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Abstract: Background and objectives: Capsule endoscopy (CE) is a non-invasive method to inspect
the small bowel that, like other enteroscopy methods, requires adequate small-bowel cleansing to
obtain conclusive results. Artificial intelligence (AI) algorithms have been seen to offer important
benefits in the field of medical imaging over recent years, particularly through the adaptation of
convolutional neural networks (CNNs) to achieve more efficient image analysis. Here, we aimed to
develop a deep learning model that uses a CNN to automatically classify the quality of intestinal
preparation in CE. Methods: A CNN was designed based on 12,950 CE images obtained at two clinical
centers in Porto (Portugal). The quality of the intestinal preparation was classified for each image as:
excellent, ≥90% of the image surface with visible mucosa; satisfactory, 50–90% of the mucosa visible;
and unsatisfactory, <50% of the mucosa visible. The total set of images was divided in an 80:20 ratio
to establish training and validation datasets, respectively. The CNN prediction was compared with
the classification established by consensus of a group of three experts in CE, currently considered
the gold standard to evaluate cleanliness. Subsequently, how the CNN performed in diagnostic
terms was evaluated using an independent validation dataset. Results: Among the images obtained,
3633 were designated as unsatisfactory preparation, 6005 satisfactory preparation, and 3312 with
excellent preparation. When differentiating the classes of small-bowel preparation, the algorithm
developed here achieved an overall accuracy of 92.1%, with a sensitivity of 88.4%, a specificity of
93.6%, a positive predictive value of 88.5%, and a negative predictive value of 93.4%. The area under
the curve for the detection of excellent, satisfactory, and unsatisfactory classes was 0.98, 0.95, and
0.99, respectively. Conclusions: A CNN-based tool was developed to automatically classify small-
bowel preparation for CE, and it was seen to accurately classify intestinal preparation for CE. The
development of such a system could enhance the reproducibility of the scales used for such purposes.
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1. Introduction

Capsule endoscopy (CE) is a minimally invasive enteroscopy procedure that can
be used to examine the small-bowel mucosa and study conditions affecting the small
intestine, such as obscure gastrointestinal bleeding (OGIB), small-bowel tumors, Crohn’s
disease, polyposis syndromes and celiac disease [1–5]. The quality of mucosal visualization
and, hence, the diagnostic potential of CE are highly dependent on the cleanliness of the
digestive tract and may be hindered by air bubbles or the presence of bile and intestinal
debris. Adequate bowel preparation underlies the cleansing of the small intestine and the
optimal assessment of the entire mucosa, facilitating conclusive CE examinations [6–10].
While there are international guidelines on small-bowel CE (SB-CE) preparation to ensure
better mucosal visualization [11–13], there is still no consensus regarding the optimal
small-bowel preparation to improve diagnostic yield [14]. This is in part due to the
lack of a reliable tool to assess the quality of mucosa visualization prior to performing
a CE. A range of qualitative and semi-quantitative cleanliness scales can be applied to
SB-CE, with quite different technical characteristics [15], although the reproducibility
of these is generally poor, as reflected by the high intra- and inter-observer variability
reported [16–18]. A single CE video examination produces as many as 50,000 images, which
require considerable time and effort to review [11,19]: at least 30–120 min of dedication by
a gastroenterologist [20]. Moreover, small-bowel abnormalities or lesions might only be
visible in relatively few frames, such that manual reading is associated with an inherent
risk of overlooking clinically important information and it is subject to the limitations of
the reader’s ability and concentration [19].

To overcome these drawbacks, AI tools have emerged in recent years that can help
optimize the reading process, assisting specialists in the identification of areas of interest
and of suspicious abnormalities. For example, AI algorithms have been designed with a
view to detect lesions automatically, to classify bowel cleanliness, and to automatically
compartmentalize the small bowel in SB-CE sequences [21]. Convolutional neural networks
(CNNs) are AI-based multi-layered deep learning algorithms that are particularly well
suited to automatic image analysis and pattern recognition [22]. Indeed, the application
of CNN-based tools to endoscopy imaging, and specifically to CE examinations, has
achieved excellent performance in detecting and classifying a range of diseases [23,24].
Thus, the integration of such AI-based technology into CE protocols may improve the
diagnostic accuracy of these procedures and reduce the burden on gastroenterologists,
reducing the time spent reading the images, as well as the error rate/oversights in detecting
abnormalities and the potential inter- and intra-observer variability [25].

