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Abstract: Transdermal patches are a non-invasive method of drug administration. It is an adhesive
patch designed to deliver a specific dose of medication through the skin and into the bloodstream
throughout the body. Transdermal drug delivery has several advantages over other routes of ad-
ministration, for instance, it is less invasive, patient-friendly, and has the ability to bypass first-pass
metabolism and the destructive acidic environment of the stomach that occurs upon the oral ingestion
of drugs. For decades, transdermal patches have attracted attention and were used to deliver drugs
such as nicotine, fentanyl, nitroglycerin, and clonidine to treat various diseases or conditions. Recently,
this method is also being explored as a means of delivering biologics in various applications. Here,
we review the existing literatures on the design and usage of medical patches in transdermal drug
delivery, with a focus on the recent advances in innovation and technology that led to the emergence
of smart, dissolvable/biodegradable, and high-loading/release, as well as 3D-printed patches.

Keywords: transdermal; drug delivery; medical patch; development and technology

1. Introduction

Transdermal drug delivery is an alternative way of delivering drugs via the skin
layer [1,2]. The drug is carried through the skin into the bloodstream and circulates
systemically in the body before reaching the target site [1,2]. The transdermal drug delivery
method has several advantages over other routes of administration. Examples include the
ability to deliver continuous doses of drugs over an extended period of time, the ability to
bypass the digestive system, and the ability to avoid first-pass metabolism in the liver [3].
Other drug administration routes, such as intravenous, can cause pain and increase the risk
of infection. Nevertheless, the oral route is inefficient, and in the inhalation method, it is
difficult in controlling the dosage. In view of its advantages over other routes, transdermal
administration is commonly used to deliver drugs for conditions such as smoking cessation,
chronic pain, and motion sickness, as well as hormone replacement therapy [4–6].

A transdermal patch is a medicated patch that can deliver drugs directly into the
bloodstream through the layers of the skin at a prescribed rate. In fact, patches are the most
convenient method of administration. They are non-invasive, and treatment can last for
several days and can be stopped at any time (Table 1). They come in different sizes and
contain multiple ingredients. When applied to the skin, the patch can deliver active ingredi-
ents into the systemic circulation via diffusion processes. Transdermal patches may contain
high doses of active substances that remain on the skin for an extended period of time. One
of the first transdermal patches developed in 1985 was the nitroglycerin patch. The patch,
developed by Gale and Berggren, uses a rate-controlling ethylene vinyl acetate membrane.
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Currently, several drugs are available as transdermal patches, including estradiol, cloni-
dine, fentanyl, nicotine, scopolamine (hyoscine), and estradiol with norethisterone acetate
(Table 2). The site of application may vary depending on the therapeutic category of the
drug [7]. For example, nitroglycerin can be applied around the chest and estradiol around
the buttocks or abdomen. The duration of drug release also varies depending on the usage,
from the shortest (up to 9 h) to the longest (up to 9 days).

Table 1. Pros and cons of using transdermal patches.

Advantages Disadvantages

Continuous dosing, multi-day treatment Limited type of medication

Bypass the digestive system Skin irritation

Avoid first-pass metabolism Inconsistent absorption

Can be terminated anytime Patch failure

Less invasive Limited dosing option

Table 2. A summary of transdermal patches/products and their unique features.

Drugs Indication Product Name Duration of
Application Reference

Asenapine Mania, bipolar disorder Secuado® 24 h [8,9]

Bisoprolol Atrial fibrillation Bisono® 24 h [10]

Buprenorphine Management of pain Butrans® 7 days [11–13]

Clonidine

Hypertension,
Tic disorder,

Tourette syndrome,
Attention deficit hyperactivity

disorder (ADHD)

Catapres-TTS® 7 days [14–18]

Dextroamphetamine ADHD Xelstrym® Up to 9 h [19]

Donepezil Alzheimer disease Adlarity® 7 days [20,21]

Estrogen Postmenstrual
syndrome Fematrix® 7 days [22,23]

Ethinyl Estradiol Prevent pregnancy Ortho Evra® 7 days [24,25]

Fentanyl Moderate/severe
pain Duragesic® 72 hours [26]

Granisetron Anti-emetic Sancuso® Up to 7 days [27–29]

Levonorgestrel,
Estradiol

Postmenstrual
syndrome Climara Pro® 7 days [30,31]

Lidocaine Treatment of pain Lidoderm®

Dermalid®
up to 3 times daily for
no more than 12 hours [32,33]

Methylphenidate ADHD Daytrana® Up to 9 days [34]

Nicotine Smoking cessation

Habitrol®,
Nicoderm®

Nicoderm CQ®

Nicorette®

24 h
16 h [35–37]

Nitroglycerin Angina pectoris
Relieve pain after surgery

Minitran®

Nitro-dur® 12–14 h [38–41]

Norethindrone
Estradiol Symptoms of menopause Combipatch® 3–4 days [42]
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Table 2. Cont.

