Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin–Purine Hybrids
Abstract
:1. Introduction
Aim of the Study
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Cytotoxicity Assay
2.2.2. Structure–Activity Relationship (SAR)
2.2.3. In Vitro Kinase Inhibitory Activity
2.2.4. Molecular Docking
2.2.5. Cell Cycle Analysis and Apoptosis Rate
2.2.6. BAX and Bcl-2, Caspase 3 and Caspase 9 Level Protein Assays
3. Materials and Methods
3.1. Chemistry and Analysis
3.1.1. General Procedure A for Synthesis of Compounds 4–9
3.1.2. General Procedure B for Synthesis of Compounds 11–16
- Ethyl 4-((9H-purin-6-yl)amino)benzoate (2)
- 4-((9H-purin-6-yl)amino)benzohydrazide (3)
- 4-((9H-purin-6-yl)amino)-N’-(2-oxoindolin-3-ylidene)benzohydrazide (4)
- 4-((9H-purin-6-yl)amino)-N’-(5-chloro-2-oxoindolin-3-ylidene)benzohydrazide (5)
- 4-((9H-purin-6-yl)amino)-N’-(5-fluoro-2-oxoindolin-3-ylidene)benzohydrazide (6)
- 4-((9H-purin-6-yl)amino)-N’-(5-methyl-2-oxoindolin-3-ylidene)benzohydrazide (7)
- 4-((9H-purin-6-yl)amino)-N’-(5-methoxy-2-oxoindolin-3-ylidene)benzohydrazide (8)
- 4-((9H-purin-6-yl)amino)-N’-(5-nitro-2-oxoindolin-3-ylidene)benzohydrazide (9)
- 6-hydrazineyl-9H-purine (10)
- (E)-3-(2-(9H-purin-6-yl)hydrazineylidene)indolin-2-one (11)
- (E)-3-(2-(9H-purin-6-yl)hydrazineylidene)-5-chloroindolin-2-one (12)
- (E)-3-(2-(9H-purin-6-yl)hydrazineylidene)-5-fluoroindolin-2-one (13)
- (E)-3-(2-(9H-purin-6-yl)hydrazineylidene)-5-methylindolin-2-one (14)
- (E)-3-(2-(9H-purin-6-yl)hydrazineylidene)-5-methoxyindolin-2-one (15)
- (E)-3-(2-(9H-purin-6-yl)hydrazineylidene)-5-nitroindolin-2-one (16)
3.2. Biological Evaluation
3.2.1. Cytotoxicity Assay
3.2.2. In Vitro CDK2, EGFR, Her2, and VEGFR-2 Enzyme Assays
3.2.3. Flow Cytometry Analysis for Cell Cycle
3.2.4. Flow Cytometry Analysis for Apoptosis
3.2.5. Determination of BAX, Bcl-2, Caspase 3 and Caspase 9 Levels
3.2.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alanazi, M.M.; Mahdy, H.A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Dahab, M.A.; Eissa, I.H. New Bis([1,2,4]Triazolo)[4,3-a:3′,4′-c]Quinoxaline Derivatives as VEGFR-2 Inhibitors and Apoptosis Inducers: Design, Synthesis, in Silico Studies, and Anticancer Evaluation. Bioorg. Chem. 2021, 112, 104949. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, M.M.; Aldawas, S.; Alsaif, N.A. Design, Synthesis, and Biological Evaluation of 2-Mercaptobenzoxazole Derivatives as Potential Multi-Kinase Inhibitors. Pharmaceuticals 2023, 16, 97. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- AACR Cancer Progress Report—Cancer Progress Report. Available online: https://cancerprogressreport.aacr.org/progress/ (accessed on 3 August 2021).