The value and reliability of a SB-CE are initially dependent on the bowel cleanliness
achieved in the preparation for the procedure, which, if inadequate, undermines the
reliability of any failure to detect abnormalities. Thus, it is essential to have a reliable,
objective, and reproducible scoring tool to assess the quality of SB preparation in CE that
can be used in conjunction with any manual or automatic detection system. This need has
prompted the development of AI algorithms to automatically assess SB cleanliness during
CE [21,26–29]. This study set out to design and develop a CNN that could be used in an
AI system to automatically classify bowel preparation in CE images and to validate the
performance of this tool on a large set of real-world CE images.

2. Materials and Methods
2.1. Study Design

The CE images obtained from the examination of patients (n = 4319) between 2015 and
2022 at the São João University Hospital (Porto, Portugal) and the Manoph Gastroenterology
Clinic (Porto, Portugal) were reviewed retrospectively in this study. These patients were
referred for CE examinations as a result of detecting indications of a small-bowel disorder
or for the monitoring of any confirmed small-bowel diagnosis. The complete video of
the examinations performed was reviewed, extracting 12,950 images of the SB mucosa in
total. A total of 3 experienced gastroenterologists (M.M.S., H.C. and A.P.A), experts in
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SB-CE who had each reviewed over 1500 CE examinations before the start of this study,
carried out the inclusion and labeling of frames. The three experts in CE analyzed the
still frames independently and scored the quality of SB cleansing based on the proportion
of mucosa visualized and in accordance with the degree of obscuration by bubbles, bile
and/or debris. The images were selected from an ever-growing CE images database.
Accordingly, the quality of SB cleansing in each still frame was categorized as excellent (E)
when ≥90% of the mucosa was visible, satisfactory (S) when 50% to 90% of mucosa was
visible, and unsatisfactory (U) when <50% of the mucosa was visible. This classification
was irrespective of the presence or absence of any endoscopic lesions. The final labeling
of each frame required the agreement of all three experts regarding the quality of bowel
preparation. Frames in which a consensus was not reached were not included in the
analysis to ensure that the frames studied were correctly labelled.

The ethics committee at São João University Hospital/Faculty of Medicine of the
University of Porto (No. CE 407/2020) approved this study, which was carried out in
accordance with the Helsinki declaration guidelines for research on human subjects. In this
non-interventional retrospective study, no information that might potentially identify any
of the subjects was presented, assigning every patient a randomly generated numeric code
to ensure data anonymization in compliance with the general data protection regulation
(GDPR). The data was confirmed to be non-traceable by experts with Data Protection
Officer (DPO) certification (Maastricht University).

2.2. SB-CE Procedure

A total of 5793 SB-CE exams were included. Two SB-CE systems were used during the
study period: the PillCam SB3 (n = 4509, Medtronic, Minneapolis, MN, USA) or the OMOM
HD (n = 1284, Jinshan Science & Technology Co., Chongqing, China). Both of these systems
rely on an endoscopy capsule and a sensor that connects to a data recorder, accompanied
by specific software to review the images. The Pillcam SB3 capsule is 26.2 mm long and
11.4 mm wide, with ≥8 h of estimated battery life, and its high-resolution camera has a
wide field of view (156◦). The rate of capture varies between 2 and 6 frames per second (fps),
shifting automatically in response to the speed at which the capsule progresses, and the
images are analyzed with the PillCam Software version 9 (Medtronic). Conversely, the
OMOM HD capsule is slightly longer (27.9 mm) and wider (13.0 mm), with a 172◦ field of
view. The adaptive frame rate of this system is from 2 to 10 fps and the Vue Smart Software
(Jinshan Science & Technology Co.) is used to review the images from this capsule. All the
images obtained were processed to ensure that potential identifying information (name, ID
number, date of the procedure, etc.), and each frame extracted was numbered consecutively
prior to storage.

