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Abstract: Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy
is the backbone of treatment for ovarian cancer, and although the majority of patients initially have
a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-
resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited
efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms
pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review,
we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based
chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the
dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in
the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative
treatment approaches that may improve these patients’ poor prognosis, discussing current strategies,
novel combinations, and therapeutic agents.

Keywords: ovarian cancer; platinum resistance; platinum resistance mechanisms; overcoming
platinum resistance

1. Introduction

Ovarian cancer is a significant cause of morbidity and mortality worldwide, respon-
sible for 300,000 new cases each year and almost as many deaths [1]. Often diagnosed in
an advanced stage, it is the most lethal gynecological cancer, with a 5-year survival rate of
26–42%, depending on the initial stage [2]; however, more than 40% of stage III/IV patients
die within the first year and 25% within the first 90 days following diagnosis [3]. Ovarian
tumors may arise from epithelial, stromal, or germ cells, where over 90% of malignant
ovarian tumors arise from epithelial cells [4]. A heterogeneous disease, epithelial ovarian
cancer (EOC) comprises several histological subtypes: high-grade serous ovarian cancer
(HGSOC) (70–80%), endometrioid (10%), clear cell (10%), mucinous (3%), and low-grade
serous (<5%) [5].

Most high-grade serous tumors are sporadic; however, up to 15% of patients with
ovarian cancer have a genetic predisposition. BRCA1 and BRCA2 mutations are respon-
sible for most hereditary epithelial ovarian cancer, while Lynch syndrome is associated
with clear-cell and endometrioid tumors [6]. Patients with a hereditary predisposition
have a younger age at presentation, a history of other cancers, and positive family history.
Traditionally patients that fit this profile are considered for genetic testing; however, up
to 44% of BRCA carriers have no family history, and the highest annual risk for ovarian
cancers for BRCA carriers is for those between 50 and 69 years old [7,8]. Almost all
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BRCA-mutated cancers are high-grade serous ovarian cancers [9]. However, high-grade
serous tumors are not limited to the BRCA mutation. TP53 mutations are present in
almost 97% of tumors, and other homologous recombination repair mutations, includ-
ing EMSY, RAD51, ATM, BARD1, BRIP1, ATR, PALB2, RB1, and CDKN2A, have been
identified in 11% of patients [10].

Surgery with complete cytoreduction is the standard of care in the management
of EOC. In patients in which resection with no gross residual disease can be achieved,
surgery can be offered upfront, followed by adjuvant systemic therapy. For patients
with stage III and IV, bulky, extensive disease, neoadjuvant chemotherapy followed by
interval debulking surgery and adjuvant chemotherapy was associated with higher R0
resection rates and better survival outcomes than primary debulking surgery [11]. Surgery
continues to play an essential role in the management of EOC, even in recurrent disease.
Secondary debulking surgery in platinum-sensitive recurrent EOC has been linked to a
5-month progression-free survival (PFS) improvement. This survival benefit was more
significant in patients where R0 resection had been achieved [12].

Systemic treatment is essential in the management of ovarian cancer. The EORTC-
ACTION [13] and ICON1 [14] trials established almost 20 years ago the superior out-
comes associated with the use of platinum and taxane-based chemotherapy in ovarian
cancer compared with monotherapy and observation alone. Patient selection for adjuvant
chemotherapy depends on histological subtype and tumor grade. In very early-stage
IA tumors, observation is recommended for low-grade serous, grade 1,2 endometrioid,
and grade 1,2 mucinous ovarian cancer. Nevertheless, there remains a question regard-
ing the benefit of adjuvant treatment for clear-cell carcinoma stage I A, B, and C1; stage
IB and IC; grade 1,2 endometrioid; and stage IB/C low-grade serous [15]. Regarding
the number of chemotherapy administrations, the standard number of cycles remains
six; however, the GOG157 trial reported similar outcomes when using three or six of
paclitaxel and carboplatin [16].

