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Abstract: Background and Objectives: Omentin-1, also known as intelectin-1, is a novel adipokine with
anti-inflammatory activities implicated in inflammatory diseases and sepsis. We aimed to explore
serum omentin-1 and its kinetics in critically ill patients early in sepsis and its association with
severity and prognosis. Materials and Methods: Serum omentin-1 was determined in 102 critically
ill patients with sepsis during the first 48 h from sepsis onset and 1 week later, and in 102 age- and
gender-matched healthy controls. The outcome of sepsis at 28 days after enrollment was recorded.
Results: Serum omentin-1 at enrollment was significantly higher in patients compared to controls
(763.3 ± 249.3 vs. 451.7 ± 122.3 µg/L, p < 0.001) and it further increased 1 week after (950.6 ± 215.5
vs. 763.3 ± 249.3 µg/L, p < 0.001). Patients with septic shock (n = 42) had higher omentin-1 compared
to those with sepsis (n = 60) at enrollment (877.9 ± 241.2 vs. 683.1 ± 223.7 µg/L, p < 0.001) and
1 week after (1020.4 ± 224.7 vs. 901.7 ± 196.3 µg/L, p = 0.007). Furthermore, nonsurvivors (n = 30)
had higher omentin-1 at sepsis onset (952.1 ± 248.2 vs. 684.6 ± 204.7 µg/L, p < 0.001) and 1 week
after (1051.8 ± 242 vs. 908.4 ± 189.8 µg/L, p < 0.01). Patients with sepsis and survivors presented
higher kinetics than those with septic shock and nonsurvivors (∆(omentin-1)% 39.8 ± 35.9% vs.
20.2 ± 23.3%, p = 0.01, and 39.4 ± 34.3% vs. 13.3 ± 18.1%, p < 0.001, respectively). Higher omentin-1
at sepsis onset and 1 week after was an independent predictor of 28-day mortality (HR 2.26, 95%
C.I. 1.21–4.19, p = 0.01 and HR: 2.15, 95% C.I. 1.43–3.22, p < 0.001, respectively). Finally, omentin-1
was significantly correlated with the severity scores, the white blood cells, coagulation biomarkers,
and CRP, but not procalcitonin and other inflammatory biomarkers. Conclusions: Serum omentin-1
is increased in sepsis, while higher levels and lower kinetics during the first week of sepsis are
associated with the severity and 28-day mortality of sepsis. Omentin-1 may be a promising biomarker
of sepsis. However, more studies are needed to explore its role in sepsis.

Keywords: adipokine; adipose tissue; biomarker; critically ill; intelectin-1; mortality; omentin-1;
sepsis; septic shock

1. Introduction

Omentin-1 is a recently described adipokine, which is also referred to as intelectin-1
or intestinal lactoferrin receptor [1,2]. Omentin-1 is mainly expressed in visceral adipose
tissue, but also in the endothelium, plasma, mesothelial cells, airway goblet cells, the
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ovaries, and the intestine [3]. It is a 35 kDa hydrophilic polypeptide of 313 amino acids
exerting cytokine-like actions. Omentin-1 exhibits insulin-sensitizing, anti-atherosclerotic,
and cardiovascular protective effects through the activation of AMP-activated protein
kinase (AMPK), which inhibits the nuclear factor κB (NF-κB) and suppresses inflamma-
tory response [3]. Through these mechanisms, omentin-1 is implicated in the regulation
of energy homeostasis and immune responses. Indeed, clinical studies have demon-
strated that circulating omentin-1 levels are decreased in obesity, metabolic syndrome, type
2 diabetes, cardiovascular diseases, cancer, and chronic inflammation [4–18].

Experimental studies have demonstrated that omentin-1 inhibits the NF-κB signaling
pathway and the tumor necrosis factor alpha (TNF-α)-induced expression of adhesion
molecules, namely vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion
molecule 1 (ICAM-1), and, thus, blocks the pro-inflammatory actions of TNF-α [19]. Addi-
tionally, omentin-1 inhibits lipopolysaccharide (LPS)-induced expression of inflammatory
mediators in macrophages [20]. It is noteworthy that omentin-1 is a ligand to lactoferrin and
to bacterial-specific carbohydrate residues, and, thus, plays a part in microbial surveillance
and recognition [21,22].

Interestingly, other well-known adipokines, such as adiponectin, leptin, resistin, vis-
fatin, chemerin, and the hepatokine fetuin-A, exert immunomodulatory actions (anti-
inflammatory, pro-inflammatory, or regulatory) and have been implicated in inflammatory
diseases and sepsis [23–34]. Our group has previously demonstrated that these adipokines
are altered in critically ill patients, with sepsis being associated with the severity and
prognosis of sepsis [35–41]. However, omentin-1 has not been thoroughly studied in sepsis.
Recently, a clinical study of critically ill patients showed that increased serum omentin-1
was associated with poor long-term outcomes [42].

