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Abstract: The critical flicker fusion frequency (cFFF) refers to the frequency at which a regularly
recurring change of light stimuli is perceived as steady. The cFFF threshold is often assessed in clinics
to evaluate the temporal characteristics of the visual system, making it a common test for eye diseases.
Additionally, it serves as a helpful diagnostic tool for various neurological and internal diseases. In
the field of diving/hyperbaric medicine, cFFF has been utilized to determine alertness and cognitive
functions. Changes in the cFFF threshold have been linked to the influence of increased respiratory
gas partial pressures, although there exist inconsistent results regarding this effect. Moreover, the use
of flicker devices has produced mixed outcomes in previous studies. This narrative review aims to
explore confounding factors that may affect the accuracy of cFFF threshold measurements, particularly
in open-field studies. We identify five broad categories of such factors, including (1) participant
characteristics, (2) optical factors, (3) smoking/drug use, (4) environmental aspects, and (5) breathing
gases and partial pressures. We also discuss the application of cFFF measurements in the field of
diving and hyperbaric medicine. In addition, we provide recommendations for interpreting changes
in the cFFF threshold and how they are reported in research studies.

Keywords: critical flicker fusion frequency; visual system; neurological diseases; alertness; cognition;
diving; hyperbaric medicine

1. Introduction

The eyes are the primary organs responsible for receiving photons and initiating the
visual pathway. This pathway encompasses a series of anatomical structures that convert
light energy into electrical action potentials that can be interpreted by the brain. It starts
at the retina and travels through various neural circuits before terminating at the primary
visual cortex, which is located in the central nervous system (Figure 1).

When a light flickers above a certain frequency, the sensation of the flickering disap-
pears, and the light appears to be continuous. The critical flicker fusion frequency (cFFF)
is the threshold above which the receptor potential can no longer differentiate between
changes. As a result, the potential waves combine to form a constant level of depolarization,
which the central nervous system interprets as continuous light. Higher thresholds of cFFF
have been linked to greater perceptual accuracy [1] as well as cortical arousal and visual
processing [2].

Reports of cFFF in humans have varied depending on the respective participants
and the equipment used, ranging from 22 to 90 Hz [3], 10 to 60 Hz [4], or 50 to 90 Hz [2].
However, normal adult cFFF is typically around 35 to 40 Hz [5], which agrees with the
temporal resolution of the human photoreceptors in the central retina, limited to cFFFs
below 50 Hz [6].
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temporal resolution of the human photoreceptors in the central retina, limited to 
cFFFs below 50 Hz [6]. 

 
Figure 1. Visual pathway. The visual pathway starts when light passes through the cornea and lens 
to reach the retina, and continues through the optic nerve, optic chiasm, optic tract, lateral geniculate 
body and optic radiation until it reaches the primary visual cortex. https://de.wikipe-
dia.org/wiki/Sehbahn (accessed on 5 April 2023). 

The observed large variations in cFFF thresholds may be attributed to the theory of 
signal detection [7], which allows us to differentiate between the participant’s ability to 
distinguish between events and motivational effects or response biases [8]. Although the 
motivation of patients in previous tests may have contributed to the large variation, this 
is difficult to assess. However, it can be assumed that participants in well-controlled open-
field studies will be motivated and, as a result, cFFF thresholds can be more reliably meas-
ured. 

Since 1956, cFFF has been used to investigate the electrical excitability of the retina 
[9]. More recently, it has been described as a tool to assess central nervous system fatigue 
and cortical arousal [10], as well as a metric indicative of fatigue [11], mental workload 
[12], and a measure for the assessment of alertness and cognitive performance [13,14]. It 
has even been used as a selection criterion for determining the physical fitness of profes-
sional divers [15]. Due to its simplicity and usefulness in measuring temporal resolution 
[16], cFFF tests are widely used for both clinical and research purposes [17]. 