The combination of paclitaxel and carboplatin is the standard of care treatment for
patients with advanced disease [17]. Other various dose-dense administration schedules
and the association of intraperitoneal chemotherapy have been investigated in numerous
trials but with conflicting results [18]. Despite adjuvant treatment and optional surgery,
patients with advanced ovarian cancer often present high recurrence rates. Therefore,
several trials have investigated the use of maintenance therapies; paclitaxel marginally im-
proved progression-free survival (PFS) [19], and maintenance with bevacizumab proved to
provide benefits only in PFS terms, except for a subgroup of poor-prognosis patients where
a trend toward improved overall survival (OS) could be observed [20]. Additionally, for
BRCA-mutated advanced ovarian cancer, a PARP inhibitor (PARPi) can also be considered
as maintenance after first-line treatment [21].

The primary challenge in the treatment of cancer is treatment resistance. Unfortunately,
ovarian cancer is no exception to treatment resistance, with particular importance being
the resistance to platinum compounds. Traditionally platinum resistance was defined on
the basis of the duration of the response to platinum-containing chemotherapy. Patients
who initially respond to platinum-based chemotherapy and relapse 6 months or longer
after the initial treatment were classified as platinum sensitive, while patients who relapse
within under 6 months after platinum-based chemotherapy were considered platinum
resistant. Within the platinum-resistant group, a subgroup of patients presents with the
worst prognosis: platinum-refractory ovarian cancer, with a disease that progresses during
or within 1 month of platinum-containing first-line chemotherapy [22]. However, the
current classification of platinum resistance, which is based on the 6-month platinum-free
interval, has several shortcomings: the use of bevacizumab or bevacizumab with olaparib
as maintenance therapy for patients responding to first-line platinum-based chemotherapy
significantly prolonged PFS, rendering the evaluation of platinum response difficult [23,24];
platinum rechallenge in patients with platinum-free intervals longer than 6 months re-
sults in response rates of only 47–66% [25,26], while a platinum-free interval shorter than
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6 months does not exclude a benefit from the addition of platinum to chemotherapy [27,28].
Furthermore, the studies used to define platinum resistance determined recurrence on
the basis of clinical and radiological evidence of disease or clinical symptoms. These
studies took place before the widespread use of CA125 to detect recurrence, and addition-
ally, the imaging techniques available were inferior to currently used high-resolution CT,
MRI, or PET-CT [22].

Most patients generally respond well to platinum-based chemotherapy, with only
20% of HGSOC presenting from the beginning with the platinum-resistant disease. How-
ever, the majority of initially platinum-sensitive patients will develop secondary platinum
resistance following multiple recurrences with progressively shorter progression-free sur-
vival [15]. Therefore eventually, platinum resistance influences the prognosis of every
ovarian cancer patient, representing one of the key prognostic factors influencing overall
survival. In the following review, we will discuss the underlying mechanisms of platinum
resistance, available biomarkers, and possibilities of overcoming resistance.

2. Molecular Mechanisms of Platinum Resistance in High-Grade Ovarian Cancer

Platinum compounds exert their cytotoxic anticancer effects mainly by forming cova-
lent bonds to the DNA, thus generating DNA crosslinks and inhibiting DNA replication,
eventually leading to cell death. The mechanisms of platinum resistance are multifactorial
and comprise genetic and epigenetic alterations as well as immune and environmental fac-
tors frequently involving more than one mechanism of resistance [29]. Figure 1 summarizes
the main mechanisms in the development of platinum resistance.
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2.1. Alteration of Drug Influx and Efflux Pathways