Given the anti-inflammatory actions of omentin-1, we hypothesized that serum
omentin-1 is altered in sepsis. In this study, we aim to evaluate serum omentin-1 in
critically ill patients with sepsis at sepsis onset compared to healthy controls. Moreover,
our goal is to investigate serum omentin-1 kinetics during the first week of sepsis and
to explore its association with clinical and inflammatory biomarkers as well as with the
severity and outcome of sepsis.

2. Materials and Methods
2.1. Study Design and Participants

We prospectively enrolled consecutive critically ill patients with new onset sepsis
hospitalized at the mixed (medical and surgical) adult intensive care unit (ICU) of a tertiary
teaching hospital during a 2-year period (August 2013 to July 2015). The inclusion criteria
were as follows: (1) adult patients (aged ≥ 18 years); (2) diagnosis of sepsis during the last
48 h. The exclusion criteria were as follows: (1) age <18 years; (2) pregnancy; (3) diabetes
mellitus; (4) thyroid disease; (5) liver disease; (6) total parenteral nutrition; (7) malignancy;
(8) immunosuppression. We also excluded patients who were hospitalized in the ICU
for less than a week from enrollment to the study. We recorded demographic, clinical,
and routine laboratory data upon enrollment and 1 week after. We followed patients for
28 days from enrollment to the study and the outcome of sepsis was recorded. The study
population was enrolled using the previously established diagnostic criteria of sepsis,
and septic patients were initially categorized into three groups: sepsis, severe sepsis, and
septic shock [43]. However, the analysis of data was conducted after the new consensus
for the definitions of sepsis and septic shock (SEPSIS-3) was reached [44]. In order to
update our analysis, we retrospectively recategorized our cases according to the current
definitions into two groups: sepsis and septic shock. After applying the new criteria for
sepsis, no patient was excluded from the study. We initially enrolled 167 patients. Of these,
65 patients were excluded according to the exclusion criteria, and 102 patients (57 males,
aged 64.7 ± 15.6 years) were included in the analysis.

We also enrolled a control group consisting of healthy subjects who were recruited
from the outpatient laboratory department. For every patient enrolled, we recruited
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a healthy subject matched for age (±5 years) and gender. The same exclusion criteria
were applied to the control group. We also excluded subjects with clinical signs or his-
tory of an acute or chronic infection or inflammatory disease. A total of 102 healthy
subjects were included (57 males, aged 66.4 ± 10.3 years). All subjects or their next of
kin gave their informed consent for inclusion before they participated in the study. The
study was conducted in accordance with the Declaration of Helsinki and its amendments,
and the protocol was approved by the Scientific and Ethics Committee of the hospital
(#587/10 April 2013).

2.2. Laboratory Analysis

We collected blood samples (20 mL) from patients and healthy controls upon enroll-
ment. We also collected blood samples (20 mL) 1 week after enrollment from patients only.
Whole blood specimens were immediately centrifuged, and serum was stored at −80 ◦C.
Omentin-1 was determined in serum using a sandwich enzyme immunoassay ELISA kit by
Biovendor (#RD191100200R, Brno, Czech Republic). The detection limit was 0.5 µg/L, the
inter-assay and intra-assay coefficients of variations were between 4.4–4.8% and 3.2–4.1%,
respectively, while the linear range of the assay was within 50–644 µg/L. We also measured
inflammatory biomarkers (C-reactive protein and procalcitonin), interleukins (IL) 1β, 6
and 10, and soluble urokinase-type plasminogen activator receptor (suPAR) as previously
described [35,38,40,41]. Homeostasis model assessment score of insulin resistance (HOMA-
IR) was calculated using the following formula: [fasting serum insulin (µU/mL) × fasting
serum glucose (mmol/L)]/22.5.

2.3. Statistical Analysis

The statistical analysis was performed using the statistical package IBM-SPSS® Statis-
tics for Windows, Version 24.0. Armonk, NY, USA: IBM Corp. Categorical variables were
assessed using the chi-square test. The Shapiro–Wilk test was employed to examine the
normality hypothesis. Normally distributed variables were analyzed using the t-test and
paired t-test, while for non-normally distributed variables we used the Mann–Whitney U
and Wilcoxon matched-pair tests. For continuous variables, we used the Spearman corre-
lation coefficients (r) as a measurement of correlation. For survival analysis, we used the
Kaplan–Meier method, and we generated the survival curves, while the log rank test was
used for comparisons. The receiver operating characteristic (ROC) curves were assessed
to calculate the discriminating power of selected biomarkers to distinguish sepsis from
septic shock. The comparison of ROC curves was performed using the DeLong test in the
MedCalc® statistical software version 20.218 (MedCalc Software Ltd., Ostend, Belgium).
We also performed a multivariate Cox-regression analysis, adjusting for acute physiology
and chronic health evaluation II score (APACHE II) and statistically significant laboratory
biomarkers of sepsis in order to determine the independent predictors of 28-day mortality
among statistically significant inflammatory biomarkers. A two-sided p value of less than
0.05 was considered significant.