- El-Azab, A.S.; Abdel-Aziz, A.A.M.; AlSaif, N.A.; Alkahtani, H.M.; Alanazi, M.M.; Obaidullah, A.J.; Eskandrani, R.O.; Alharbi, A. Antitumor Activity, Multitarget Mechanisms and Molecular Docking Studies of Quinazoline Derivatives Based on a Benzenesulfonamide Scaffold: Cell Cycle Analysis. Bioorg. Chem. 2020, 104, 104345. [Google Scholar] [CrossRef] [PubMed]
- Alsaif, N.A.; Dahab, M.A.; Alanazi, M.M.; Obaidullah, A.J.; Al-Mehizia, A.A.; Alanazi, M.M.; Aldawas, S.; Mahdy, H.A.; Elkady, H. New Quinoxaline Derivatives as VEGFR-2 Inhibitors with Anticancer and Apoptotic Activity: Design, Molecular Modeling, and Synthesis. Bioorg. Chem. 2021, 110, 104807. [Google Scholar] [CrossRef]
- Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting Multidrug Resistance in Cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef]
- Fu, R.G.; Sun, Y.; Sheng, W.B.; Liao, D.F. Designing Multi-Targeted Agents: An Emerging Anticancer Drug Discovery Paradigm. Eur. J. Med. Chem. 2017, 136, 195–211. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.-M.; El-Azab, A.S.; AlSaif, N.A.; Obaidullah, A.J.; Al-Obaid, A.M.; Al-Suwaidan, I.A. Synthesis, Potential Antitumor Activity, Cell Cycle Analysis, and Multitarget Mechanisms of Novel Hydrazones Incorporating a 4-Methylsulfonylbenzene Scaffold: A Molecular Docking Study. J. Enzyme Inhib. Med. Chem. 2021, 36, 1521–1539. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, J.; Ullricht, A. Growth Factor Signaling by Receptor Tyrosine Kinases Review. Neuron 1992, 9, 383–391. [Google Scholar] [CrossRef]
- Hanks, S.K.; Quinn, A.M.; Hunter, T. The Protein Kinase Family: Conserved Features and Deduced Phylogeny of the Catalytic Domains. Science 1988, 241, 42–52. [Google Scholar] [CrossRef]
- El-Husseiny, W.M.; El-Sayed, M.A.A.; El-Azab, A.S.; AlSaif, N.A.; Alanazi, M.M.; Abdel-Aziz, A.A.M. Synthesis, Antitumor Activity, and Molecular Docking Study of 2-Cyclopentyloxyanisole Derivatives: Mechanistic Study of Enzyme Inhibition. J. Enzyme Inhib. Med. Chem. 2020, 35, 744–758. [Google Scholar] [CrossRef][Green Version]
- Alkahtani, H.M.; Abdalla, A.N.; Obaidullah, A.J.; Alanazi, M.M.; Almehizia, A.A.; Alanazi, M.G.; Ahmed, A.Y.; Alwassil, O.I.; Darwish, H.W.; Abdel-Aziz, A.A.M.; et al. Synthesis, Cytotoxic Evaluation, and Molecular Docking Studies of Novel Quinazoline Derivatives with Benzenesulfonamide and Anilide Tails: Dual Inhibitors of EGFR/HER2. Bioorg. Chem. 2020, 95, 103461. [Google Scholar] [CrossRef]
- Fontanella, C.; Ongaro, E.; Bolzonello, S.; Guardascione, M.; Fasola, G.; Aprile, G. Clinical Advances in the Development of Novel VEGFR2 Inhibitors. Ann. Transl. Med. 2014, 2, 12. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef][Green Version]