One of the most-agreed-upon mechanisms of platinum resistance is the dysregula-
tion of drug influx and efflux pathways that modulate the transport of platinum salts in
the cancer cell. As a result, platinum-resistant cell lines display a reduction in cisplatin
concentration, varying from 20% to 70% [30]. The copper transporter 1 (CTR-1), a trans-
membrane influx transporter involved in copper homeostasis, also plays a crucial role in
the intracellular uptake of platinum salts. The knockout of CTR-1 in mouse cell lines led to
platinum resistance via decreased intracellular platinum concentrations [31]; similarly, the
overexpression of CTR-1 led to increased sensitivity to platinum in ovarian cell lines [32].
Additionally, Song et al. [33] demonstrated that the upregulation of CTR-1 expression in
cisplatin-resistant small cell lung cancer cell lines restored platinum sensitivity. Ishida et al.
correlated tumoral CTR-1 mRNA levels with a response to platinum-based chemotherapy
in 15 patients with stage III or IV HGSOC who underwent cytoreductive surgery. Patients
with platinum-sensitive disease expressed significantly higher levels of CTR-1 mRNA com-
pared with platinum-resistant or refractory disease. These results were further validated by
using clinical and array-based data from the Cancer Genome Atlas, on a subset of 91 stage
III and IV HGSOC patients who underwent surgery followed by platinum-based adjuvant
chemotherapy. Patients with high CTR-1 expression had significantly prolonged disease-
free survival compared with those expressing low levels of CTR-1 [34]. Organic cation
transporters (OCTs) are part of the solute carrier family and are involved in the cellular
uptake of platinum derivates. Furthermore, low OCT6 expression has been associated with
platinum resistance in human lung cancer cell lines [35].

The copper transporter 2 (CTR-2) is also involved in regulating cellular platinum levels;
however, it acts as a platinum efflux transporter. Higher CTR-2 expression was linked
to platinum resistance in ovarian cancer cell lines [36]. The copper exporters ATP7A and
ATP7B are also involved in platinum efflux and subsequent resistance. ATP7A is responsible
for the intracytoplasmic sequestration of platinum derivates blocking their access to the
nucleus, while ATP7B facilitates drug efflux via the secretory pathway. The overexpression
of both ATP7A and ATP7B has been associated with platinum resistance, whereas blocking
their activity restores platinum sensitivity [37–39]. The altered expression of multidrug
resistance proteins (MRPs) has been linked to multidrug resistance and worse outcomes
in multiple cancers. Arts et al. [40] found that increased MRP2 and MRP4 expression was
linked to platinum resistance and poor outcomes in ovarian cancer. Similarly, three other
reports have associated high MRP2 levels and resistance to platinum-based chemotherapy
in various cancers, including ovarian cancer [41–43].

2.2. DNA Repair

DNA is the main target of platinum-based anticancer drugs, and the cell’s ability to
recognize and repair drug-induced DNA damage can influence its sensitivity or resistance
to platinum chemotherapy. The primary mechanism through which platinum chemother-
apy exerts its cytotoxic effects is the formation of DNA monoadducts that evolve through
covalent binding to DNA crosslinks that can occur either on the same DNA strand or
on the opposite strands, generating interstrand crosslinks that block DNA synthesis and
transcription if they are not repaired. The DNA damage response (DDR) mechanism is
activated in the presence of DNA lesions. DDR consists of several signaling pathways
responsible for enforcing cell-cycle arrest and, depending on the severity of DNA damage,
either DNA repair or the activation of apoptosis for cells presenting with unrepairable DNA
lesions [44]. Six major DNA repair pathways have been described: mismatch repair (MMR),
base excision repair (BER), nucleotide excision repair (NER), homologous recombination
(HR), nonhomologous end joining (NHEJ), and Fanconi anemia (FA). An intertwined ac-
tivation of these pathways is responsible for repairing DNA lesions and preventing the
development of various pathologies, including cancer [45,46].