For clinical purposes, cFFF is commonly used as a screening test for eye diseases [18] 
and is a well-established method for evaluating optic neuropathies such as optic neuritis 
and ischemic neuropathy [19]. For instance, healthy eyes have cFFF values of 31 Hz, while 
eyes with non-arteritic anterior ischemic optic neuropathy have a CFF value of 24 Hz. 
Eyes with demyelinating optic neuritis showed values significantly lower than 24 Hz, and 
thus, 24 Hz is a useful cutoff value when trying to distinguish between these two condi-
tions [19]. 

Additionally, cFFF is used to assess digital eye strain [20], also known as computer 
vision syndrome [21], which occurs due to overuse of display screens and affects both the 
retina and central nervous system [22]. 

Furthermore, cFFF has been considered a useful tool for diagnosing age-related mac-
ular degeneration (AMD) [23] and glaucoma [24], but changes in cFFF may also be due to 
refraction errors and media opacity [25]. Although cFFF was found to be decreased in 
non-exudative and exudative AMD, it was not able to distinguish between eyes with ei-
ther type of AMD versus healthy eyes with equal visual acuity. Therefore, cFFF testing 
was not deemed suitable as a diagnostic test of AMD by later researchers [26]. 

Figure 1. Visual pathway. The visual pathway starts when light passes through the cornea and lens
to reach the retina, and continues through the optic nerve, optic chiasm, optic tract, lateral geniculate
body and optic radiation until it reaches the primary visual cortex. https://de.wikipedia.org/wiki/
Sehbahn (accessed on 5 April 2023).

The observed large variations in cFFF thresholds may be attributed to the theory
of signal detection [7], which allows us to differentiate between the participant’s ability
to distinguish between events and motivational effects or response biases [8]. Although
the motivation of patients in previous tests may have contributed to the large variation,
this is difficult to assess. However, it can be assumed that participants in well-controlled
open-field studies will be motivated and, as a result, cFFF thresholds can be more reli-
ably measured.

Since 1956, cFFF has been used to investigate the electrical excitability of the retina [9].
More recently, it has been described as a tool to assess central nervous system fatigue and
cortical arousal [10], as well as a metric indicative of fatigue [11], mental workload [12],
and a measure for the assessment of alertness and cognitive performance [13,14]. It has
even been used as a selection criterion for determining the physical fitness of professional
divers [15]. Due to its simplicity and usefulness in measuring temporal resolution [16],
cFFF tests are widely used for both clinical and research purposes [17].

For clinical purposes, cFFF is commonly used as a screening test for eye diseases [18]
and is a well-established method for evaluating optic neuropathies such as optic neuritis
and ischemic neuropathy [19]. For instance, healthy eyes have cFFF values of 31 Hz, while
eyes with non-arteritic anterior ischemic optic neuropathy have a CFF value of 24 Hz. Eyes
with demyelinating optic neuritis showed values significantly lower than 24 Hz, and thus,
24 Hz is a useful cutoff value when trying to distinguish between these two conditions [19].

Additionally, cFFF is used to assess digital eye strain [20], also known as computer
vision syndrome [21], which occurs due to overuse of display screens and affects both the
retina and central nervous system [22].

Furthermore, cFFF has been considered a useful tool for diagnosing age-related mac-
ular degeneration (AMD) [23] and glaucoma [24], but changes in cFFF may also be due
to refraction errors and media opacity [25]. Although cFFF was found to be decreased in
non-exudative and exudative AMD, it was not able to distinguish between eyes with either
type of AMD versus healthy eyes with equal visual acuity. Therefore, cFFF testing was not
deemed suitable as a diagnostic test of AMD by later researchers [26].

Nevertheless, cFFF can serve as a useful diagnostic test for numerous neurological
and internal diseases [27]. For instance, it has been reported to aid in the early detection of
Alzheimer’s disease [28] and hepatic encephalopathy [6,29,30].

However, caution is advised when using this method for patients diagnosed with
minimal hepatic encephalopathy, as cFFF may give false positive results [31]. Despite
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the positive diagnostic potential of cFFF, the use of this method in clinical settings is not
without its challenges.