Drugs Indication Product Name Duration of
Application Reference

Oxybutynin Overactive bladder Oxytrol® 3–4 days [43,44]

Rivastigmine Alzheimer disease Exelon® 24 h [45,46]

Rotigotine Parkinson’s disease Neupro® 24 h [47]

Selegiline Depression Emsam® 24 h [48]

Scopolamine Motion sickness Transderm-scop® 72 h [49,50]

Testosterone Hypogonadism in
males Androderm® 24 h [51,52]

17-β-Estradiol
Postmenstrual
syndrome and
osteoporosis

Alora®

Climara®

Estraderm®

Vivelle-Dot ®

Vivella®

Menostar®

Minivelle®

3–4 days
7 days

3–4 days
3–4 days
3–4 days

7 days
3–4 days

[53–55]

2. Transdermal Patch Design

Transportation of drug across the skin is affected by various factors, such as skin
permeability, area, and duration of application, as well as metabolic activity of the skin
(i.e., first pass metabolism). In fact, every drug has its unique properties, which can affect
transdermal delivery. To achieve adequate skin absorption and penetration, the drug
should be non-ionic and relatively lipophilic to cross the skin barrier. Molecules larger than
500 Daltons make it difficult to cross the stratum corneum, and ideally the therapeutic dose
of the drug should also be less than 10 mg per day.

3. Basic Component of Transdermal Patch

Transdermal patches typically consist of several layers that are designed to deliver
the medication through the skin and into the bloodstream. Figure 1 illustrates the basic
component of a medicated patch. The specific composition and structure of the patch may
vary depending on the drug being delivered and the desired rate of drug release.
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Figure 1. Basic component of a transdermal medical patch.

The backing layer is the outermost layer of the patch and serves to protect the other
layers from the environment. This layer is usually made of a flexible, waterproof material
such as polyethylene or polypropylene. The adhesive layer serves to attach the patch
to the skin and keep it in place. It usually consists of a strong, hypoallergenic adhesive
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that is gentle on the skin. The drug layer contains drugs that are delivered through the
skin. It is formulated to release the drugs at a constant rate over a period of time. The
rate-controlling membrane serves to control the rate at which the drugs are released from
the patch. Membranes are usually made of semi-permeable materials that allow the drugs
to pass through the membrane at a controlled rate. Linen acts as a protector for the patch
and adhesive. The patch must be removed before being applied to the skin surface.

4. Types of Transdermal Patches

In general, there are four main type of transdermal medical patches (drug-in adhesive,
reservoir, matrix, and micro-reservoir systems), as shown in Figure 2. Most commercially
available patches are categorized as reservoir or matrix systems [56].
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4.1. Drug-in-Adhesive System

This is the simplest form of membrane permeation control system. The adhesive layer
in this system contains drugs and serves to glue the different layers together. The drug
mixture is sandwiched between the liner and backing.

4.2. Reservoir System

In this system, the drug reservoir is held between the backing layer and the rate-
controlling membrane, and the drug is released through the microporous rate-controlling
membrane. The drug can be in solution, suspension, or gel form, or can be dispersed in a
solid polymer matrix within the reservoir chamber.

4.3. Matrix System

Drugs are uniformly dispersed in hydrophilic or lipophilic polymer matrices. The re-
sulting drug-containing polymer is affixed to drug-containing discs of controlled thickness
and surface area.

4.4. Micro-Reservoir System

This system is a combination of reservoir and matrix dispersion system. Here, the
drug is prepared by first suspending drug solids in an aqueous solution of a water-soluble
liquid polymer and then uniformly dispersing the solution in a lipophilic polymer to create
thousands of non-leaching microscopic drug reservoirs.
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5. Microneedle-Based Patches

There are several types of microneedles, each with unique features and characteristics,
as shown in Table 3. Overall, four major types of microneedle-based patches have been
developed, namely solid, hollow, dissolving, and coated microneedle (Figure 3). The choice
of microneedle type depends on the specific application and requirements of the user.

Table 3. Microneedle types with their unique features.

Type Material Structure Use Dose Delivery
Rate References

Solid
Silicon,
Metal,

Polymer
Simple Can be

reuse Small dose Fast [57–59]

Hollow Silicon Simple Can be
reuse Large dose Fast [60–63]

Coated
Polymer,

Sugar,
Lipids

Complex Single
More

precise
dosing

Fast [64–67]

Dissolving Polymer Complex Single
More

precise
dosing

Slow [68–71]
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1. Solid Microneedles: These are the simplest type of microneedles, consisting of solid
needles that penetrate the skin to create tiny channels. Solid microneedles are com-
monly used for drug delivery and cosmetic treatments.

2. Hollow Microneedles: These microneedles have a hollow core that allows for the
delivery of fluids or drugs into the skin. Hollow microneedles are often used for
transdermal drug delivery and sampling of interstitial fluid.

3. Coated Microneedles: These microneedles have a coating that dissolves upon pen-
etration of the skin, allowing for the release of drugs or other substances. Coated
microneedles are often used for transdermal drug delivery.

4. Dissolving Microneedles: These microneedles are made of materials that dissolve in
the skin, allowing for the controlled release of drugs or other substances. Dissolving
microneedles are often used for vaccines and other drug delivery applications.