The same pathways are also accountable for preventing the accumulation of DNA
lesions secondary to platinum-based chemotherapy, and their variation may promote
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platinum sensitivity or resistance. The upregulation of DNA repair proteins may lead to
removing platinum adducts and repairing tumoral DNA, decreasing treatment efficacy.
Most platinum-resistant tumors display the upregulation of DNA damage repair proteins
such as BRCA 1/2, mismatch repair proteins MSH1 and MSH2, excision repair cross-
complementing (ERCC) proteins, RAD51, and Fanconi anemia complementation group
D2 [29,47]. BRCA1/2-mutated HGSOC have increased sensitivity to DNA-damaging
agents such as PARPis and platinum agents and have an improved overall response to
platinum therapy [7,48]. CDK12, a kinase involved in the HR pathway, is mutated in 3% of
ovarian cancer patients. Preclinical data have associated low CDK12 expression with higher
susceptibility to cisplatin and PARPis [49]. Replication protein A (RPA) recognizes single-
stranded DNA lesions interfering with the replication fork and acts as an activation platform
for DNA damage repair via NER. RPA-deficient ovarian cancer cells cannot efficiently repair
cisplatin-induced DNA lesions via NER and display increased platinum sensitivity [50].
NER alterations are present in 8% of HGSOC and are associated with increased sensitivity
to platinum chemotherapy, similar to BRCA1/2-mutated patients [51]. ERCC1, a NER-
associated protein, is one of the most promising biomarkers for platinum sensitivity in
these patients. Low ERCC1 expression was associated with platinum sensitivity [52–54],
but these findings were inconsistent across multiple studies, where some reported an absent
or negative correlation between ERCC1 and a response to platinum [47].

2.3. Epigenetic Alterations

Epigenetic processes influence gene expression without changing the DNA sequence.
They are essential in ensuring normal genome functioning and ensuring altered epigenetic
regulation results in the development of various pathologies, including cancer. Three key
processes are involved in the epigenetic regulation of HGSOC: DNA methylation, histone
modification, and microRNAs (miRs).

2.3.1. DNA Methylation

DNA methylation modulates gene expression via DNA methyltransferase enzymes
that catalyze the addition of a methyl group or an ethyl group onto the fifth carbon of a
cytosine ring to form methylcytosine. DNA methylation frequently occurs in areas known
as CpG islands, often located in the promoter region of genes. Increased cytosine methyla-
tion in the promoter region is known as hypermethylation and decreases gene expression
by inhibiting transcription factors and RNA polymerase from binding DNA and under-
going transcription [55]. The role of DNA methylation in ovarian cancer chemoresistance
has been extensively studied. Lum et al. [56] analyzed DNA methylation in 36 HGSOC
samples segregated on the basis of platinum sensitivity. They identified 749 probes corre-
sponding to 296 genes that were significantly differently methylated in platinum-sensitive
samples and in platinum-resistant samples; furthermore, they observed that hypermethy-
lation was more often present in platinum-resistant samples than in platinum-sensitive
ones. Two other reports found the same association between hypermethylation and plat-
inum resistance [57,58]; however, these findings are inconsistent across studies. Lund
et al. [59] found that the majority (1251 of 1488) of the differentially methylated sites were
hypomethylated in cisplatin-resistant samples. A pathway analysis of the 452 hyperme-
thylated genes associated with platinum resistance, by Cardenas et al. [58], found the
epithelial–mesenchymal transition (EMT) pathway to be the most influenced by aberrant
methylation in the development of the chemoresistant phenotype. MSX1 encodes a member
of the muscle segment homeobox gene family and can influence EMT in ovarian cancer.
The hypomethylation of MSX1 leads to decreased MSX1 expression, which is associated
with cisplatin resistance in ovarian cancer cell lines, while MSX1 overexpression sensitizes
cells to cisplatin [60]. LAMA3 (laminin alpha 3), a component of the cell base membrane,
plays an important role in cell adhesion, migration, and embryo differentiation. Reduced
LAMA3 expression has been associated with EMT in various tumors, including ovarian
cancer. Feng et al. demonstrated that the hypermethylation of LAMA3 was responsible for
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the reduced expression and that decreased LAMA3 levels were correlated with chemoresis-
tance and poor outcomes [61]. The SOX9, ZIC1, and TWIST genes involved in EMT were
also associated with a hypermethylated status in platinum-resistant ovarian cancer [56].
The aberrant methylation of genes involved in the wingless/integrated (Wnt) signaling
pathway was also associated with platinum resistance in HGSOC. FZD1, FZD10, and
GSK3B were found to be differentially methylated in both platinum-resistant samples and
platinum-sensitive ones [62]. Wang et al. found that DNA methylation via the PI3K-Akt
pathway is associated with low BRCA1 expression in ovarian cancer cell lines, and BRCA1
demethylation was associated with the development of platinum resistance [63].