3. Results
3.1. Baseline Characteristics of Patients and Controls

The baseline demographic, clinical, and laboratory data of patients and controls are
depicted in Table 1. According to the SEPSIS-3 criteria, 42 patients had septic shock at
enrollment and 60 had sepsis. Pulmonary and abdominal sepsis were most common (35%
and 24% respectively), while the causative pathogen was identified in 60 cases as follows:
gram-negative bacteria in 36 cases (60%); gram-positive bacteria in 14 cases (23%); and
fungi in 10 cases (17%). During the 28-day period of follow up, 30 patients died, namely 6
of the 60 patients with sepsis (mortality rate 10%) and 24 of the 42 patients with septic shock
(mortality rate 57%). The patients and controls were age and gender-matched as per the
protocol. Furthermore, the BMI did not differ significantly between the two groups (Table 1).
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The hematologic, coagulation, and main metabolic indices as well as the C-reactive protein
(CRP) were significantly different between patients and controls (Table 1).

Table 1. Demographic and baseline clinical and laboratory data * of patients and controls (n = 204).

Patients
(n = 102)

Controls
(n = 102) p Value

Age a, years 64.7 ± 15.6 66.4 ± 10.3 0.35
Gender, male, n (%) 57 (55.9) 57 (55.9) 0.56
BMI a, kg/m2 29.9 ± 8.5 28.1 ± 5.01 0.06
Septic shock, n (%) 42 (41.2) -
Death within 28 days, n (%) 30 (29.4) -

Severity scores
APACHE II a 23 ± 7.2 -
SOFA a 10 ± 3.3 -

Hematologic indices
Hemoglobin a, g/L 93 ± 20 147.9 ± 16.3 <0.001
White blood cells a × 109/L 14.1 ± 8.4 6.97 ± 1.8 <0.001
Platelets a × 109/L 216.2 ± 118.8 243.8 ± 46.9 0.03

Coagulation indices
Prothrombin time a, s 14.3 ± 4.7 11.9 ± 0.8 <0.001
aPTT a, s 38.9 ± 9.4 34.4 ± 7.3 <0.001
Fibrinogen a, µmol/L 14.49 ± 5.26 9.06 ± 1.3 <0.001

Metabolic indices
Lactate b, mmol/L 2.1 (1–9) -
Total Protein a, g/L 50 ± 9 71 ± 4.2 <0.001
Albumin a, g/L 24.6 ± 5.9 46.7 ± 5.6 <0.001
Creatinine a, µmol/L 123.76 ± 70.72 74.26 ± 12.38 0.08
Glucose a, mmol/L 7.97 ± 2.9 5.32 ± 1.16 <0.001
Insulin b, pmol/L 197.9 (88.2–402.8) 73.13 (22.2–430.2) <0.001
HOMA-IR b 8.9 (3.24–34.5) 2.3 (0.65–23.5) <0.001

Inflammatory indices
CRP b, mg/L 132 (7–431) 3.4 (0.1–10.9) <0.001
Procalcitonin b, µg/L 0.9 (0.1–100) - -
IL-1β b, ng/L 5.9 (5.9–206) - -
IL-6 b ng/L 27.4 (6–444) - -
IL-10 b, ng/L 5 (5–300) - -
suPAR b, µg/L 13 (2.1–16.8) - -
Omentin-1 a, µg/L 763.3 ± 249.3 451.7 ± 122.3 <0.001

* Values are reported as mean ± SD, and those of highly skewed distributed variables are reported as median
(range). Abbreviations: APACHE II, acute physiology and chronic health evaluation score; aPTT, activated partial
prothrombin time; BMI, body mass index; CRP, C-reactive protein; HOMA-IR, homeostasis model assessment of
insulin resistance; IL, interleukin; SOFA, sequential organ failure assessment score; suPAR, soluble urokinase-type
plasminogen activator receptor. a Mean ± SD, b median, range.

3.2. Serum Omentin-1 in Patients and Controls

Serum omentin-1 at enrollment was significantly higher in patients compared to
controls (763.3 ± 249.3 vs. 451.7 ± 122.3 µg/L, p < 0.001) (Table 1). In critically ill patients
with sepsis, serum omentin-1 increased significantly 1 week after enrollment to the study
(950.6 ± 215.5 vs. 763.3 ± 249.3 µg/L, p < 0.001) (Figure 1).
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Figure 1. Box plots of serum omentin-1 in healthy controls and in patients with sepsis at enrollment
and 1 week after.