6. Recent Advancement of Transdermal Patch

Traditional transdermal patches serve only two purposes: storage and release of drugs.
While this method has some advantages, traditional patching has many challenges and
drawbacks, for example limited dosage or low release. To date, there have been several
advances in the field of transdermal drug delivery. These include the design of novel
patches, which include the ability to sense and release drugs accurately, higher loading, and
enhanced penetration and release of drugs. Overall, the field of transdermal drug delivery
is an active area of research and development, with many exciting new developments on
the horizon, as discussed below.
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6.1. Smart Patches

Smart patches are equipped with sensors and other technologies that can monitor
patient conditions and adjust drug delivery accordingly. In 2014, a group of researchers
developed a microneedle-based smart patch sensor platform for painless and continuous in-
tradermal glucose measurement for diabetics. This patch uses a conducting polymer such as
poly (3,4-ethylenedioxythiophene) (PEDOT) as an electrical mediator for glucose detection
and as an immobilizing agent for the glucose-specific c-enzyme glucose oxidase (GOx) [72].
Further research and development resulted in a smart insulin releasing patch consisting of
121 microneedles containing nanoparticles. The patch painlessly penetrates into the intersti-
tial fluid between subcutaneous skin cells. The nanoparticles in each needle contain insulin
and the glucose-sensing enzyme glucose oxidase, which converts glucose into gluconate.
These molecules are surrounded by hypoxia-responsive polymers. As shown in Figure 4,
increased glucose oxidase activity in response to increased glucose creates an oxygen-
depleted environment within the nanoparticles, which is sensed by the hypoxia-responsive
polymer, triggering nanoparticle degradation and insulin release [73,74].
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Wound healing is a complex and dynamic regenerative process with constantly chang-
ing physical and chemical parameters. Its management and monitoring offer great benefits,
especially for bedridden patients. Iversen et al. reported an inexpensive, flexible, fully
printed smart patch on the skin to measure changes in wound pH and fluid volume. Such
bendable sensors can also be easily incorporated into wound dressings. The sensor consists
of various electrodes printed on a polydimethylsiloxane (PDMS) substrate for pH and
humidity measurements. The generated sensor patch has a sensitivity of 7.1 ohm/pH
to the wound pH value. Hydration sensor results showed that the water content of the
semi-porous surface can be quantified by the change in resistivity [75].

Besides wound healing, scientists have also developed a smart patch to monitor
and treat diabetic foot ulcers (DFU). This system is fabricated from conductive hydrogel
patches with a ultra-high transparency polymer network. Importantly, highly transparent
conductive hydrogel patches can be used to visually monitor wound healing status, pro-
mote haemostasis, improve cell-to-cell communication, prevent wound infection, promote
collagen deposition, and improve vascularity. By promoting angiogenesis, it effectively
promotes the healing of DFU. In addition, the versatile intelligent patch can also achieve
indirect blood glucose monitoring by detecting glucose levels in wounds, and timely detect
movements of various sizes of human bodies. Interestingly, this smart patch can monitor
chronic wound dressings and treat wounds at the same time [76].
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Smart patches are also used to deliver natural compounds such as curcumin. The
material consists of paraffin wax and polypropylene glycol as a phase change material
(PCM). PCM was combined with graphene-based heating elements obtained by the laser
scribing of polyimide films. This arrangement offers a new approach to smart patches
whose release can be electronically controlled, and which allows repeated dosing. Emission
is induced and terminated by controlled heating of the PCM rather than relying on passive
diffusion, and permeation only occurs when the PCM transitions from solid to liquid.
Curcumin delivery yields were found to be good and satisfactory [77].

6.2. Dissolving/Degradable Patches

These patches are designed to dissolve on the skin and do not need to be removed
and discarded. In general, these patches are made from biodegradable materials that are
absorbed by the body after use. In a proof-of-concept paper published in 2019, researchers
successfully administered the antibiotic gentamicin via a dissolving patch in a mouse
model of bacterial infection [78] (Figure 5). The results showed that a gentamicin-dissolving
microarray patch applied to mouse ears could control Klebsiella pneumoniae infection. In
addition, mice treated with lysing patches had reduced bacterial burden in nose-associated
lymphoid tissue and lungs compared with untreated control.
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Dissolving microneedles (MNs) show high efficiency in the delivery of poorly per-
meable drugs and vaccines. A two-step injection and centrifugation process was used to
localize insulin to the needle and achieve efficient transdermal delivery of insulin. The
relative pharmacological availability and relative bioavailability (RBA) of insulin from
MN patches were 95.6% and 85.7%, respectively. This study demonstrates that the use
of dissolving patches for insulin delivery achieves a satisfactory relative bioavailability
(RBA) compared to conventional subcutaneous injection, demonstrating the effectiveness
of dissolving patches for diabetes treatment [79].

On the other hand, scientists have developed a biodegradable microneedle patch
that delivers hyaluronic acid (HA) antigen-peptide conjugates for prophylactic cancer
immunotherapy [80]. A cytotoxic T-cell epitope peptide (SI-INFEKL) is conjugated to
HA-loaded biodegradable HA microneedle (MN) patches to efficiently deliver antigens
to the skin’s immune system. Interestingly, a single transdermal vaccination with an MN
patch containing the HA-SIINFEKL conjugate significantly increased tumor growth in B16
melanoma model mice by enhancing antigen-specific cytotoxic T-cells.

Another research group developed a hypotensive biodegradable patch for transdermal
delivery of sodium nitroprusside (SNP) in combination with sodium thiosulfate (ST) [81].
Dissolvable microneedles loaded with SNPs and STs were fabricated by centrifugal casting.
In this method, SNPs were stably packaged into microneedles and immediately released
into the systemic circulation. Antihypertensive microneedle therapy (aH-MN) achieved
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rapid and strong blood pressure reduction. It met the clinical requirements for blood
pressure management in hypertensive emergencies. Concomitant administration of ST
effectively suppressed side effects (e.g., organ damage) caused by the continuous intake
of SNPs. This study presented an efficient and patient-friendly biodegradable patch for
antihypertensive therapy.

