 0.9 4.46 ± 1.2 4.69 ± 0.7 4.50 ± 1.02 0.68

Hemoglobin (g/dL) 12.9 ± 1.7 12.4 ± 1.9 13.1 ± 1.6 13.3 ± 1.7 0.03
Platelets (n×103) 223.8 ± 69 229.4 ± 69.9 214 ± 70.3 231 ± 67.3 0.52

Total Cholesterol (mg/dL) 141 ± 32.6 138.7 ± 16.7 142.6 ± 30.2 140.3 ± 38.2 0.48
LDL Cholesterol (mg/dL) 73 ± 30.6 67 ± 21.7 74.5 ± 28.7 73.4 ± 38.6 0.73

Triglycerides (mg/dL) 103.5 [71.5–176] 145.5 [86.2–243] 94.5 [63.2–102.7] 111.5 [74.7–146] 0.59
iPTH (pg/mL) 89.2 [52.7–159.5] 135.4 [55.9–191.4] 91.8 [51.7–126.8] 75.2 [50.7–158] 0.04

Uric Acid (mg/dL) 5.4 ± 1.6 5.31 ± 1.46 5.48 ± 1.74 5.35 ± 1.76 0.86
Creatinuria (mg/dL) 11.5 [9.4–16] 11.1 [3.1–13.2] 11.4 [9.4–17.2] 12.7 [8.9–16.8] 0.37

Proteinuria (g/24 h/1.73 m2) 0.287 [0.124–1.035] 0.14 [0.07–0.45] 0.19 [0.10–0.65] 0.25 [0.13–1] 0.04
Urine sodium (mg/24 h) 150.9 ± 58.9 133 ± 62.7 139.9 ± 50.9 170.3 ± 73 0.03

Urine potassium (mg/24 h) 49.3 ± 16.8 43.4 ± 9.1 49.5 ± 18.8 54.7 ± 18.3 0.04
uMBG (nmoL/L) 0.37 [0.25–0.45] 0.23 [0.21–0.24] 0.37 [0.31–0.39] 0.52 [0.47–0.71] <0.001

Legend: CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; GNs: glomerulonephritis;
ADPKD: autosomal polycystic kidney disease; ACEi: ACE inhibitors; ARBs: angiotensin receptor blockers; CCBs:
calcium channel blockers; ESAs: erythropoiesis stimulating agents; BMI: body mass index; BP: blood pressure;
LDL: low-density lipoprotein; IPTH: intact parathyroid hormone; uMBG: urine marinobufagenin.

3.2. Clinical Correlates of uMBG in CKD Patients

In univariate analyses, uMBG was directly associated with BMI (R = 0.259; p = 0.008),
eGFR (R = 0.240; p = 0.01), hemoglobin (R = 0.232; p = 0.01), proteinuria (R = 0.258; p = 0.02),
urine potassium (R = 0.275; p = 0.03), urine sodium (R = 0.241; p = 0.03) and the presence
of diabetes (Rho = 0.211; p = 0.03), while the inverse predictors were age (R = −0.311;
p = 0.001) and the use of statins (Rho = −0.256; p = 0.009). In a fully adjusted multivariate
model including all the univariate correlates, only the use of statins (β = −0.326; p = 0.001),
the presence of diabetes (β = 0.243; p = 0.009), eGFR (β = 0.248; p = 0.01) and urine sodium
(β = 0.204; p = 0.01) remained significantly associated with uMBG excretion, while the
correlations with BMI, urine potassium, age, hemoglobin and proteinuria were lost. Of
note, forcing diuretic use (any type) in the model did not affect the relationship between
uMBG and urine sodium. The fully adjusted model held considerable power, explaining the
33% of the total uMBG variability in this cohort. Interestingly, the correlations with urine
potassium (β = 0.118; p = 0.04) and hemoglobin (β = 0.109; p = 0.04) reattained statistical
significance in an exploratory model excluding eGFR (R2 = 28%; p < 0.001), suggesting a
likely confounding effect of residual renal function on such univariate relationships. By
the same token, significant associations between uMBG and, respectively, BMI (β = 0.289;
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p = 0.03) and proteinuria (β = 0.302; p = 0.04) re-emerged only in a separate model excluding
diabetes (R2 = 34%; p = 0.008), thereby indicating a significant modulating effect of this
disorder. Table 2 and Figure 2 provide detailed results from the correlation analyses of
uMBG as a reference variable.