3.3. Serum Omentin-1 and Sepsis Severity

Patients who presented with septic shock at enrollment (n = 42) had significantly
higher omentin-1 than those who presented with sepsis (n = 60) both at sepsis onset
(877.9 ± 241.2 vs. 683.1 ± 223.7 µg/L, p < 0.001) and 1 week after (1020.4 ± 224.7 vs.
901.7 ± 196.3 µg/L, p = 0.007) (Table 2, Figure 2). Regarding kinetics of omentin-1 during
the first week of sepsis, omentin-1 increased significantly in both groups. However, patients
with sepsis exhibited a significantly higher absolute as well as higher percentage change
from baseline during the first week of sepsis compared to patients with septic shock
(∆(omentin-1): 218.6 ± 145.6 vs. 142.5 ± 143.5, p = 0.01; ∆(omentin-1)% 39.8 ± 35.9% vs.
20.2 ± 23.3%, p = 0.01, respectively).

Table 2. Serum omentin-1 and inflammatory biomarkers * of patients with sepsis and septic shock, at
baseline and 1 week after enrollment (n = 102).

Upon Enrollment One Week after Enrollment

Sepsis
(n = 60)

Septic Shock
(n = 42) p Value Sepsis

(n = 60)
Septic Shock

(n = 42) p Value

CRP b, mg/L 89 (7–218) 174 (36–431) <0.001 55 (8–282) 101 (13–253) 0.01
Procalcitonin b, µg/L 0.7 (0.09–47.7) 4.8 (0.14–100) 0.002 0.5 (0.06–15) 1.4 (0.14–83) 0.001

IL-1β b, ng/L 5.9 (5.9–207) 8.8 (5.9–44.8) 0.18 17 (5.9–499) 8.8 (5.9–45) 0.13
IL-6 b, ng/L 16.5 (6–385) 74.4 (10–444) 0.001 25 (4.6–419) 20.5 (6–487) 0.34
IL-10 b, ng/L 5 (5–300) 6.9 (5–87) 0.001 5 (5–300) 5 (5–66) 0.02

suPAR b, µg/L 10.5 (2.2–16.8) 14.1 (4.4–16.8) 0.04 11.3 (2.6–16.8) 12.9 (5.2–16.8) 0.68
Omentin-1 a, µg/L 683.1 ± 223.7 877.9 ± 241.2 <0.001 901.7 ± 196.3 1020.4 ± 224.7 0.007

* Values are reported as mean ± SD, and those of highly skewed distributed variables are reported as median
(range). Abbreviations: CRP, C-reactive protein; IL, interleukin; suPAR, soluble urokinase-type plasminogen
activator receptor. a Mean ± SD, b median, range.
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Figure 2. Serum omentin-1 in patients with sepsis (n = 60) and in patients with septic shock (n = 42)
at enrollment and 1 week after.

The ROC analysis of serum omentin-1 and other inflammatory biomarkers for the
discrimination between sepsis and septic shock at enrollment is shown in Table 3. Serum
omentin-1 at enrollment (AUROC > 0.739) performed similarly with CRP (AUROC > 0.778),
procalcitonin (AUROC > 0.707), IL-6 (AUROC > 0.69), IL-10 (AUROC > 0.678) and suPAR
(AUROC > 0.64) in distinguishing sepsis from septic shock, as the comparison of the ROC
curves did not yield any statistically significant results (p > 0.05 derived from the DeLong
test) (Figure 3).

Table 3. Receiver operator characteristic curve analysis of omentin-1 and significant inflammatory
biomarkers at enrollment to determine the optimum cutoff value for the discrimination of sepsis from
septic shock in 102 patients with sepsis.

Biomarkers AUC (95% CI) p Value Sensitivity Specificity Youden’s
Index

Cutoff
Value

Positive
Predictive

Value

Negative
Predictive

Value

Omentin-1 0.74 (0.64–0.84) <0.001 74% 75% 0.49 850.3 µg/L 67.4% 80.3%
CRP 0.78 (0.68–0.87) <0.001 80% 69% 0.49 132 mg/L 64.4% 83.1%

Procalcitonin 0.71 (0.60–0.81) 0.001 60% 82.8% 0.43 4.30 µg/L 70.9% 74.7%
IL-6 0.69 (0.58–0.79) 0.001 70% 62.1% 0.32 24.50 ng/L 56.4% 74.7%

IL-10 0.68 (0.57–0.79) 0.003 60% 82.8% 0.43 5.88 ng/L 70.9% 74.7%
suPAR 0.64 (0.53–0.75) 0.02 75% 58.6% 0.34 11.79 µg/L 55.9% 77%

Abbreviations: AUC, area under the curve; CI, confidence interval; CRP, C-reactive protein; IL, interleukin; suPAR,
soluble urokinase-type plasminogen activator receptor.
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septic shock in 102 patients with sepsis. Decimal separators are denoted by commas instead of dots.

Finally, omentin-1 at enrollment presented a significant positive association with the
severity scores APACHE II and SOFA (r = 0.44, p < 0.001 and r = 0.34, p < 0.001, respectively)
(Figure 4).
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Figure 4. Serum omentin-1 is significantly associated with APACHE II and SOFA scores at sepsis
onset in 102 critically ill patients.