2.3.2. Histone Modifications

Histone modifications, regulated by histone-modifying enzymes, directly affect gene
expression by altering the chromatin structure. Histones are susceptible to several changes,
including acetylation, methylation, phosphorylation, ubiquitination, glycosylation, sumoy-
lation, ADP-ribosylation, and carbonylation. However, histone acetylation is of particular
importance as it has been associated with ovarian cancer pathogenesis [64]. Histone
acetyltransferase (HAT) enzymes add acetyl groups to the histone surface, enabling RNA
polymerase II interaction and favoring gene expression. Meanwhile, histone deacety-
lase (HDAC) enzymes remove acetyl groups from histones and increase chromatin com-
paction, thus restricting RNA polymerase II access with subsequently decreased gene
expression [62]. Cacan et al. [65] demonstrated HDAC1 involvement in cisplatin resis-
tance in ovarian cancer cells. The suppression of HDAC1 and DNA methyltransferase
activity in platinum-resistant ovarian cancer cells restored cisplatin-mediated cell deaths
through the upregulation of RGS10, an essential regulator of cell survival and chemore-
sistance. Liu et al. [66] demonstrated that HDAC1 knockdown in cisplatin-resistant cell
lines suppressed proliferation and increased apoptosis and chemosensitivity through the
downregulation of the c-Myc oncogene and the upregulation of miR-34a. Furthermore,
cisplatin treatment in platinum-sensitive cells increased HDAC1 and c-Myc expression
while inactivating miR-34a, leading cells to acquire chemoresistance to cisplatin.