For research purposes, cFFF has been extensively used to study the physiology of vision [32].
Therefore, it is logical to employ cFFF tests to estimate cognitive impairment or clinically relevant
cerebral impairment [14]. For example, in the context of alcohol use [33,34]. one study reported a
lowered cFFF threshold after moderate alcohol consumption [35]. Similarly, cFFF was statistically
significantly lower in alcoholics than in healthy subjects in another study [36]. However, the
cFFF threshold did not decrease further in alcoholics given 250 mL of vodka, suggesting that
cFFF could be an objective measure of alcohol tolerance [37].

Sports divers usually do not consume alcohol before diving but may drink late in
the evening on dive holidays or safaris. In cases where a hangover is present before the
next day’s early dive, decreases in cFFF can be expected and may mask any effects of
nitrogen narcosis.

Alternatively, cFFF has been used to assess cortical arousal above sea level in many
studies. For example, during zero-gravity flights [38], parachute jumping [39], and in dry
chambers [40–42] Below sea level, cFFF has been used in studies with apnoeic divers [43],
scuba diving [44,45], and diving with a closed circuit rebreather (CCR) [14,46]. In particular,
measuring cFFF during operational tasks below sea level has proven to be a simple, rapid,
reliable, and reproducible tool nction have been attributed to the narcotic effect of increased
nitrogen partial pressure (pN2) [40,44,47,48]. However, cFFF increased in a study that used
trimix (5.5 bar) [14], and surprisingly decreased in another study (6 bar), that measured
response speeds towards two reaction time tasks [49].

CFFF tests were also employed when investigating the effect of increased oxygen
partial pressures (pO2). While normobaric O2 had no effect on cFFF, it decreased at a
pO2 of 1.4 bar and increased at a pO2 of 2.8 bar. Changes in cFFF due to changes in pO2,
therefore, appear to be dose-dependent [50]. Another study concluded that nitrogen (N2)
and O2, both alone and in combination, can induce neuronal excitability or depression in a
dose-dependent manner [45].

Therefore, there are varying results regarding the influence of increased respiratory
gas partial pressures. Additionally, a recent study [42] found that the cFFF was not suitable
to record narcotic effects of respiratory gases in 6-bar dry-chamber conditions. However,
this conclusion was questioned [51] due to the hyperbaric conditions being a mixture of N2
and O2 effects, further complicated by the presence of confounding factors.

This narrative review provides a comprehensive analysis of the critical flicker fusion
frequency (cFFF) and the various factors that can confound its measurement. In doing so, it
revisits the seminal work of Erlick and Landis (1952) [52] and expands on their observation
that more than ten factors can influence the cFFF threshold. This study also seeks to
address the specific confounders that are relevant to diving and hyperbaric medicine,
where accurate measurement of cFFF is crucial. By examining these confounders, this
review aims to enhance our understanding of the cFFF and its clinical applications in these
fields. Ultimately, this analysis provides valuable insights for researchers and clinicians
alike and can help improve the accuracy and reliability of cFFF measurements.

2. Confounding Factors

According to the literature, the “true” cFFF depends on a variety of parameters [52,53]. In
this review, we use the term confounders and focus on several factors, including participants,
smoking/drugs, optical aspects, environment and breathing gases.

2.1. Participants

Individuum: Our pilot study aimed to assess the intraindividual variations in cFFF in
a single male adult over a period of 38 days. The measurements were always taken in the
morning under consistent lighting conditions, with direct sunlight [54]. The result showed
a cFFF threshold of 44.0 ± 1.7 Hz (mean ± SD). Such variability of approximately 4% of the
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cFFF threshold indicates that any interventions in future studies should induce changes
greater than 4%.

Gender has not been found to effect mean cFFF values significantly between male
and female adults [55], a result that was confirmed by our pilot study [54]. However, a
moderate difference of 6% was found in one study among a group of 1000 adults, with
males having slightly higher cFFF values than females [22].