Transdermal patches are also commonly used in the cosmetic industry. However, the
non-degradable polymers used in cosmetic patches are of concern because they can pollute
the environment when disposed irresponsibly in open areas. In one study, biodegradable
polylactic acid (PLA) was recommended due to its lack of toxicity. The results showed
that the PLA/phycocyanin-alginate composite made with a phycocyanin/alginate ratio
of 40/60 at 20 ◦C for 20 h had the best properties in terms of film flexibility and release
properties [82]. Overall, the results are promising but warrant further in vivo or clinical
study for further development.

6.3. Three-Dimensional (3D)-Printed Patches

Researchers are using 3D printing technology to create customized transdermal
patches that can be tailored to the individual needs of each patient [83]. One good ex-
ample is the use of a 3D-printed patch for wound healing. In a study by Jang et al., gelatin
methacrylate (GelMA) was tested as a viable option with tunable physical properties.
GelMA hydrogel incorporating a vascular endothelial growth factor (VEGF)-mimicking
peptide was successfully printed using a 3D bio-printer owing to the shear-thinning prop-
erties of hydrogel inks. The 3D structure of the hydrogel patch had high porosity and water
absorption properties. VEGF peptide, which is slowly released from hydrogel patches, can
promote cell viability, proliferation, and tubular structure formation, indicating that the 3D
Gel-MA-VEGF hydrogel patch can be used for wound dressing [84].

On the other hand, a three-dimensional (3D) printing technique called continuous
liquid interface production (CLIP) was used to design and fabricate transdermal patches.
The multifaceted microneedle design increased the surface area compared to the smooth
square pyramid design, ultimately resulting in the improved surface coating of model
vaccine components (ovalbumin and CpG). In the study, they used fluorescent tags and
live animal imaging to assess in vivo charge retention and bioavailability in mice as a
function of delivery route. Compared with subcutaneous bolus injection of soluble com-
ponents, transdermal administration not only resulted in improved skin charge retention,
but also improved the activation of immune cells in draining lymph nodes. Moreover,
the delivered vaccine elicited a strong humoral immune response with higher total IgG
(immunoglobulin G) and a more balanced IgG1/IgG2a repertoire, resulting in dose sparing.
Furthermore, it elicited a T-cell response characterized by functional cytotoxic CD8+ T-cells
and CD4+ T-cells secreting Th1 (T helper type 1) cytokines. In short, CLIP 3D-printed
microneedles coated with vaccine components provide a useful platform for non-invasive,
self-administered vaccination [85].

Another group of researchers designed and printed the patch using stereolithography
(SLA) technology with a proprietary class I resin. They showed that these patches can be
used for transdermal delivery of high molecular weight antibiotics such as rifampicin (M(w)
822.94 g/mol). This drug suffers from gastric chemical instability, reduced bioavailability,
and severe hepatotoxicity. The patch was engineered with sub-apical holes present in
one-quarter of the needle tip to enhance the mechanical strength and integrity of the patch
array. The tips were characterized by optical and electron microscopy to determine print
quality and uniformity across the array. The system also underwent mechanical character-
ization for failure and penetration analysis. The authors systematically evaluated the ex
vivo penetration and consequent transport of rifampicin through porcine skin. Moreover,
in vivo study of rifampicin administration via the 3D-printed patch demonstrated efficient
penetration and desirable bioavailability [86].

Another technique known as powder extrusion (DPE) has emerged as the most viable
approach due to its ability to directly process excipients and pharmaceuticals in one
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step [87]. The study was set to determine whether different grades of ethylene-vinyl
acetate (EVA) copolymers could be used as new starting materials for the fabrication of
transdermal patches. By choosing two model drugs with different thermal behavior (i.e.,
ibuprofen and diclofenac sodium), they also wanted to consider the versatility of this EVA
excipient in manufacturing patches for custom transdermal therapy. EVA was combined
with 30% (w/w) of each model drug. Fourier transform infrared (FT-IR) spectra confirmed
that the starting material was effectively incorporated into the final formulation, and
thermal analysis revealed that the extrusion process changed the crystalline morphology
of the raw polymer, leading to increased crystallization at smaller thicknesses. This study
indicated that EVA and direct powder extrusion technology may be promising tools for the
fabrication of transdermal patches. By choosing an EVA type with appropriate VA content,
it is possible to print drugs with different melting points while maintaining thermal stability.
Furthermore, the desired drug release and permeation profiles of drugs can be achieved. In
fact, this is an important advantage from the point of view of personalized medicine.

Lim et al. reported the use of 3D printed personalized patches that conform to the
skin surface for Acetyl-hexapeptide 3 (AHP-3) delivery. However, commercially available
photocurable resins for 3D printing are not suitable for fabricating drug-loaded delivery sys-
tems. In this study, two liquid monomers, namely polyethylene glycol diacrylate (PEGDA)
and vinylpyrrolidone (VP) in different proportions were used to improve the mechanical
strength, polymerization rate, and swelling rate of the final polymer. Optimal drug loading
on the resin indicated that AHP-3 remained stable throughout the manufacturing process
and had no effect on the physical properties of the final polymer. Using a 3D scanned facial
model, a personalized patch was designed in CAD (computer-aided design) software and
fabricated in optimized resin using a digital light processing (DLP) 3D printer. In vitro
characterization of the prepared transdermal patches showed their ability to penetrate
human cadaver skin, and they remained intact after compression. The final polymer was
also minimally cytotoxic to human dermal fibroblasts. This is the first study demonstrating
personalized patches made using photopolymers and may be a novel approach to improve
the transdermal delivery of drugs for effective wrinkle management [88].