- Alanazi, M.M.; Elkady, H.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Alanazi, M.M.; Alharbi, M.A.; Eissa, I.H.; Dahab, M.A. New Quinoxaline-Based VEGFR-2 Inhibitors: Design, Synthesis, and Antiproliferative Evaluation with in Silico Docking, ADMET, Toxicity, and DFT Studies. RSC Adv. 2021, 11, 30315–30328. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Eissa, I.H.; Alsaif, N.A.; Obaidullah, A.J.; Alanazi, W.A.; Alasmari, A.F.; Albassam, H.; Elkady, H.; Elwan, A. Design, Synthesis, Docking, ADMET Studies, and Anticancer Evaluation of New 3-Methylquinoxaline Derivatives as VEGFR-2 Inhibitors and Apoptosis Inducers. J. Enzyme Inhib. Med. Chem. 2021, 36, 1760–1782. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, M.M.; Alaa, E.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Taghour, M.S.; Eissa, I.H. Discovery of New 3-Methylquinoxalines as Potential Anti-Cancer Agents and Apoptosis Inducers Targeting VEGFR-2: Design, Synthesis, and in Silico Studies. J. Enzyme Inhib. Med. Chem. 2021, 36, 1732–1750. [Google Scholar] [CrossRef]
- Alkahtani, H.M.; Alanazi, M.M.; Aleanizy, F.S.; Alqahtani, F.Y.; Alhoshani, A.; Alanazi, F.E.; Almehizia, A.A.; Abdalla, A.N.; Alanazi, M.G.; El-Azab, A.S.; et al. Synthesis, Anticancer, Apoptosis-Inducing Activities and EGFR and VEGFR2 Assay Mechanistic Studies of 5,5-Diphenylimidazolidine-2,4-Dione Derivatives: Molecular Docking Studies. Saudi Pharm. J. 2019, 27, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Al-Sanea, M.M.; Obaidullah, A.J.; Shaker, M.E.; Chilingaryan, G.; Alanazi, M.M.; Alsaif, N.A.; Alkahtani, H.M.; Alsubaie, S.A.; Abdelgawad, M.A. A New CDK2 Inhibitor with 3-Hydrazonoindolin-2-One Scaffold Endowed with Anti-Breast Cancer Activity: Design, Synthesis, Biological Evaluation, and In Silico Insights. Molecules 2021, 26, 412. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.R.; El Kerdawy, A.M.; George, R.F.; Georgey, H.H.; Abdel Gawad, N.M. Design, Synthesis and in Silico Insights of New 7,8-Disubstituted-1,3-Dimethyl-1H-Purine-2,6(3H,7H)-Dione Derivatives with Potent Anticancer and Multi-Kinase Inhibitory Activities. Bioorg. Chem. 2021, 107, 104569. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, C.; Wu, K.; Luo, L.; Wang, Y.; Du, X.; He, Q.; Ye, F. Design, Synthesis and Ability of Non-Gold Complexed Substituted Purine Derivatives to Inhibit LPS-Induced Inflammatory Response. Eur. J. Med. Chem. 2018, 149, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Oyarzabal, J.; Zarich, N.; Albarran, M.I.; Palacios, I.; Urbano-Cuadrado, M.; Mateos, G.; Reymundo, I.; Rabal, O.; Salgado, A.; Corrionero, A.; et al. Discovery of Mitogen-Activated Protein Kinase-Interacting Kinase 1 Inhibitors by a Comprehensive Fragment-Oriented Virtual Screening Approach. J. Med. Chem. 2010, 53, 6618–6628. [Google Scholar] [CrossRef] [PubMed]
- Nepali, K.; Chang, T.Y.; Lai, M.J.; Hsu, K.C.; Yen, Y.; Lin, T.E.; Lee, S.B.; Liou, J.P. Purine/Purine Isoster Based Scaffolds as New Derivatives of Benzamide Class of HDAC Inhibitors. Eur. J. Med. Chem. 2020, 196, 112291. [Google Scholar] [CrossRef]