Each patient followed a protocol for bowel preparation that was in accordance with
the European Society of Gastrointestinal Endoscopy (ESGE) guidelines [11]. The day prior
to capsule ingestion patients followed a clear liquid diet, fasting overnight before the
examination. They drank a polyethylene glycol (PEG) solution (2 L) prior to ingesting
the capsule, that included simethicone to prevent foaming. After ingestion of the capsule,
the patients were not allowed to eat for 4 h, and if the capsule had not been expulsed 1 h
after ingestion and it remained in the stomach, prokinetic therapy was applied (10 mg of
domperidone) with the ESGE recommendations [11].

2.3. Development of the CNN

The deep learning algorithm was designed to provide the automatic classification of
small-bowel preparation according to the aforementioned categories. A total of 12,950 images
were included (n = 9983 from the PillCam SB3 system and n = 2967 from the OMOM
HD system). The total dataset was divided for constitution of training and testing sets,
according to a patient-split approach, therefore ensuring that data from the same patient
were not present in the training and test datasets simultaneously. The flowchart below
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summarizes how the study was performed and how the images to train and validate the
CNN were selected (Figure 1).
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Figure 1. Flowchart indicating the procedures carried out in the training phase and the validation
phase of the study, and indicating the proportion of the examinations carried out with each type
of capsule. A five-fold cross validation examination was performed in the training stage. The
level of cleanliness (Output) was classified as: Excellent, excellent bowel preparation (≥90% of the
mucosa visualized); Satisfactory, satisfactory bowel preparation (50–90% of the mucosa visualized);
Unsatisfactory, unsatisfactory bowel preparation (<50% of the mucosa visualized). Abbreviations:
CE, Capsule Endoscopy; PPV, positive predictive value; NPV, negative predictive value; AUC; area
under the ROC curve.

During the training phase, we performed a 5-fold cross validation. Within each fold,
the total training set was randomly divided into 5 even-sized groups. Within each fold,
4 groups were used for training (80%) and 1 group for testing (20%). The distribution of the
groups varied between each fold. The specifications of the model were tuned for each run.
The specifications applied to the best performing fold were applied during the test stage.
The CNN was generated based on the RegnetY model and trained using ImageNet, a large
image dataset used commonly when developing object recognition software. The model’s
convolutional layers were retained to pass on this learning to our data, although the last fully
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connected layers were removed and attaching fully connected layers in accordance with the
number of classes used to evaluate the CE images. Two blocks were used that each had a fully
connected layer followed by a dropout layer with a 0.3 drop rate. A dense layer was added
after these two blocks, defining its size as the number of categories in the classification (three).
The learning rate (0.00025), batch size (128) and epoch number (10) were established through
trial and error. The data was prepared with the PyTorch 1.11 library, which were also used to
run the model, and these analyses were carried out using a computer with a 2.1 GHz Intel
Xeon Gold 6130 processor (Intel, Santa Clara, CA, USA) and a dual NVIDIA Quadro RTX
A6000 graphics card (NVIDIA Corporate, Santa Clara, CA, USA).

2.4. Model Performance and Statistical Analysis

The primary outcome measures included sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV), and overall accuracy. Moreover, we
analyzed the receiver operating characteristic (ROC) and area under the ROC (AUC) curves
to assess how well the model could distinguish the three categories. The classification
predicted by the CNN was compared to that achieved by expert consensus, considered to
be the gold standard. Furthermore, the network’s capacity to process images was evaluated
by quantifying the time the CNN required to reach a classification for all the validation
images in the test dataset.