6.4. High Loading/Release Patches

Long-acting transdermal drug delivery requires high drug loading and controlled
drug release. In order to improve drug-polymer miscibility and achieve controlled drug
release, a novel hydroxyphenyl (HP)-modified pressure-sensitive adhesive (PSA) was
developed [89]. The results show that the dual-ionic H-bonds between R(3)N and R(2)NH-
type drugs and HP-PSA are reversible and relatively strong, unlike ionic and neutral
H-bonds. This allowed patches to significantly increase the drug loading from 1.5- to
7-fold and control the drug release rate from 1/5 to 1/2 without changing the overall
release profile. Pharmacokinetic results showed that the HP-PSA-based high-load patch
achieved sustained drug concentrations in plasma, avoided sudden release, increased
area under the concentration-time curve (AUC), and average dwell time by more than
6x, indicating the potential for long-acting drug delivery. In addition, its safety and
mechanical properties are met. Mechanistic studies have shown that repulsion of ionic
drugs in HP-PSA increases drug loading, and relatively strong interactions can also control
drug release. Incomplete hydrogen bond transfer determined its reversibility, making the
percentage drug release equal to that of non-functional PSA. In short, the high drug loading
efficiency and controlled drug release capability of HP-PSA and its unique interactions will
contribute to the development of long-acting transdermal drug delivery systems. Moreover,
the construction of double-ionic H-bonds provides further inspiration for various drug
delivery systems in non-polar environments.

Pharmaceutical polymers are widely used to inhibit drug recrystallization through
strong intermolecular hydrogen and ionic bonding, but at the expense of drug release rates
in transdermal patches. To overcome this difficulty, a group of researchers came up with the
idea of using a new ionic liquid (drug IL) strategy to increase drug loading [90]. A carboxyl-
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based pressure sensitive adhesive (PSA) was chosen as a model polymer. The results
showed a five-fold increase in PSA drug load. This was caused by the synergistic effect of
strong ionic and normal hydrogen bonds formed between the carbonyl groups of the drug
and PSA. This study demonstrated an entirely new mechanism of action and provided
a powerful tool for the development of high-drug load, high-release patches. In another
study, the same group of researchers constructed a high-capacity, high-release transdermal
patch with COOH polyacrylate polymer (PA-1) to deliver non-steroidal anti-inflammatory
drugs (NSAIDs), namely ibuprofen. The drug load and skin absorption of PA-1 were
improved by 2.4-fold and 2.5-fold, respectively. The hydrogen bond formed between
the drug (COOH) and PA-1 (COOH) is weakened by repulsive interactions, whereas
the enhanced conductivity of PA-1 was confirmed by dielectric spectroscopy, electron
paramagnetic resonance (EPR) spectra, four-point probe method, and molecular modeling
with the appearance of COO-. In summary, these results showed that ion–ion repulsion
by reducing hydrogen bonding can be a viable way to build large-capacity, high-emission
patches [91].

7. Potential Application of Transdermal Patches

Previously, we listed a number of therapeutically active drugs marketed as transder-
mal patches in Table 2. As technology and research have advanced, numerous potential
application areas for transdermal patches have been explored, as described below.

7.1. Transdermal Patches for Patches for Vaccination

Researchers are developing transdermal patches that can deliver vaccines through
the skin, potentially offering a more convenient and less painful alternative to injections.
A good example is the microneedle-based smallpox vaccine patch. When this vaccine
patch was applied to mice, neutralizing antibodies were induced from 3 weeks after
immunization. Levels were maintained for 12 weeks, and there was a significant increase
in IFN-γ secreting cells, suggesting that the transdermal patch could serve as an alternative
delivery system for vaccination and preservation [92].

Another research group designed a lytic microneedle patch for influenza vaccination
that targets skin antigen-presenting cells. Microneedles were created using a biocompatible
polymer that encapsulates an inactivated influenza virus vaccine for insertion and disso-
lution into the skin within minutes. The patch elicited strong antibody and cell-mediated
immune responses in mice that provided complete protection against lethal challenge.
The results provide a new technique for simpler and safer vaccination with improved
immunogenicity by using a transdermal patch, potentially enabling increased vaccination
coverage [93].

7.2. Transdermal Patches for Gene Therapy

Recently, transdermal patches have been investigated as a way of providing gene
therapy to deliver genetic material to defective cells [94]. Pioneering studies sought to
deliver genes and photothermic agents simultaneously to the cancer cells. For this pur-
pose, transdermal patches co-loaded with p53 DNA and IR820 (a near infrared dye) were
prepared by a two-step casting procedure. Hyaluronic acid was first constructed as the
matrix, before p53 DNA and IR820 were primarily loaded onto the patches. The patches
efficiently penetrated the stratum corneum and rapidly dissolved to release p53 DNA and
IR820 at subcutaneous tumor sites. The patch showed an excellent anti-tumor effect in vivo
due to the synergistic effect of gene therapy and photothermal agents. These findings
demonstrate that a transdermal patch could be a promising strategy for subcutaneous
tumor treatment [95].