3.4. Serum Omentin-1 and Sepsis Outcome

During the 28 days of follow up from enrollment to the study, 30 patients died and
72 survived sepsis. Serum omentin-1 was significantly higher in nonsurvivors compared to
survivors both at enrollment (952.1 ± 248.2 vs. 684.6 ± 204.7 µg/L, p < 0.001) and 1 week
after (1051.8 ± 242 vs. 908.4 ± 189.8 µg/L, p < 0.01) (Figure 5). While omentin-1 increased
significantly 1 week after sepsis onset in both groups (p < 0.001), survivors had a greater
mean increase (∆(omentin-1): 223.8 ± 147.9 µg/L vs. 99.6 ± 111.3 µg/L, p < 0.001), and
percentage change from baseline (∆(omentin-1)% 39.4 ± 34.3% vs. 13.3 ± 18.1%, p < 0.001)
compared to nonsurvivors.
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Figure 5. Box plots of serum omentin-1 at enrollment and 1 week after according to the outcome of
sepsis at 28 days after sepsis onset.
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The Kaplan–Meier survival curves showed that patients with lower omentin-1 at
sepsis onset and 1 week after had improved 28-day survival (p < 0.001) (Figure 6A,B). The
cutoff value of omentin-1 was estimated at 891.3 µg/L at enrollment and 1001.7 µg/L
1 week after enrollment. Furthermore, patients presenting a higher percentage change in
serum omentin-1 from baseline also had improved 28-day survival (p < 0.001), with an
estimated cutoff value of 17.54%.
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values obtained via ROC analysis (log rank test: 18.27, p < 0.001). Decimal separators are denoted by
commas instead of dots, in the y axis.

Unadjusted Cox regression analyses demonstrated that serum omentin-1 at enrollment
(HR: 1.005, 95% C.I. 1.003–1.007, p < 0.001) and 1 week after (HR:1.003, 95% C.I. 1.001–1.005,
p < 0.001) was significantly associated with 28-day mortality of sepsis. After adjustment for
the APACHE II score and statistically significant laboratory biomarkers of sepsis, higher
omentin-1 at enrollment was independently associated with 28-day mortality (HR 2.26,
95% C.I. 1.21–4.19, p = 0.01). One week after sepsis onset, higher omentin-1 was also
an independent predictor of 28-day mortality (HR 2.15, 95% C.I. 1.43–3.22, p < 0.001)
(Table 4). Noteworthily, IL-6 1 week after sepsis onset, but not CRP, was also independently
associated with mortality.

3.5. Correlations of Serum Omentin-1 and Other Biomarkers

Spearman correlations between serum omentin-1 and laboratory biomarkers of sepsis
are depicted in Table 5. Concerning the hematologic biomarkers, omentin-1 exhibited
significant positive correlation only with the white blood cells at enrollment and 1 week
after. Furthermore, neutrophils 1 week after sepsis onset were positively associated with
omentin-1. All coagulation biomarkers were significantly correlated with omentin-1 at
enrollment. Regarding metabolic biomarkers, baseline lactate presented a positive cor-
relation of marginal significance, while baseline creatinine was significantly correlated
with omentin-1. Although glucose and insulin at enrollment were not correlated with
omentin-1, HOMA-IR presented a significant positive correlation. Notably, omentin-1 did
not correlate with BMI in septic patients. Finally, omentin-1 at sepsis onset presented a
significant positive correlation only with CRP, but not with procalcitonin, IL-1β, IL-6, IL-10,
or suPAR.
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Table 4. Multivariate Cox regression analysis for the independent predictors of mortality (expressed as
quartiles) after adjustment for the APACHE II score and statistically significant laboratory biomarkers
of sepsis in 102 patients.

b SEb Wald df p Value HR 95% for C.I.

Independent predictors at enrollment
Omentin-1 0.81 0.32 6.59 1 0.01 * 2.26 1.21–4.19

CRP 0.29 0.19 2.51 1 0.11 1.35 0.93–1.95
IL-6 −0.07 0.19 0.13 1 0.71 0.93 0.64–1.35

APACHE II 0.38 0.18 4.49 1 0.03 1.46 1.03–2.08

Independent predictors 1 week after enrollment
Omentin-1 0.76 0.21 13.59 1 <0.001 2.15 1.43–3.22

CRP −0.11 1.86 0.34 1 0.56 0.89 0.62–1.29
IL-6 0.68 0.21 10.13 1 0.001 1.98 1.30–3.01

APACHE II 0.79 0.23 11.86 1 <0.001 2.22 1.41–3.49

Abbreviations: APACHE, acute physiology and chronic health evaluation score; CI, confidence interval; CRP,
C-reactive protein; df, degrees of freedom; HR, hazard ratio; IL, interleukin; SEb, standard error of b. * Significant
results are highlighted in bold.

Table 5. Spearman correlation coefficients of serum omentin-1 with laboratory biomarkers in septic
patients at enrollment and 1 week after (n = 102).