The probability that the trained CNN would attribute each of the three categories to an
image (excellent, satisfactory or unsatisfactory) was calculated. The higher the probability,
the greater the confidence in the CNN prediction, such that the category carrying the
highest probability score was considered as the classification output predicted by the
CNN (Figure 2). The sensitivity, specificity, accuracy, PPV and NPV to differentiate the
three small-bowel preparation classes was calculated. Receiver operating characteristic
curves (ROC) and the area under these curves (AUC) were used to assess the performance
of the CNN to detect and differentiate the different SB preparation classes. Statistical
analyses were carried out with Sci-Kit learn v.22.2 software [30].
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Figure 2. Output obtained by implementing the CNN. The bars represent the probability estimated
by the network and the finding with the highest probability was considered to be the predicted
classification output. The blue bar represents a correct prediction: E, excellent bowel preparation
(≥90% of the mucosa visualized); S, satisfactory bowel preparation (50–90% of the mucosa visualized);
U, unsatisfactory bowel preparation (<50% of the mucosa visualized).
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3. Results
3.1. Convolutional Neural Network Construction and Training

In total, 12,950 SB-CE images were used for the construction of the neural network.
Of the 5793 procedures undertaken, 4509 were carried out using the Pillcam SB3 capsule
(Medtronic), while the OMOM HD capsule (Jinshan Science and Technology) was used
in 1284 examinations. From the included cohort of images, 3633 were labeled by the
experts as unsatisfactory preparation, 6005 as satisfactory preparation and 3312 as excellent
preparation. From the total dataset, 94% of the images (n = 12,159) were used during the
training stage and 6% (n = 791) were reserved for independent testing of the model.

During the training stage, a five-fold cross validation was performed. The results for
each of the folds are presented in Table 1. During the training stage, the model achieved a
mean sensitivity of 88.4% (CI 95% 83.8–93.0%), specificity 93.6% (CI 95% 90.2–96.9%), and
accuracy 92.1% (CI 95% 89.5–94.6%)).

Table 1. Five-fold cross validation during the training phase.

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Fold 1 88.8 93.4 86.2 92.8 91.5
Fold 2 92.8 95.9 93.9 94.5 94.8
Fold 3 90.1 95.3 88.7 95.1 93.4
Fold 4 91.2 94.8 90.7 94.7 93.6
Fold 5 79.3 88.4 83.0 89.7 87.1

Overall mean
(CI 95%)

88.4
(83.8–93.0)

93.6
(90.2–96.9)

88.5
(84.9–92.1)

93.4
(90.6–96.1)

92.1
(89.5–94.6)

Abbreviations: PPV—positive predictive value; NPV—negative predictive value; CI 95%–95% confidence interval.

3.2. Global Performance of the CNN to Differentiate the Classed of Small-Bowel Cleanliness during
the Testing Phase

The level of performance of the CNN was assessed based on the AUC, accuracy,
sensitivity, specificity, PPV and NPV. Overall, the deep learning algorithm proved to be
capable of automatically differentiating small-bowel preparation classes with a calculated
accuracy of 89.1%, a sensitivity of 87.6%, and a specificity of 92.2% (Table 2). The individual
performance marks for each of the categories are shown in Table 2. The ROC analyses
and respective AUCs (Figure 3) indicated the performance of the CNN in differentiating
excellent, satisfactory, and unsatisfactory cleanliness in SB preparations was high, with
AUCs of 0.98, 0.95 and 0.99, respectively.

Table 2. CNN performance for detection and differentiation of small-bowel preparation categories.

Sensitivity Specificity Accuracy

Overall, % 87.7 92.2 89.1
U vs. all, % 96.7 91.7 92.7
S vs. all, % 72.1 95.2 83.7
E vs. all, % 94.3 89.5 91.0
E vs. S, % 94.3 83.2 87.9
E vs. U, % 100.0 100.0 100.0
S vs. U, % 84.3 96.7 88.1

Abbreviations: CNN—convolutional neural network; U—unsatisfactory; S—satisfactory; E—excellent. SD—
standard deviation.