2.3.3. MicroRNAs

MicroRNAs are small 19–25-nucleotides-long single-stranded noncoding RNAs in the
post-translational regulation of gene expression. Multiple miRs have altered expression
in HGSOC and are associated with carcinogenesis, progression, metastasis, and drug
resistance [67]. MiR-mediated platinum resistance arises through multiple mechanisms
influenced by microRNA dysregulation. MiR-130a was found to be involved in platinum
resistance occurrence by altering cellular cisplatin uptake. The overexpression of miR-130a
was associated with platinum resistance by targeting the SOX9/miR-130a/CTR1 axis [68].
Cisplatin resistance can also be secondary to increased cellular drug efflux. The ATP7A
and ATP7B transporters are associated with platinum chemotherapy resistance and are
influenced by miRs expression. MiR-139 dysregulation influences ATP7A and ATP7B
expression with secondary platinum resistance. Platinum-resistant cell lines presented
low levels of MiR-139 and high ATP7A and ATP7B expression. MiR-139 overexpression
enhanced the suppressive effect of cisplatin on resistant cell lines. Furthermore, there
is an inverse correlation between miR-139 and ATP7A/B expression [69]. MiR-15a and
miR-16 are also involved in ATP7B regulation and platinum resistance. MiR-15a and miR-
16 transfection in cisplatin-resistant cell lines and murine models have restored cisplatin
sensitivity by inhibiting ATP7B expression [70]. MiR also influences MRP2-associated
resistance. The upregulation of miR-490-3p and downregulation of miR-411 was associated
with increased cisplatin sensitivity via the inhibition of MRP2 expression ovarian cell
lines [71,72]. MiR-514 downregulation was associated with advanced stages of and poor
outcomes in ovarian cancer. MiR-514 also increases cisplatin chemosensitivity by targeting
ATP-binding cassette subfamily members ABCA1, ABCA10, and ABCF2 [73].
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MicroRNA modulation influences pathways involved in the process of DNA repair
and the secondary platinum resistance induced by their activation. One study demon-
strated that miR-211 expression enhanced platinum sensitivity in ovarian cancer cells by
targeting DDR. MiR-211 facilitated platinum-induced DNA damage by targeting DDR
effector genes, including POLH, TDP1, ATRX, MRPS11, and ERCC6L2 [74]. Enhanced
nucleotide excision repair is associated with resistance to platinum chemotherapy. ERCC1,
an essential effector of the NER pathway, is characterized as a potential biomarker for
platinum resistance and is a direct target of miR-30a-3p. Increased miR-30a-3p restored
cisplatin sensitivity by targeting ERCC1 and ATP7A [75]. NER-pathway-induced resis-
tance is also influenced by miR-770-5p expression. Downregulated in cisplatin-resistant
cell lines, miR-770-5p overexpression restored cisplatin sensitivity by directly targeting
ERCC2, an effector of the NER pathway [76]. Zhu et al. [77] also demonstrated miR-770-5p
involvement in cisplatin resistance; the long noncoding RNA nuclear paraspeckle assembly
transcript 1 (NEAT1) has been shown to enable treatment resistance by inhibiting miR-
770-5p and upregulating PARP1 expression, a promoter of platinum resistance. MiR-9
inhibits homologous recombination-associated resistance by targeting BRCA1. Patients
with high MiR-9 expression have better chemotherapy responses and increased platinum
sensitivity. MiR-9 levels were inversely correlated with BRCA1 expression and treatment
with miR-9-sensitized BRCA1-proficient cell lines to cisplatin [78]. MiR-506 and miR-152
can increase platinum sensitivity by targeting RAD51 and suppressing HR [79,80]. Choi
et al. demonstrated that miR-622 could be responsible for platinum and PARPi resistance
in BRCA1-mutated tumors by restoring HR-mediated double-stranded break repair [81].
MiR-146a, miR-148a, and miR-545 are linked to improved outcomes in ovarian cancer
patients by targeting BRCA1/2 expression [82]. In contrast, miR-493-5p expression pro-
motes platinum and PARPi resistance in BRCA2-mutated ovarian carcinoma by reducing
nucleases and other factors involved in maintaining genomic stability, thus resulting in
relatively stable replication forks, diminished single-strand annealing, and increased R-loop
formation [83]. The epigenetic mechanisms of resistance are also influenced by microRNA
modulation. Liu et al. demonstrated that the upregulation of miR-200b and miR-200c
restored cisplatin cytotoxicity by directly targeting the DNA methyltransferases (DNMT)
responsible for DNA methylation, often associated with treatment resistance [84]. Low lev-
els of miR-30a-5p and miR-30c-5p are associated with cisplatin resistance through DNMT
upregulation and subsequent hypermethylation. DNMT1 is a direct target of miR-30a-5p
and miR-30c-5p, and the overexpression of miR-30a-5p and miR-30c-5p-inhibited DNMT1
promoted cisplatin sensitivity and partially reversed EMT in ovarian cancer cell lines [85].
MiR-152 and miR-185 were also found to be downregulated in platinum-resistant ovarian
cell lines, and their upregulation reversed cisplatin sensitivity, increased apoptosis, and
inhibited proliferation by targeting DNMT1 [86].