7.3. Transdermal Patches for Insulin Delivery

Transdermal insulin delivery patches are used to deliver insulin across the skin and
into the bloodstream to treat diabetics. Insulin is a hormone secreted by the pancreas that
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plays a role in regulating blood sugar levels in the body. Diabetics can have high blood
sugar levels because they cannot produce enough insulin or use the insulin produced
by their body effectively. To date, several new techniques have been reported, including
the use of ionic liquids, choline bicarbonate and geranic acid (CAGE), liposome, and
nanomaterials to deliver insulin [96–100]. Transdermal patches for insulin delivery can
provide a convenient and discreet alternative to traditional methods of insulin delivery,
such as injections and insulin pumps [101]. The patches are typically applied to the skin on
the abdomen, upper arm, or thigh and are designed to release a consistent dose of insulin
over a specific period of time.

Of note, there are several challenges to overcome when developing transdermal
patches for insulin delivery. Insulin is a large protein molecule that is not easily absorbed
through the skin. To overcome this, researchers have developed a new approach for
transdermal protein delivery using a water-swellable spherical double-layered microneedle
(MN) patch at the tip. This design allows MNs to mechanically engage soft tissue through
selective distal swelling after skin insertion. Furthermore, long-term release of loaded
proteins was achieved by passive diffusion through the swollen tips. Insulin-loaded MN
patches released 60% insulin upon immersion in saline for 12 h, and approximately 70% of
the released insulin appeared to retain its structural integrity. Animal studies have shown
that insulin release from swelling MN patches is prolonged, leading to a gradual decrease
in blood glucose levels [102]. Overall, transdermal patches for insulin delivery have the
potential to provide a convenient and effective method to deliver insulin to diabetic patients.
However, further research and development is needed to optimize the efficacy and safety
of these products.

7.4. Transdermal Patches for Cardiovascular Diseases

In a heart failure scenario, pharmacokinetics (PK) and pharmacodynamics (PD) are
frequently altered to accommodate hypoperfusion systemic conditions due to reduced
cardiac ejection fraction [103]. In addition, drug metabolism and metabolite clearance are
reduced in the renal failure [104]. Moreover, hypoalbuminemia and hepatic congestion
due to heart failure impair drug absorption [105]. Therefore, transdermal patch delivery
systems provide a drug delivery solution. For example, propranolol is a nonselective
beta-adrenergic blocker. Its hepatic first-pass metabolism is highly altered when taken
orally, with a bioavailability of approximately 23% [106,107]. A result of a previous animal
study with rabbits showed that oral propranolol gave a Cmax of 56.4 ng/mL within
13.2 min. However, due to liver metabolism involvement, its bioavailability was 12.3% [107].
On the other hand, the transdermal propranolol patch achieved a steady-state plasma
concentration (Css) of 9.3 ng/mL after 8 h of initial lag time, recording a bioavailability of
74.8% higher than oral propranolol [107].

On the other hand, Bisono® Tape is a transdermal patch that formulates with bisoprolol
as the active ingredient [108] to manage aortic dissection [109], premature ventricular con-
traction [110], orthostatic hypotension due to heart failure [111], and atrial fibrillation [112].
A comparative study of edematous and non-edematous patients with the Bisono® Tape
4 mg patch showed that the Cmax of the oedema group was 13.3 ng/mL, and the Cmax
of the non-oedema group was 17 ng/mL [113]. This study set out to clarify the effect
of systemic edema on the absorption of beta-blockers from skin patches in critically ill
patients. However, they discovered that blood levels and the heart rate-lowering effects of
bisoprolol after application of the bisoprolol skin patch is not affected by systemic edema
of the lower extremities.

Another antihypertensive drug that uses transdermal patch delivery is clonidine.
Clonidine is an α 2-adrenergic agonist initially used to treat hypertension [114]. It was
used for purposes such as attention-deficit hyperactive disorder (ADHD) [115] and drug
withdrawal syndrome [116]. The transdermal clonidine patch was introduced in 1983
and was approved by the FDA in 1984 [117,118]. Since then, a comparative study of oral
and transdermal clonidine has been conducted [119]. The results showed no difference in
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Cmax between oral clonidine (0.39 ng/mL) and transdermal clonidine (0.3 ng/mL), but
the half-life of transdermal clonidine was longer than oral clonidine (31.9 h vs. 10.8 h) [119].
Furthermore, they showed no difference in the antihypertensive effect [119]. Losartan, an
angiotensin II receptor blocker (ARB), is also being developed for transdermal drug delivery.
Previously, a rat skin study with proniosome transdermal drug delivery was designed
and studied. Transdermal losartan was shown to contribute to a Cmax of 141 ng/mL and
152 ng/mL when taken orally. However, the bioavailability of transdermal losartan is
1.93-fold that of oral losartan [120].