At Enrollment One Week after Enrollment

r p r p

Hematologic biomarkers
Hemoglobin −0.04 0.67 −0.04 0.7
White blood cells 0.28 * 0.004 0.23 0.02
Neutrophils 0.1 0.3 0.2 0.04
Platelets −0.03 0.76 −0.1 0.29

Coagulation biomarkers
Prothrombin time 0.4 <0.001 0.31 0.002
aPTT 0.27 0.006 0.18 0.08
Fibrinogen 0.24 0.02 0.14 0.18

Metabolic biomarkers
Lactate 0.19 0.05 0.16 0.11
Total protein −0.16 0.09 −0.15 0.13
Albumin −0.13 0.2 −0.14 0.16
Creatinine 0.24 0.01 0.16 0.11
Glucose 0.11 0.33 - -
Insulin 0.28 0.15 - -
HOMA-IR 0.3 0.002 - -
BMI −0.07 0.48 - -

Inflammatory biomarkers
CRP 0.41 <0.001 0.15 0.13
Procalcitonin 0.08 0.41 −0.02 0.85
IL-1β 0.11 0.26 −0.17 0.09
IL-6 0.1 0.31 −0.02 0.84
IL-10 0.19 0.05 −0.07 0.49
suPAR 0.09 0.34 0.05 0.63

Abbreviations: aPTT, activated partial thromboplastin time; BMI, body mass index; CRP, C-reactive protein;
HOMA-IR, homeostasis model assessment of insulin resistance; IL, interleukin; suPAR, soluble urokinase-type
plasminogen activator receptor. * Significant correlations are highlighted in bold.

4. Discussion

In this prospective observational study, we investigated serum omentin-1 in critically
ill patients with new onset sepsis during the first week from enrollment. We found that
serum omentin-1 was significantly increased compared to healthy controls and increased
further 1 week after enrollment in all patients. Moreover, omentin-1 was higher in patients
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presenting with septic shock, the more severe presentation of sepsis, but exhibited lower
kinetics compared to those presenting with sepsis. Regarding prognosis, we demonstrated
that omentin-1 was lower during the first week of sepsis but presented a higher absolute
and percentage change (increase) in patients who survived 28 days from sepsis onset
compared to nonsurvivors. Finally, we showed that higher serum omentin-1 at sepsis onset
as well as 1 week later was an independent predictor of 28-day mortality in critically ill
patients with sepsis.

Omentin-1 is a newly discovered adipokine, which exerts cytokine-like actions. Ex-
perimental evidence has highlighted an anti-inflammatory role of omentin-1 [3,45,46]. In
particular, omentin-1 has been shown to inhibit the TNF-α-induced cyclooxygenase (COX)-
2 expression in vascular endothelial cells through blocking of the c-Jun N-terminal kinase
(JNK) activation possibly by activation of the AMPK pathway [47]. Another experimental
study has demonstrated that omentin-1 prevents the TNF-α-induced expression of the
adhesion molecule VCAM-1 in smooth muscle cells through inhibition of the activation of
p38 and JNK [48]. Moreover, omentin-1 was found to inhibit TNF-α-activated NF-κB by
preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity
and to block TNF-α-induced expression of adhesion molecules VCAM-1 and ICAM-1 in
human umbilical vein endothelial cells [49]. These experimental data suggest that omentin-
1 acts as an anti-inflammatory molecule by blocking the TNF-α dependent inflammatory
responses [19,45]. Furthermore, an experimental study has demonstrated that omentin-1
also inhibits LPS-induced expression of pro-inflammatory cytokines in macrophages [20].
In agreement with this finding, animal studies have demonstrated that omentin-1 may
protect against LPS and bleomycin-induced acute lung injury [50,51].

Clinical studies have highlighted that omentin-1 is decreased in obesity and related
metabolic diseases, with low levels reflecting cardiometabolic risk [5–9,13,52–54]. Thus,
omentin-1 has been proposed to be the missing link between obesity and cardiovascular
disease exerting protective effects against metabolic syndrome, diabetes, and related car-
diovascular diseases through attenuation of low-grade chronic inflammation [4,13]. An
experimental study demonstrated that omentin-1 inhibits resistin-induced expression of
toll-like receptor 4 (TLR4) as well as NF-κB phosphorylation in cardiomyoblasts, thus,
preventing resistin-induced cardiac inflammation and hypertrophy [55].

Although omentin-1 has been mostly studied as a biomarker of obesity and the
metabolic syndrome, related to insulin resistance and diabetes, it has also drawn attention
for its role in inflammatory diseases. In an animal model of ulcerative colitis, omentin-1
was shown to attenuate inflammation by inhibiting the expression of endoplasmic retic-
ulum stress-related proteins [56]. Noteworthily, in a clinical study of 192 patients with
inflammatory bowel disease (IBD), serum omentin-1 was significantly decreased, and low
levels independently predicted disease activity [18]. In contrast to the findings observed in
IBD, omentin-1 was significantly increased in 40 patients with juvenile idiopathic arthritis
compared to 26 healthy controls being associated with the presence of arthritis and the
number of joints involved [57]. Additionally, plasma omentin-1 was found to be increased
in patients with systemic lupus erythematosus and psoriasis who presented with arthritis
but not in those without arthritis [17]. However, in a clinical study, patients with rheuma-
toid arthritis had lower levels of omentin-1 in the synovial fluid compared to patients with
osteoarthritis [58].