- Hu, J.; Han, Y.; Wang, J.; Liu, Y.; Zhao, Y.; Liu, Y.; Gong, P. Discovery of Selective EGFR Modulator to Inhibit L858R/T790M Double Mutants Bearing a N-9-Diphenyl-9H-Purin-2-Amine Scaffold. Bioorg. Med. Chem. 2018, 26, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Laufer, S.A.; Domeyer, D.M.; Scior, T.R.F.; Albrecht, W.; Hauser, D.R.J. Synthesis and Biological Testing of Purine Derivatives as Potential ATP-Competitive Kinase Inhibitors. J. Med. Chem. 2005, 48, 710–722. [Google Scholar] [CrossRef]
- Anscombe, E.; Meschini, E.; Mora-Vidal, R.; Martin, M.P.; Staunton, D.; Geitmann, M.; Danielson, U.H.; Stanley, W.A.; Wang, L.Z.; Reuillon, T.; et al. Identification and Characterization of an Irreversible Inhibitor of CDK2. Chem. Biol. 2015, 22, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Robichaud, N.; Hulea, L.; Sonenberg, N.; Pelletier, J.; Topisirovic, I. Targeting the Translation Machinery in Cancer. Nat. Rev. Drug Discov. 2015, 14, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Lineham, E.; Spencer, J.; Morley, S.J. Dual Abrogation of MNK and MTOR: A Novel Therapeutic Approach for the Treatment of Aggressive Cancers. Future Med. Chem. 2017, 9, 1539–1555. [Google Scholar] [CrossRef][Green Version]
- Ding, Z.; Zhou, M.; Zeng, C. Recent Advances in Isatin Hybrids as Potential Anticancer Agents. Arch. Pharm. 2020, 353, 1900367. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lenardo, M.J. Roles of Caspases in Apoptosis, Development, and Cytokine Maturation Revealed by Homozygous Gene Deficiencies. J. Cell Sci. 2000, 113, 753–757. [Google Scholar] [CrossRef]
- Riccardi, C.; Nicoletti, I. Analysis of Apoptosis by Propidium Iodide Staining and Flow Cytometry. Nat. Protoc. 2006, 1, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Mohameda, M.S.; Kamel, M.M.; Kassem, E.M.; Abotaleb, N.; AbdEl-Moez, S.I.; Ahmed, M.F. Novel 6,8-Dibromo-4(3H)Quinazolinone Derivatives of Anti-Bacterial and Anti-Fungal Activities. Eur. J. Med. Chem. 2010, 45, 3311–3319. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, F.; Fallacara, A.L.; Brullo, C.; Grossi, G.; Botta, L.; Calandro, P.; Chiariello, M.; Kissova, M.; Crespan, E.; Maga, G.; et al. Identification of New Pyrrolo[2,3-d]Pyrimidines as Src Tyrosine Kinase Inhibitors in Vitro Active against Glioblastoma. Eur. J. Med. Chem. 2021, 127, 369–378. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The History and Future of Targeting Cyclin-Dependent Kinases in Cancer Therapy. Nat. Rev. Drug Discov. 2015, 14, 130–146. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tai, W.; Mahato, R.; Cheng, K. The Role of HER2 in Cancer Therapy and Targeted Drug Delivery. J. Control. Release 2010, 146, 264–275. [Google Scholar] [CrossRef][Green Version]
- Nakamura, J.L. The Epidermal Growth Factor Receptor in Malignant Gliomas: Pathogenesis and Therapeutic Implications. Expert Opin. Ther. Targ. 2007, 11, 463–472. [Google Scholar] [CrossRef]