In contrast, lower mean cFFFs were found in boys than girls, and children with
problems (i.e., antisocial behaviors and attitudes, extraverted, maladjusted, or otherwise
exhibiting traits of psychiatric behavioral problems) obtained significantly lower mean
cFFFs than children who did not exhibit behavioral problems [56]. Therefore, cFFF has
been suggested as an index of certain mental abilities in children [57], and we suggest that
it could become an additional instrument to assess fitness to dive in the growing group of
diving children due to its simplicity, rapidity, and non-invasive nature.

Age: Visual acuity tends to remain relatively constant from ages 40 to 50. However,
it steadily declines as a person ages above 60 and on to the age of 80 [58]. Additionally,
cFFF has been found to decrease with age [22,59], partly due to a reduction in retinal
illumination [60]. Interestingly, cFFF has been shown to be a unique predictor of executive
dysfunction, accounting for unique variance in performance above and beyond age and
global cognitive status, across both younger and older age groups [61].

Personality: Although there are various instruments to investigate a person’s prop-
erties, the cFFF test has also been used to study the relationship between personality and
frequency thresholds. The test has revealed that the thresholds in adults are personality-
dependent [22]. For example, cFFFs for extraverts were shown to be lower than intro-
verts [62]. Additionally, cFFF differences in learning behaviour depended on the subject’s
level of sociability [63], while cFFF and academic performance had only a moderate corre-
lation [64]. Interestingly, cFFF was found to be higher in adults who played computer or
video games compared to those who did not. Furthermore, adults who played “instructive”
games had a higher cFFF than those playing “quest type” games, although the types of
games were not further defined beyond this categorization [22].

2.2. Smoking/Drugs

Smoking: Previous studies have found that smoking cigarettes leads to a raised cFFF
threshold [35]. Therefore, divers who smoke a cigarette before a dive may exhibit an
elevated cFFF that will spontaneously decrease during the dive. Such a decrease at any
given depth may be erroneously interpreted as a nitrogen-induced effect.

Drugs: In a review article, amphetamines were described as improving cognition when
used at therapeutic doses in healthy adults [65], and the cFFF test can therefore be regarded
as a measure of cortical arousal. For instance, a single low dose of amphetamine led to an
increase in the cFFF [66]. Similarly, cFFF thresholds after other CNS stimulants (pemoline,
methylphenidate, hydergine, and chlorpromazine) were increased in parallel with self-
ratings of alertness. Interestingly, clobazam, an anxiolytic, increased the cFFF in subjects
who rated themselves as having high anxiety, but decreased cFFF thresholds in subjects
who did not [17]. However, a single oral dose of diazepam decreased cFFF [66], while
zolpidem, given before sleep, had no effect on the subsequent daytime cFFF [67]. Although
the aforementioned drugs are unlikely to be consumed in the diving community, cannabis
may begin playing a more significant role due to being legalized. A study showed that
smoking 1 g of marijuana (1.5% THC) clearly increased the cFFF threshold [32]. Therefore,
if a subject’s cFFF is assessed shortly after drug consumption, the cFFF will likely be
erroneously increased. As a result, the cFFF thresholds of any delayed intervention will be
overshadowed by the decreasing drug effect, making drug consumption likely to confound
the cFFF thresholds.
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2.3. Optical Factors

Vision: The fovea centralis is a small pit located in the central region of the eye that
contains densely packed cones. This area is responsible for providing clear central vision,
which is crucial for tasks that require visual precision, such as reading and driving. As one
moves further away from the fovea centralis, visual acuity decreases [68].

The relationship between the cFFF threshold and retinal location is primarily deter-
mined by the density distribution of receptor cells (cones and rods) on the retina [69]. When
a light source flickers, the amount of flicker is greater when its image falls on the fovea
compared to when it is viewed eccentrically. As a result, the highest cFFFs are found when
light hits the fovea directly [70]. Therefore, it is important to maintain both the distance
between the light source and the observer’s eyes as well as the visual angle throughout the
experimental protocol, if possible.