Omentin-1 has been linked to the pathogenesis of atopic inflammation. In a recent
animal study, expression of omentin-1 was significantly increased in asthmatic airways
and in skin lesions of atopic dermatitis [59]. In line with this finding, omentin-1 has been
recognized as a prominent component of pathologic mucus in patients with acute severe
asthma in conjunction with eosinophilic airway inflammation [60]. Noteworthily, evidence
supports a host defense role of omentin-1 against pathogenic bacteria in the airways as well
as in the intestine due to its ability to bind lactoferrin, recognize bacteria-specific structures,
and enhance phagocytic clearance of pathogenic microorganisms [21,61–63]. However, the
role of omentin-1 has not been investigated in viral infectious diseases. In a recent clinical
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study, serum omentin was significantly decreased in patients with coronavirus disease 2019
(COVID-19) compared to healthy controls [64]. Therefore, further studies are needed to
determine the role of omentin-1 in acute and chronic inflammatory diseases.

Omentin-1 has not been thoroughly studied in sepsis. There are only two previous
studies on circulating omentin-1 in critically ill patients with or without sepsis [42,65]. In
agreement with our findings, the study by Luedde et al. showed that higher omentin-1
at admission was an independent predictor of long-term mortality (median follow up of
353 days, range 29−800 days) [42]. However, this study did not demonstrate any significant
difference between serum omentin-1 in 117 critically ill patients and 50 healthy controls, nor
between 84 critically ill patients with sepsis and 33 critically ill patients without sepsis. This
may be explained by the differences in the study population. The healthy subjects in the
study by Luedde et al. were younger than patients and their BMI was not reported, while
in our study the cases and controls were age- and gender-matched and the BMI was not
significantly different [42]. Since serum omentin-1 has been shown to be inversely related
to BMI, this may have been a confounding factor in the study by Luedde et al. [5,42,66,67].
Moreover, our patients had more severe diseases, as reflected by the higher APACHE
II scores. Of note, we studied only critically ill patients with new onset sepsis (within
48 h), while Luedde et al. did not report the timing of sepsis onset in their cases [42]. As
we have shown, serum omentin-1 significantly increases 1 week after sepsis onset in all
patients. Therefore, the timing of omentin-1 measurement in relation to sepsis onset may
be an important factor explaining the differences in the results. Finally, Luedde et al. used a
different ELISA kit for the determination of omentin-1 without reporting the characteristics
of this kit (coefficients of variation and detection limit) and the actual omentin-1 values [42].
Hence, we cannot directly compare our findings.

The study by Gültekin et al. investigated serum omentin-1 in 154 surgical critically ill
patients measured at multiple time points (upon admission, upon changes in vital signs,
clinical care and oral nutrition, and at sepsis onset and at discharge) [65]. The authors
reported a total of 423 omentin-1 measurements. In contrast to our results, they found
that omentin-1 was higher in patients without sepsis and in those who were discharged
from the ICU compared to septic patients and those who died in the ICU [65]. However,
the study population was substantially different from our patients. These were only
surgical patients, younger than our study population, with less severe disease and a better
prognosis, as reflected by the lower APACHE II and SOFA scores and the lower ICU
mortality. Additionally, this study reported ICU mortality, in contrast to our study that
reports 28-day mortality, while the length of ICU stay was not reported. Noteworthily, the
authors did not define the time point of reported omentin-1 values. One may assume that
they analyzed all measurements during the ICU stay in all patients, regardless of the timing
and the relation to the clinical course or sepsis onset.

The systemic inflammatory response characterized by the activation of the innate
immunity by pathogens, the initiation of multiple signaling pathways leading to the
secretion of pro-inflammatory mediators, and the outset of the cytokine storm comprise key
mechanisms in the pathophysiology of sepsis [68]. Omentin-1 interferes with important
inflammatory signals, preventing key factors, such as LPS and TNF-α, from propagating
inflammation (Figure 7). We hypothesized that omentin-1 is altered in sepsis. Our study
showed that higher serum omentin-1 is associated with the severity of sepsis, presenting
significant correlations with the severity scores. Moreover, our study demonstrated that
increased circulating omentin-1 levels early in sepsis predict a poor outcome, despite its
anti-inflammatory activity. This finding may be explained by a compensatory role of
omentin-1 in sepsis, i.e., increased omentin-1 may reflect an augmented inflammatory
response, the severity of sepsis, and a poor outcome. Nonetheless, the survival analysis
revealed that lower baseline values and a higher percentage increase in omentin-1 during
the first week from sepsis onset was associated with increased survival. This finding
complies with the anti-inflammatory actions of omentin-1.
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Figure 7. Omentin-1 interferes with important inflammatory signals, preventing key factors from
propagating inflammation. Abbreviations: LPS, lipopolysaccharide; TNF-a, tumor necrosis factor
alpha (images are originated from the free medical site http://smart.servier.com/ by Servier licensed
under a Creative Commons Attribution 3.0 Unported License). https://smart.servier.com/ (accessed
on 15 March 2023).