- Sharma, K.; Suresh, P.S.; Mullangi, R.; Srinivas, N.R. Quantitation of VEGFR2 (Vascular Endothelial Growth Factor Receptor) Inhibitors--Review of Assay Methodologies and Perspectives. Biomed. Chromatogr. 2015, 29, 803–834. [Google Scholar] [CrossRef]
Compound | R | In Vitro Cytotoxicity IC50 (µM) | |||
---|---|---|---|---|---|
HepG2 | MCF-7 | MDA-MB-231 | HeLa | ||
4 | - | 54.62 ± 3.1 | 47.26 ± 3.0 | 59.67 ± 2.9 | 62.38 ± 3.4 |
5 | Cl | 88.14 ± 4.0 | >100 | 82.13 ± 3.8 | >100 |
6 | F | 42.35 ± 2.7 | 22.31 ± 1.8 | 19.05 ± 1.4 | 30.69 ± 2.3 |
7 | CH3 | 60.38 ± 3.2 | 76.38 ± 3.7 | 91.60 ± 4.5 | >100 |
8 | OCH3 | 48.12 ± 2.9 | 40.57 ± 2.7 | 29.78 ± 2.0 | 53.49 ± 3.2 |
9 | NO2 | 75.56 ± 3.5 | 65.01 ± 3.4 | 72.24 ± 3.4 | 84.57 ± 4.1 |
11 | - | 12.89 ± 1.0 | 15.60 ± 1.3 | 24.83 ± 1.9 | 17.63 ± 1.4 |
12 | Cl | 26.45 ± 1.8 | 33.04 ± 2.3 | 41.29 ± 2.5 | 46.72 ± 2.8 |
13 | F | 31.70 ± 2.1 | 38.82 ± 2.5 | 45.21 ± 2.7 | 51.20 ± 3.0 |
14 | CH3 | 18.06 ± 1.3 | 27.53 ± 2.1 | 32.55 ± 2.2 | 43.51 ± 2.7 |
15 | OCH3 | 9.61 ± 0.8 | 10.78 ± 0.9 | 14.89 ± 1.2 | 8.93 ± 0.8 |
16 | NO2 | 39.73 ± 2.5 | 58.32 ± 3.2 | 67.42 ± 3.2 | 69.50 ± 3.6 |
Sunitinib | - | 6.82 ± 0.5 | 5.19 ± 0.4 | 8.41 ± 0.7 | 7.48 ± 0.6 |
Compound | Kinase Protein | IC50 (μM) |
---|---|---|
15 | CDK2 | 0.534 |
Roscovitine | 0.143 | |
15 | EGFR | 0.143 |
Erlotinib | 0.041 | |
15 | Her2 | 0.15 |
Lapatinib | 0.051 | |
15 | VEGFR2 | 0.192 |
Sorafenib | 0.049 |
Compound/Cell Line | Cell Cycle Distribution (%) | |||
---|---|---|---|---|
% G0–G1 | % S | % G2/M | % Pre-G1 | |
Compound 15/HepG2 | 51.18 | 42.44 | 6.38 | 21.47 |
Cont. HepG2 | 44.39 | 38.16 | 17.45 | 2.02 |
Sample | Apoptosis | |||
---|---|---|---|---|
Viable | Early | Late | Necrosis | |
Compound 15/HepG2 | 78.53% | 1.86% | 12.58% | 7.03% |
Cont. HepG2 | 97.98% | 0.38% | 0.19% | 1.45% |
Compound/Cell Line | Protein | Expression (Pg/mL) | Fold |
---|---|---|---|
15/HepG2 | BAX | 279.1 ± 8.15 | 3.38 |
Control HepG2 | 83.88 ± 23 | 1 | |
15/HepG2 | Bcl-2 | 4.593 ± 0.22 | 0.43 |
Control HepG2 | 10.67 ± 0.83 | 1 | |
15/HepG2 | Caspase 3 | 368.4 ± 20.7 | 3.95 |
Control HepG2 | 93.23 ± 15.5 | 1 | |
15/HepG2 | Caspase 9 | 14.07 ± 0.58 | 3.11 |
Control HepG2 | 4.52 ± 1.27 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A.S.; Mirgany, T.O.; Alsfouk, A.A.; Alsaif, N.A.; Alanazi, M.M. Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin–Purine Hybrids. Medicina 2023, 59, 610. https://doi.org/10.3390/medicina59030610
Alanazi AS, Mirgany TO, Alsfouk AA, Alsaif NA, Alanazi MM. Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin–Purine Hybrids. Medicina. 2023; 59(3):610. https://doi.org/10.3390/medicina59030610
Chicago/Turabian StyleAlanazi, Ashwag S., Tebyan O. Mirgany, Aisha A. Alsfouk, Nawaf A. Alsaif, and Mohammed M. Alanazi. 2023. "Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin–Purine Hybrids" Medicina 59, no. 3: 610. https://doi.org/10.3390/medicina59030610