Table 2. Univariate and multiple correlation analysis of (log) uMBG. Statistically significant associa-
tions at multivariate analyses are highlighted in bold.

Univariate Correlation
Coefficient p

Age −0.311 0.001
Statins −0.256 0.009

BMI 0.259 0.008
eGFR 0.240 0.01

Hemoglobin 0.232 0.01
(log)Proteinuria 0.258 0.02
Urine potassium 0.275 0.03

Urine sodium 0.241 0.03
Diabetes 0.211 0.03

Multivariate standardized
correlation coefficient (β) p

Model 1: Fully adjusted
Statins −0.326 0.001

Diabetes 0.243 0.009
eGFR 0.248 0.01

Urine sodium 0.204 0.01
BMI 0.151 0.09

Urine potassium 0.093 0.28
Age −0.059 0.54

Hemoglobin 0.058 0.54
(log)Proteinuria 0.049 0.59

Model 2: Excluding eGFR
Diabetes 0.254 0.006
Statins −0.380 0.01

Urine sodium 0.192 0.03
Urine potassium 0.118 0.04

Hemoglobin 0.109 0.04
Age −0.015 0.66
BMI 0.109 0.54

(log)Proteinuria −0.012 0.79
Model 3: Excluding Diabetes

Statins −0.231 0.01
BMI 0.289 0.03

(log)Proteinuria 0.302 0.04
eGFR 0.274 0.05

Urine sodium 0.196 0.05
Age 0.196 0.18

Urine potassium 0.123 0.34
Hemoglobin 0.034 0.80

Model 1 (fully adjusted): Multiple R = 0.57, R2 = 33%; p < 0.001; Model 2: Multiple R = 0.53, R2 = 28%; p < 0.001;
Model 3: Multiple R = 0.58, R2 = 34%; p = 0.008; Legend: BMI: body mass index; eGFR: estimated glomerular
filtration rate.
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4. Discussion

In this cross-sectional study, we explored the clinical significance of urinary mari-
nobufagenin measurements in patients with non-advanced chronic kidney disease. Al-
though they are preliminary, various findings from our study deserve, in our opinion, a
focused discussion.

First of all, the uMBG levels found in the CKD patients were, on average, significantly
lower compared with those measured in the healthy controls. Hence, renal function impair-
ment might somewhat influence uMBG excretion; in line with this view, the correlation
analyses demonstrated a close association between uMBG and eGFR, and such a relation-
ship remained independent from potential confounders in a robust multivariate regression
model employing uMBG as the dependent variable.

The observational nature of our study prevents us from clarifying the biological
mechanisms underlying the association found between uMBG excretion and the severity
of CKD. Under physiological conditions, MBG is released from the adrenocortical glands
in response to various stimuli, including volume expansion, sodium overload and RAS
activation [3]. MBG is freely filtered into urine, but the excretion mechanism, overall
clearance and peripheral metabolism could be largely affected by the presence of a kidney
impairment. Increased blood MBG levels have already been reported in anuric individuals
undergoing chronic dialysis treatment [6,7,16], while in kidney transplant recipients with
partially impaired renal function, higher blood MBG levels were inversely related to
residual eGFR and predicted adverse renal outcomes [9]. By the same token, the blood MBG
levels were increased in another small CKD cohort [17], while in hypertensive individuals
with conserved renal function, higher MBG levels were associated with a more rapid eGFR
decline over time [18]. All these observations may suggest a systemic accumulation of
MBG following reduced renal excretion; yet, unfortunately, definite conclusions on such
a topic cannot be drawn due to the lack of simultaneous measurements of MBG in either
blood or urine.