In open-water studies, results may be affected by differences in the positions of the
light source and the observer’s eyes. For example, during scuba diving, measurements
are taken on the surface as well as at varying depths. Additionally, movement of the light
source or the observer can also increase cFFFs.

Eye motion due to saccades can also introduce errors in cFFF measurements. Humans
are capable of perceiving flicker frequencies as high as 2 kHz during saccades [71].

Light source: The relationship between flicker frequency and flicker fusion was first
described in a thesis [72]. The Ferry-Porter law later established that cFFF increases with
luminance [73]. It was later found that cFFF also depends on the surrounding illumina-
tion [68]. This means that substantially higher rates of flicker can be seen under bright
daytime illumination compared to dusk [74]. The adaptation of the eye, specifically the
pupillary diameter, is also important [75,76]. For instance, cFFFs were about 5 Hz lower in
dark-adapted than in light-adapted subjects [77].

However, few studies specify the illumination conditions, such as a study in which
volunteers were dark-adapted for 15 min [22]. Eye adaptations could be a source of
variation in cFFFs in literature, particularly when comparing measurements taken above
sea level versus those taken at the seabed. Brighter stimuli have higher cFFFs, for example,
and rod cells have less ability to achieve fusion than cone cells.

Aside from intensity, the wavelength (colour) of the light also influences cFFF [68].
The cFFF for red is significantly lower than for other colours [78], and the threshold for
blue is significantly lower than for green [27]. Thus, comparing different studies becomes
challenging when different colours are used. Moreover, the size of the light source also
affects cFFF thresholds [22,79]. Lastly, the light-dark ratio of the stimulus also makes a
significant difference [80,81].

We are confident that the three confounding factors mentioned above, namely colour,
stimulus area, and light-dark ratio, have contributed to different cFFF thresholds observed
under control conditions, which averaged 44 Hz [42], 35 Hz [43], and 30 Hz [82].

Frequency Change Direction: In many studies on cFFF, measurements usually begin
at low flicker frequencies and gradually increase thereafter. The technique used to change
frequencies, whether manual or automatic, does not seem to significantly affect results,
as both techniques differ by a maximum of 2.2% [42]. However, there are few studies
where frequencies were both increased and then decreased. In one group of “unsure”
volunteers, there were no differences observed between increasing or decreasing flicker
frequencies. In contrast, a group of “reckless” volunteers showed significantly higher
descending frequencies than when frequencies were increased. This contradictive result
could be interpreted based on possible personality-dependent differences [83].

Minor differences were found in a group of bicyclists depending on the direction of
changing the flicker frequency [84], and the maximum differences reported in a group of
yoga participants were about 4% [85].

It is not surprising that the order of changing the frequency matters, as it is consistent
with perceptual constancy [86]. This means that an impression tends to conform to the
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object as it is or is assumed to be, rather than to the actual stimulus, such as flickering light
or steady light.

A suggestion is to avoid using the term “fusion” when the frequency is decreased
within a protocol and replace it with “separation”, for example, because “fusion” im-
plies constancy.

Another aspect worth mentioning is the learning effect observed in cFFF measure-
ments. The cFFF of the second test run was found to have increased significantly over the
first run by roughly 3% [55]. Therefore, if the first test run was performed during control
and the second during or after an intervention, a difference might have been introduced by
the learning effect.

2.4. Environment

Stress can affect the cFFF threshold in various ways. For instance, psychological stress
and anxiety can cause a significant decrease in cFFF both before and after surgery [87]. A
similar decrease in cFFF was observed in individuals with insufficient sleep compared to
those with sufficient sleep patterns and duration [20,22].

Yoga has been shown to increase cFFF values by 15% in participants who underwent a
30-day course. This increase is believed to be due to the reduction of physiological signs
of stress, such as heart rate, breathing rate, and oxygen consumption [85]. Conversely,
pharmacological means of reducing stress through sedatives can decrease both cFFF and
cognitive competence [88,89].