3.3. Computational Performance of the CNN

At the best-performing fold during the training stage, the CNN completed the reading
of 790 batches of 128 images in 198 s, which corresponds to a reading rate of approximately
504 frames per second. If this performance is applied to a complete CE examination, the
video of which contains approximately 50,000 frames, an estimated 99 s would be the time
required for its full analysis.
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4. Discussion

In this study, we present a novel AI tool that adopts a multi-layered CNN designed to
automatically assess the degree of bowel cleanliness in images obtained from CE exami-
nations. Following its training on a large dataset of real-world images, the capacity of the
CNN to establish bowel cleanliness was tested on a large validation dataset, demonstrating
a very high level of accuracy, sensitivity and specificity relative to the current gold standard.
Consequently, we believe that this tool represents an interesting advance in the search
for AI tools that can enhance the yield and efficacy of CE procedures, which is worthy of
further study.

CE is becoming an important technique to study small-bowel disorders, yet despite the
improvements it can offer (such as in image quality and the localization of the capsule or
lesions), this technique is still subject to the time constraints and effort required for reading
by a gastroenterologist. This monotonous and time-consuming task is unfortunately associ-
ated with poor reproducibility and consequently, possible failure in detecting lesions or
abnormalities that may be small and present in only a few frames. Thus, AI tools are being
designed to automate the reading process and to detect and/or analyze gastrointestinal
lesions [21,23,24,31–38], with the aim of alleviating the burden on gastroenterologists asso-
ciated with manual reading, and reducing reading time without compromising accuracy.

In order to ensure the successful detection of abnormalities in CE examinations, it is
essential to achieve adequate bowel preparation [6,11–13,39,40]. Despite the importance
of adequate bowel preparation to ensure CE examinations are conclusive, and the range
of cleanliness grading scales available for SB-CE with very different technical characteris-
tics [15], there is as yet no consensus on an objective and reliable scoring system to assess
SB cleanliness following CE preparation. Moreover, there is still no agreement on the most
appropriate protocol for the preparation of CE examinations [6,14,41–44], although there
is evidence that the use of PEG/ascorbic acid booster following a standard preparation
enhances mucosal visualization [43,45]. Thus, an additional tool that will be fundamental
in the drive to automate the evaluation of CE examinations is a system to evaluate the
cleanliness of the GI tract through the images extracted. Indeed, small-bowel cleanliness
will become more important in the future to ensure that the AI applications designed
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to evaluate the small-bowel mucosa using deep learning models can achieve excellent
diagnostic yields.

The deep learning tool designed here to automatically differentiate the cleanliness of
the small bowel in CE images addresses this important issue. The CNN model tested was
trained using a large dataset of 12,950 real-world images in order to enhance its accuracy.
Importantly, all the images used had been classified in the same way by three experts
with large experience in CE (>1500 CE exams prior to this study), ensuring there was no
ambiguity in their status as well as the accuracy of the CNN. Indeed, the larger the number
and variety of images used to train an algorithm, the more efficient it will be, more closely
reflecting circumstances encountered in clinical practice. Moreover, the performance of
this algorithm was assessed using strict patient-split rules, ensuring that there was no
overlap of data between training and testing dataset. The concomitant performance of a
five-fold cross validation further reduces the risk of overfitting of the model, strengthening
the robustness of the model and validity of the results. This CNN was tested using an
independent set, demonstrating high levels of performance in differentiating different levels
of SB preparation according to a simplified three-level classification scale of cleanliness that
is based on the proportion of the SB mucosa that can be visualized in each image. Testing
the CNN revealed an accuracy of 89.1%, a sensitivity of 87.6% and a specificity of 92.2%
relative to the gold standard. In addition, the AUCs to differentiate the different categories
of SB preparation quality varied between 0.95 and 0.99. In terms of the image processing
performance, the CNN used here read the validation data at a frame rate of 504 fps, which
would ensure that a complete CE video that generally contains around 50,000 frames could
be examined in under 2 min.