In individuals with arterial hypertension [18], the plasma MBG levels strongly corre-
lated with the severity of albuminuria and proteinuria. In experimental models of human
pre-eclampsia [19], this association may reflect a pivotal contribution of MBG to renovas-
cular damage, which may pave the way for using MBG measurements as a surrogate
indicator of kidney injuries. Partially in line with these findings, we found a direct correla-
tion between uMBG and proteinuria in the univariate analyses. However, in this cohort,
such a relationship was largely confounded by the presence of diabetes, as it remained
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independent only in the exploratory models that were not adjusted for this co-morbidity.
By the same token, we also observed a direct association between uMBG and BMI, which,
again, was nullified in the multivariate regression models including diabetes.

Taken all together, these observations may suggest that diabetes can somewhat impact
upon uMBG excretion. This hypothesis is further supported by the increasing trend in dia-
betes prevalence found across growing tertiles of uMBG, and previous evidence indicates
that endogenous cardiotonic steroids might be causally involved in the pathogenesis of
this disorder [20,21].

Importantly, diabetic kidney disease (DKD) accounts for more than one half of CKD
cases in the present cohort, an observation which reflects epidemiological data that rank
diabetes as the leading cause of CKD in the developed world [22].Yet, despite such a high
prevalence, diabetes remained a robust predictor of uMBG values even in fully adjusted
multivariate models, and the strength of the association between uMBG and diabetes is
only marginally influenced by residual renal function (β = 0.243 vs. 0.254 in multivariate
models with or without eGFR adjustment, respectively).

Two more findings from our study are worth mentioning.
First, the uMBG values in the CKD individuals paralleled the urinary sodium excre-

tion findings, and such a close relationship remained apparently unaffected by possible
confounders, including the use of diuretics. This observation pairs well with previous
experimental [23] and clinical evidence [15,16] and presumably relies on the natriuretic
action of MBG, whose systemic release is mostly caused by a high-level sodium diet [24].
As it is well acknowledged, urinary sodium excretion largely reflects the daily sodium
intake. In this view, short-term changes in uMBG could serve as an additional tool for the
patient’s monitoring compliance to dietary sodium prescriptions in this high-risk setting.
On the other hand, we found a similar, although weaker, relationship with urine potassium
excretion, which, however, appeared to be largely confounded by the severity of renal
function impairment.

Second, and no less important, the clear influence of statin treatment on uMBG
excretion has emerged, as revealed by the significant, decreasing trend in the percentage
of statin users across the growing categories of uMBG excretion. In the fully adjusted
multivariate regression model, such an inverse association was apparently not even affected
by diabetes, ranking as the strongest correlation among all those reported (β = −0.326;
p = 0.001). Despite the fact that the impact of possible unknown confounders on this
relationship cannot be excluded, taken together, these observations may indicate that a
statin treatment, by negatively modulating cholesterol metabolism, could also impact upon
the biosynthesis or peripheral metabolism of MBG, eventually leading to reduced urinary
elimination. In line with this hypothesis, in previous experimental evidence, HMG CoA
reductase inhibitors were found to interfere with the sarcolemmal Na+/K+ pump function
and to exert an anti-arrhythmogenic effect by modulating the expression and activity of
endogenous cardiotonic steroids [25,26].

We acknowledge some key limitations of our study. First, despite the study being
powered enough to perform large multivariate adjustments without model overfitting
occurring, the observational design cannot rule out the presence of a selection bias or
residual confounding, and this prevents us from raising definite assumptions about the
biological mechanisms underlying the relationships found between uMBG and the different
clinical variables. Last, given the lack of a longitudinal phase, we cannot evaluate whether
fluctuations in uMBG over time pair with the changes in renal function, thereby limiting
the potential applicability of this substance as a biomarker of kidney damage.
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5. Conclusions

Individuals with mild-to-moderate CKD display reduced urinary marinobufagenin
levels, which parallel the severity of renal impairment. Future studies on larger, het-
erogeneous populations are advocated to generalize our findings and to shed light on
the biological mechanisms underlying the complex interplay between uMBG excretion,
diabetes, sodium intake and the use of statins in the presence of impaired renal function.
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