Diving can also increase stress, especially for beginners or in adverse circumstances [46,90].
In such cases, cFFF values may decrease, and it can become challenging to distinguish between
the effects of stress and those of toxic breathing gases.

Fatigue: It is worth noting that fatigue can also influence cFFF values. While cFFF
is not considered a sensitive indicator of general fatigue [59], it can be used to measure
central fatigue [10,11]. In one study, cFFF values were significantly lower in railway
dispatchers after night shifts, suggesting that cFFF can also measure the degree of fatigue
in the central nervous system [91]. However, after a maximum incremental cycle ergometer
test on professional cyclists, cFFF thresholds increased, while the cyclists reported marked
subjective fatigue, which was likely more peripheral than due to central nervous system
fatigue [84]. Finally, even low doses of sedatives can lead to cFFF decreases and significant
changes in subjective reports of fatigue [89].

Temperature: After a 90-min exposure to ambient heat, cFFFs were found to be
increased in young army men [92]. Furthermore, a 0.5 ◦C increase in sublingual temperature
was accompanied by a 6% improvement in flicker threshold [93]. Similarly, in young
volunteers, an increase in core body temperature by 1.1 ◦C through the use of cling film,
tin foil, and warming blankets resulted in increased cFFFs. The authors concluded that
increased core body temperature was associated with improved temporal visual resolution
and retinal trunk vessel dilation. These findings suggest that hyperthermia is associated
with enhanced retinal function and increased retinal metabolism [94].

Temperature changes in either direction affect cFFF thresholds. Considering the
aforementioned results, it is worth investigating hyperbaric chambers, where pressure
increases are often associated with temperature increases. During a 60-min dive to 46 m
using trimix 19/40, the skin temperature of participants decreased from 33 to 28 ◦C due
to water temperature of only 4 ◦C. This decrease in skin temperature led to significantly
increased cFFF readings [14]. Not only were the underwater cFFF measurements conducted
in a different environment than the two surface measurements, but different optical media
were also employed, the possible effects of which might have acted as a confounder and
thus, contributed to an increased cFFF threshold.

Another study provides a possible explanation. Volunteers immersed their forearms
in water of different temperatures, and the cFFF threshold was higher in cold water than in
lukewarm water, indicating increased alertness from the cold stimulus. However, short-
term memory was attenuated in the cold-water condition [95].
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Time. The cFFF exhibits diurnal variation by decreasing throughout the day, which
has been interpreted as a reduction in perceptual sensitivity [96]. Fortunately, subjects
who undergo cFFF testing at the same time on sequential days show stable thresholds.
However, if new activities are started, such as 1 h of motion training per day for nine days,
participants show a 30% increase in cFFF [97].

Thus, any effect of daytime or lifestyle should be excluded, as the perceptual ex-
perience of subjects can dramatically alter the cFFF thresholds and should be a vital
consideration in the control of studies employing the cFFF as a measure [97].

Another time aspect that might distort results is related to sequential cFFF measure-
ments in a group of participants. For instance, in a multiplace dry chamber with twelve
participants subjected to the same protocol, the investigator assesses the cFFF of the first
participant and then continues with the other eleven. As a result, the last participant will
be exposed to the pressure of 6 bar for a considerably longer time than the first. If each mea-
surement should last 30 s, then the maximum delay will amount to 6 min., Decompression
of the first participant will therefore be much shorter at the time of the cFFF measurement.
A comparable situation exists with in-water dives. In a group of three divers, one might
act as the investigator, another as an observer, and the third will write down the result.
Thereafter, the tasks rotate until each diver has taken on one of the three tasks. It is unlikely
that each diver will complete their task in precisely the same amount of time, and those who
take longer would naturally be exposed for a longer period of time. Hence, the individual
cFFFs will depend on the individual time of exposure.