The performance of the CNN presented here is similar or superior to those of recent
applications exploring CNN architectures for automatic assessment of cleanliness in CE
examinations. For example, an accuracy of 95.2%, a sensitivity of 96.2% and a specificity
of 94.3 were reported recently when classifying images into four cleanliness categories
according to the presence of intestinal content [27]. The CNN model used for this was
trained with a large number of images (n = 55,293) but tested on a more limited number of
images (n = 854) from 30 new CE videos collected in a clinical setting. A neural-network-
based algorithm was also developed subsequently and trained with only 600 SB images,
categorizing their cleanliness as adequate or inadequate according to a 10-point scale [26].
The validation of this algorithm reflected a sensitivity of 90.3%, a specificity of 83.3%
and an accuracy of 89.7%, although this was based on the use of only 156 SB-CE video
recordings. However, the more extended use of this algorithm and the ensuing learning
undertaken may enhance its performance. More recently, a deep-learning-based algorithm
was developed in a preliminary study trained with 71,191 images [28] and it was used
to design software to evaluate SB preparation quality classified according to a five-point
scoring system that evaluated the clarity of mucosal visualization. This tool was trained
on a very large number of images 280,000 and verified on 120,000 images [29], and the
performance of the algorithm provided an accuracy of 93%. ROC curve analysis using an
external validation set of 50 CE cases separate from the training set defined a sensitivity of
81%, a specificity of 84% and an AUC of 0.913, again below the numbers achieved here.

While there are currently few studies aimed at automatically assessing the cleanliness
of CE bowel preparations using deep learning applications, there are several important
aspects of this study that should be emphasized, as well as certain limitations. In the first
place, it is noteworthy that this CNN was applied to two different CE systems (Pillcam
SB3 and OMOM HD), with different specifications and optical performance. Moreover,
while this was not an extensive multicenter study, the images used were recorded at
two centers (albeit in the same city), suggesting that it may be reproducible in different
centers. However, further studies will be necessary to ensure that this application can be
implemented on a more universal basis. Another important highlight is that this CNN
was designed using a large patient and image dataset, using a patient-split approach,
which assured that there was no overlap of patients between the training and testing
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sets. Moreover, we applied a five-fold cross validation which further strengthens the
methodological robustness of the model.

This study has several limitations. First, although this study offers evidence that the
CNN may be widely applicable to different systems, we did not assess the performance
in the validation dataset with either system individually, which would be of interest
to determine if there might be differences with distinct systems that would affect the
generalization of our model to other CE systems. Second, this study was conducted in a
retrospective fashion and, although the dataset is relatively large, further developments in
the range of AI for capsule endoscopy will require the performance of larger multicenter
studies evaluating the performance, validity and reproducibility of the CNN in a real-life
setting. Third, the CNN was developed by analyzing still frames and, thus, it will be
crucial to assess how this model performs when using full-length videos before it can be
integrated into CE reading systems in clinical practice. Fourth, the categories were defined
with optical revision by three reviewers and no image segmentation tool was used to define
the percentage of the frame showing visible mucosa more objectively. This limitation may
explain the relatively poorer accuracy of the CNN in distinguishing between satisfactory
and excellent or unsatisfactory bowel preparations. Fifth, subsequent studies should assess
the impact of capsule findings in the bowel preparation classification by the CNN. Finally,
it will be important to determine how the CNN performs when different protocols of bowel
preparation are followed, not only to assess the performance in relation to the different
preparations used for CE, but also to potentially help adopt the most appropriate strategy
to optimize the cleanliness for CE examination.

Ideally, AI algorithms for the automatic classification of small-bowel preparation
should be integrated into CE reading tools together with AI algorithms for the automatic
differentiation of images with a normal or abnormal mucosa. This will allow images
with normal mucosa and images with poor cleanliness quality to be filtered out, enabling
the gastroenterologist to focus on suspected lesions. Consequently, this will improve the
diagnostic yield and lessen the burden on the gastroenterologist in terms of time and effort,
while also reducing the associated costs.

5. Conclusions

A CNN-based model was developed to automatically classify bowel preparation for
CE examinations based on a simple quantitative scale. The implementation of systems
that automatically assess bowel cleanliness in CE is likely to enhance the reliability and
reproducibility of the scales used to evaluate bowel preparation, and the performance of
tools to detect GI tract or small-bowel lesions.
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