Nitroglycerin is another drug worth mentioning in cardiovascular therapy. Lauder
Blanton used nitroglycerin to relieve angina pectoris and first noted drug resistance after
repeated doses in 1867 [121]. Ferid Murad found that nitric oxide (NO) from nitroglycerin
acts on vascular smooth muscle by activating cyclic guanosine monophosphate (cGMP),
resulting in vasodilation [122]. The first transdermal nitroglycerin patch was developed
by Gale and Berggren (Patent access US-4615699-A) in 1985. A year later, a two-way
crossover study was performed on twenty-five healthy males with Nitro-Dur and another
type of nitroglycerin transdermal patch, Nitro-Dur II, which showed an average Cmax of
0.383 ng/mL and 0.432 ng/mL, respectively [123].

7.5. Transdermal Patches for Hormonal Deficiencies and Contraception

Attempts to deliver hormones transdermally can be traced back to 1938, when an at-
tempt was made to apply a testosterone-containing ointment to castrated male guinea pigs.
Since then, the cutaneous application of estrone and follicle-stimulating hormone to treat
amenorrhea has been investigated. The first estradiol transdermal patch was introduced
as a reservoir in 1984. A 0.05 mg/day patch applied twice weekly for 3 weeks showed a
mean steady-state plasma estradiol concentration (Css) of 38 ng/L (0.038 ng/mL) [124].
Menorest® was then developed using a transdermal matrix delivery system [125,126]. The
matrix transdermal delivery system offers a better pharmacokinetic profile, lesser plasma
estradiol fluctuation, and improved local tolerability upon application [127]. Menorest® 50
had a Cmax of 51 pg/mL (0.051 ng/mL) upon its steady state [128]. Then came a new ver-
sion of the estradiol transdermal matrix patch called Climara. At a nominal dose of 50 µg in
24 h, Climara showed a Cmax of 98 pg/mL (0.098 ng/mL), compared to Menorest’s Cmax
(87 pg/mL or 0.087 ng/mL) upon the steady state [129]. However, Menorest has a higher
absorption rate and a shorter time to reach the maximum concentration (Tmax) [129].

Ethinylestradiol is another estrogenic drug used for contraception [130]. In November
2001, the FDA approved Ortho Evra™, the first transdermal ethinyl estradiol contraceptive.
It is a combination of norelgestromin and ethinyl estradiol [131]. A related pharmacokinetic
study showed that transdermal ethinylestradiol reached a Cmax of 58.7 to 71.2 pg/mL,
with a minimum half-life of 16.1 upon different sites of the application field [131]. Through
early studies on the efficacy of ethinylestradiol transdermal patches, drug compliance was
much better compared to oral pills statistically [132].

On the other hand, testosterone has been used to treat male hypogonadism [133]. There
are several ways to deliver testosterone, including intravenous testosterone enanthate and
transdermal testosterone patches (reservoir and matrix types). Intravenous administration
achieved a Cmax of over 1200 ng/L (1.2 ng/mL) 24 h post-dose, with a long half-life of
7–9 days (Drugbank access: DB13944). For reservoir testosterone transdermal patches such
as Androderm, Cmax was 765 ng/L (0.765 ng/mL) with a mean Tmax of 8 h at 16 weeks of
treatment [134]. Nevertheless, new matrix-type testosterone transdermal patches showed
higher testosterone concentrations for delivery after 15–19.5 h (mean Cmax ranged from
4.33 to 6.18 ng/mL) [135]. Once the patch is removed from the skin, the mean half-life of
testosterone is 1.3 h [135].

7.6. Transdermal Patches for Central Nervus System (CNS) Disorder

There are advantages in developing transdermal drug delivery systems for central
nervous system-related drugs. First, it provides sustained therapeutic dosing at plasma
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levels. Second, the transdermal drug delivery system exhibited a favorable pharmacologi-
cal profile and bioavailability. Third, patients tolerate it well, thus reducing systemic side
effects [136]. The following discussion covers the pharmacokinetics of methylphenidate,
rotigotine, selegiline, asenapine, donepezil, and rivastigmine for transdermal and nonder-
mal approaches.

Methylphenidate, known as Ritalin, has been used to treat ADHD. It blocks presynaptic
norepinephrine (NE) and dopamine reuptakes, creating stimulant effects in precortex neu-
rons [137]. Regarding the pharmacokinetics of d-enantiomer methylphenidate, the Tmax for
methylphenidate tablets was 2.36 h (Cmax of 18.12 ng/mL) for immediate-release tablets and
1.95 h (Cmax of 20.75 ng/mL) for chewed sustained-release tablets [138]. The elimination
half-life of methylphenidate was approximately 5 h (5.33–5.69 h) [138]. Methylphenidate
transdermal patches achieved a mean Cmax ranging from 20.0 to 46.5 ng/mL, with a mean
Tmax ranging from 7.12 to 8.78 h, based on the size of the patches [139]. Rotigotine is
currently incorporated into transdermal patches to treat Parkinson’s disease [140]. This drug
demonstrates dose-proportional pharmacokinetics with stable plasma concentrations over
24 h [141]. Through a pilot study, a single dermal dose of rotigotine (4 mg/24 h) had a mean
Cmax of 0.56 ng/mL at 19 h and a terminal half-life of 5.3 h [142].