2.5. Breathing Gases

In line with the lipid theory [98], it has been shown that inert gas narcosis (IGN) can
impair cognitive performance [49,99]. As a result, it is expected that cFFFs will decrease at
depths when partial nitrogen pressures are increased. Surprisingly, a study by [42] found
that cFFF did not significantly change when breathing air at 6 bar in a dry chamber. How-
ever, a different study suggests that IGN can have a lasting effect on cognitive impairment,
as assessed by cFFF, for at least 30 min after surfacing [44]. This latter study also suggests
that IGN may depend on a gas-protein interaction, which is different from the lipid theory.
According to the protein theory, inert gases act by binding to neurotransmitter protein
receptors (for review, see [100]).

Similarly, studies on the effects of oxygen (O2) have yielded inconsistent results. One
study found that breathing O2 at 1 bar and 2.8 bar caused a significant decrease in cFFF [42].
On the other hand, the effects of O2 on neuronal excitability in young healthy men were
described as dose-dependent: 0.7 bar O2 did not affect cFFF, 1.4 bar O2 significantly
jeopardized cFFFs, while 2.8 bar O2 allowed for recovery of cFFF [50]. These results on
oxygen are concerning, especially considering that normobaric oxygen is widely used in
clinical settings [101,102], and a partial pressure of 1.4 bar is considered a safe upper limit
for divers [103].

In one additional study conducted at 6 bar in a hyperbaric chamber, two reaction time
tests showed a deterioration in cognitive competence, while the cFFF was unexpectedly
increased. The authors suggest that divers susceptible to IGN may also be susceptible to
the effects of elevated partial pressure of O2, which could explain these counterintuitive
results [104].

3. Conclusions

The first use of a cFFF test in the field of diving dates back almost 50 years [41], and it
was rediscovered only a decade ago [44]. Since then, the test has yielded several valuable
but also inconsistent results, raising questions about how to interpret some of them.

For example, a 15% increase in cFFF was observed after a yoga course [85], while
participants in a daily 1-h motion training for nine days showed a cFFF increase of
30% [97]. These positive effects are easily understandable. However, a study on O2
effects found significant cFFF differences between control (1 bar O2) and intervention (2.8
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bar O2) of only <3% [42], leaving interpretation open to question. Our pilot study with
up- and down-flicker frequency changes provided significant cFFF differences of 6% at a
p-value < 0.05 [105]. However, statistical significance based on a p-value does not measure
the effect size or importance of a result [106]. To better understand our result, we calculated
Cohen’s d [107], which showed that our result signifies only a “low effect”, despite a
significant difference of 6%.

To emphasize our caution with p < 0.05 results, we refer to data from another study,
where significant cFFF differences between 1 bar and 6 bar in a hyperbaric chamber av-
eraged 0.9 Hz [14]. Calculating Cohen’s d again yielded a value of 0.46, signifying a
“low effect”.

We believe that accurate interpretation of cFFF thresholds will remain an important
diagnostic tool for eye diseases, as well as neurological and internal diseases. Furthermore,
understanding intervention-induced cFFF changes can enhance our understanding of their
significance. Despite the presence of several confounding factors, the use of cFFF techniques
to evaluate cerebral impairment in humans, particularly in divers exposed to different
breathing gases and dive profiles, is highly valuable, especially because divers may not
subjectively experience narcosis.

Erlick and Landis’ (1952) [52] early observation of more than ten factors that might
confound “true” cFFF values has been borne out. The cFFF technique is generally consid-
ered a simple, rapid, reliable, and reproducible tool in the field of experimental research but
its validity will be compromised in the presence of confounding factors. The interpretation
of results with the help of p-values seems questionable when significant differences are
in the range of a few percent. It is important to note that confounding factors can lead
to significant differences within open-field studies. Carefully considering the numerous
confounding factors when utilizing cFFF thresholds to assess cerebral impairment is crucial
in enhancing diving guidelines and safety.
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