In this study, we comparatively investigated the performance of various inflammatory
biomarkers at sepsis onset in discriminating sepsis from septic shock. We found that
the discriminative ability of serum omentin-1 to distinguish sepsis from septic shock
was similar to CRP and procalcitonin. We further explored the association of serum
omentin-1 with inflammatory, coagulation, and metabolic parameters. We found that
omentin-1 is positively associated only with white blood cells, neutrophils, and CRP but not
procalcitonin, IL-1β, IL-6, IL-10, and suPAR. One possible explanation is that inflammatory
biomarkers as well as omentin-1 are not specific to sepsis. However, the coagulation
biomarkers at baseline exhibited significant positive correlations with omentin-1, reflecting
the implication of coagulation in sepsis. Lactate, which has a well-known predictive
value in sepsis, showed a positive association of borderline significance with omentin-
1. Baseline creatinine as well as HOMA-IR exhibited positive associations, reflecting
metabolic derangement in sepsis. Of note, we did not find any significant association with
BMI, possibly because omentin-1 alterations in the acute phase of sepsis surpass the effect
of BMI.

Adiponectin is a classic adipokine exerting similar metabolic and anti-inflammatory
actions to those of omentin-1 [12,69]. These two adipokines promote insulin sensitivity and
glucose tolerance by inhibiting TNF-α and LPS inflammatory signals [23]. The alterations
and kinetics of serum adiponectin in critically ill patients with sepsis have been previously
investigated by our group [35,36]. Interestingly, we found that both serum omentin-1
and adiponectin increased in critically ill patients with sepsis compared to controls and
were higher in patients with septic shock compared to those with sepsis at enrollment and
1 week after. We also showed that they were both higher in nonsurvivors than survivors
at 28 days. Regarding kinetics, higher kinetics of both omentin-1 and adiponectin were
associated with improved 28-day survival. Finally, adiponectin—similar to omentin-1—was

http://smart.servier.com/
https://smart.servier.com/
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significantly associated with severity scores and CRP. Our results indicate that adiponectin
and omentin-1 may share common pathophysiologic roles in patients with sepsis.

This is the first study to explore omentin-1 and its kinetics during the first week from
sepsis onset as well as its association with sepsis severity and outcome. The prospective
case-control design including matching of age and gender in cases and controls, the careful
selection of cases according to specific inclusion and exclusion criteria as well as the
multivariate analysis adjusting for important confounding factors comprise the main
strengths of our study. However, our study has certain limitations. This is a single-center
study. Therefore, it is unclear whether our findings apply to other critically ill septic
patients. Nonetheless, all patients received a standard of care according to international
guidelines [70]. We used healthy subjects and not critically ill patients without sepsis as a
control group. Therefore, we did not explore possible alterations of omentin-1 in critical
illness of other etiology. Another limitation of our study is that we did not exclude patients
with obesity, metabolic syndrome, and cardiovascular diseases, which are associated
with decreased serum omentin-1. In order to include only patients with measurements
of omentin-1 at the predetermined time points, we excluded patients who were either
discharged or died before completing 1 week from enrollment in the study. However,
our cases comprise a highly representative sample according to the severity scores and
the outcome, which are in line with the mortality rates reported for sepsis and septic
shock in the current consensus definitions based on large patients cohorts [44]. Finally,
despite appropriate adjustment for confounding factors in the statistical analysis, we cannot
exclude residual confounding due to other unmeasured factors.

5. Conclusions

In this prospective study, we investigated serum omentin-1 in critically ill patients with
sepsis at sepsis onset and 1 week after. We demonstrated that omentin-1 was significantly
increased at sepsis onset compared to healthy controls, while it increased further 1 week
after. Patients with septic shock at enrollment as well as those who did not survive during
the next 28 days presented higher omentin-1 and lower kinetics compared to patients with
sepsis and survivors. Finally, we found that higher omentin-1 during the first week of
sepsis independently predicted 28-day mortality. Our findings suggest that omentin-1
may be a promising prognostic biomarker of sepsis. There is a need for larger, multicenter,
prospective studies to elucidate the pathophysiologic role of omentin-1 in sepsis.
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Kusnierz-Cabala, B.; et al. Anti-inflammatory adipokines: Chemerin, vaspin, omentin concentrations and SARS-CoV-2 outcomes.
Sci. Rep. 2021, 11, 21514. [CrossRef]
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