Another medication used to treat Parkinson’s disease is selegiline (brand name Em-
sam). It is a selective and irreversible monoamine oxidase inhibitor that targets monoamine
oxidase B. However, it can inhibit monoamine oxidase A when there is a large dose, causing
an increase in cerebral serotonin and norepinephrine [143]. The pharmacokinetics of selegi-
line tablets in the Parkinson’s disease population have been reviewed previously [144]. The
Cmax is 0.9–2.2 ng/mL for 2 × 5 mg tablets after 0.6–0.9 h post oral administration [144,145].
For the transdermal selegiline patch, the Cmax is 2.1 ng/mL for the 1 selegiline transdermal
system (STS) patch after 16.5 to 17.3 h post-administration. The elimination half-life for
the transdermal selegiline patch is 27.6 to 36.6 h [144,145]. For the pharmacokinetics of
selegiline among the major depressive disorder population, the Cmax was 2.162 ng/mL
after 18.4 h post application of the transdermal selegiline 6 mg/24 h patch [146]. The
elimination half-life was 20.1 h [146]. In addition, asenapine is another drug designed for
schizophrenia and the maniac phase of bipolar disorder [8]. For sublingual asenapine in a
steady state, the 5 mg BID dosage gave a Cmax of 4.23 ng/mL after 1.75 h. The 10 mg BID
dosage gave a Cmax of 6.56 ng/mL after 1.96 h. Both shared a half-life of 17.7 h [9]. On
the other hand, the Cmax of the transdermal asenapine patch was 1.14 to 4.68 ng/mL after
12 to 16 h, based on the patch formulation [9]. The half-life for the transdermal asenapine
patch was 33.9 h [9].

There are three medications to treat Alzheimer’s disease, namely donepezil, galan-
tamine, and rivastigmine [147]. They are cholinesterase inhibitors that enhance cholinergic
transmission in mild to moderate Alzheimer’s disease [148]. Regarding the pharmacokinet-
ics of these drugs, oral donepezil reached a Cmax of 3.2–11.6 ng/mL after 3.2–4.7 h [149].
The elimination half-life of oral donepezil ranged from 53.8 to 82.8 h [149]. The Cmax
of the donepezil transdermal patch ranged from 5.24 to 20.36 ng/mL at 74 to 76 h in a
dose-dependent manner, with elimination half-lives ranging from 63.77 to 94.07 h [20].
Studies have shown that the rivastigmine patch has a 20% lower Cmax and a 14 times
longer Tmax than the oral solution. In this study, rivastigmine 3 mg oral solution pro-
duced a Cmax of 7.63 ng/mL in one hour on average. The elimination half-life was also
1.45 h [45,46]. Alternatively, a 9.5 mg/24 h rivastigmine transdermal patch achieved a Cmax
of 5.84 ng/mL after a 14.1 h average, with an elimination half-life of 3.02 h [45,46]. For
Galantamine, a 10 mg dose of galantamine tablet produced a Cmax of 49.2 ng/mL at 0.88 h
and an elimination half-life of 5.68 h [150,151]. Although there are no existing transdermal
galantamine patches on the market, several attempts have been made to develop one, for
instance a novel patch TAH-8801 from TAHO Pharmaceuticals is currently undergoing
Phase III trials. Apart from that, a group of researchers are developing pressure-sensitive
adhesive patches to transdermally deliver galantamine continuously [152].
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7.7. Transdermal Patches for Infectious Diseases

Advances in transdermal drug delivery approaches unlock the potential for new
drug delivery methods. There are currently efforts to try other drugs for transdermal
delivery, such as antibiotics and vaccines. As for transdermal antibiotics, the zwitterionic
characteristic cephalexin was incorporated into solid lipid nanoparticles (SLNs) to develop
a transdermal cephalexin patch. This showed a stable antibiotic effect with minimal
antibiotic use [153]. Another approach is to use bacterial cellulose/polycaprolactone
(BC/PCL) patches to load amoxicillin, ampicillin, and kanamycin for transdermal delivery
development. Such methods can produce a solid bactericidal effect against Staphylococcus
aureus and E. coli [154]. Additionally, tetracyclines have been incorporated into hydrogel-
forming microarray patches for transdermal delivery systems. An in vivo study in rats
determined the Cmax of such an approach and showed 7.40 µg/mL at 24 h compared to
the Cmax of oral tetracycline of 5.86 µg/mL at 1 h [155]. A similar approach was applies to
vancomycin, in which the Cmax of the rodent model with a hydrogel-forming microarray
patch was 3.29 µg/mL at 48 h post-treatment and the Cmax of the rodent model with a
dissolving microarray patch showed 1.58 µg/mL at 24 h post-treatment, in comparison to
oral with Cmax 3.37 µg/mL and intravenous with Cmax 50.34 µg/mL [156].

8. Conclusions and Future Challenges

Transdermal patch technology is a valuable drug delivery method with many advan-
tages over other delivery routes. Patches can bypass the digestive system and first-pass
metabolism to provide continuous dosing of drugs over an extended period of time. They
are commonly used to deliver drugs for various indications such as chronic pain, mo-
tion sickness, and hormone replacement therapy. In recent years, there have been many
advances in transdermal patch technology, including the development of smart, dissolv-
ing/biodegradable, high-loading/release and 3D-printed patches. Transdermal patches
have the potential to provide a convenient and effective means of drug delivery for a
variety of ailments, but some challenges lie ahead, such as the possibility of self-inflicted
toxicity due to improper dosing, poor adhesion, low drug penetration, potential trigger for
skin irritation, or patch failure. All of this warrants further research and development to
optimize the safety and efficacy of this delivery system.
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