Robust data suggest an EMT association with platinum resistance in ovarian cancer.
MicroRNAs mediate platinum resistance or sensitivity by regulating EMT [87]. MiR-186
downregulation was associated with EMT and chemoresistance by targeting Twist1 in
ovarian cancer cell lines [88]. MiR-363 low expression was also linked to chemoresistance
and carcinogenesis via Snail-induced EMT [89]. Zhan et al. demonstrated that miR-1294 is
downregulated in cisplatin-resistant ovarian cancer cell lines and that the overexpression
of miR-1294 prevented platinum resistance by directly targeting IGF1R and inhibiting
EMT [90]. MiR-20a promotes a cisplatin-resistant phenotype in ovarian cancer cells by acti-
vating EMT [91]. High oncogenic miR-205-5p and miR-216a levels were linked to platinum
resistance in ovarian cancer cell lines by targeting the PTEN/Akt pathway [92,93]. MiR-483-
3p and miR-224-5p conferred platinum resistance by suppressing protein kinase C family
members [94–96]. MiR-1180 was associated with bone-marrow-derived mesenchymal stem-
cell-induced platinum resistance in HGSOC cells. Mir-1180 overexpression leads to Wnt
signaling and secondary glycolysis-induced chemoresistance [97]. A high expression of the
platinum-refractory phenotype miR-98-5p directly targets Dicer1 and suppresses its activ-
ity, causing global miR downregulation; additionally, it inhibits cyclin-dependent kinase
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inhibitor 1A (CDKN1A), a promoter of cisplatin sensitivity [80,98]. Table 1 summarizes
microRNA involvement in ovarian cancer platinum resistance.

Table 1. MicroRNA involvement in HGSOC platinum resistance.

MicroRNA Target Gene Effect on Cisplatin Response Ref.

miR-130a SOX9/miR-130a/CTR1 axis

Resistance

[68]

miR-411 MRP2 [72]

miR-622 Ku70, Ku80 [81]

miR-20a EMT [91]

miR-205-5p PTEN [92]

miR-216a STAT3/miR-216a/PTEN axis [93]

miRr-483-3p PKC-alpha [95]

miR-224-5p PKC-delta [96]

mir-1180 Wnt [97]

miR-98-5p Dicer1, CDKN1A [98]

miR-493-5p MRE11, CHD4, EXO1, RNASEH2A, FEN1, SSRP1 [83]

miR-139 ATP7A/B

Sensitivity

[69]

miR-15amiR-16 ATP7B [70]

miR-490-3p MRP2 [71]

miR-514 ABCA1, ABCA10, ABCF2 [73]

miR-211 POLH, TDP1, ATRX, MRPS11, ERCC6L2 [74]

miR-30a-3p ERCC1 [75]

miR-770-5p ERCC2, NEAT1 [76,77]

miR-9 BRCA1 [78]

miR-506 RAD51 [79]

miR-152 RAD51, DNMT [80,86]

miR-146a, miR-148a, miR-545 BRCA1/2 [83]

miR-200b, miR-200c DNMT [84]

miR-30a-5p, miR-30c-5p DNMT [85]

miR-185 DNMT [86]

miR-186 Twist1 [88]

miR-363 Snail-induced EMT [89]

miR-1294 IGF1R [90]

2.4. Tumoral Microenvironment

Ovarian cancer arises in a unique tumoral microenvironment (TME) that plays a
crucial part in the natural history of the disease. The TME comprises stromal cells, immune
cells, endothelial cells, adipocytes, bone-marrow-derived cells, lymphocytes, and the
extracellular matrix (ECM), which play essential roles in supporting tumor progression
through signaling molecules that promote cell growth, differentiation, and invasiveness.
Unlike the cells of other epithelial tumors, ovarian cancer cells detach from their origin in
the ovary and the fallopian tube and adhere to the mesothelial layers of the peritoneum,
covering the abdominal organs and invading the submesothelial layers. In addition, ovarian
cancer cells can survive in the ascitic fluid, which acts as a medium wherein tumor cells
disseminate throughout the entire abdominal cavity. Alongside ovarian tumor cells, the
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ascitic fluid also includes multiple types of nontumorigenic cells regulated by soluble
factors and extracellular vesicles that promote tumor growth and metastasis [99–102].

The extracellular matrix consists of glycosaminoglycans, proteoglycans, hyaluronan,
collagen, fibronectin, vitronectin, elastin, laminin, and other glycoproteins that sustain
tissue integrity but also regulate cell migration, growth, and protein synthesis [102,103].
In ovarian cancer, the ECM signaling is dysregulated through the activation of cancer-
associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), which leads to
excessive ECM remodeling associated with tumor progression but also treatment resistance
through the activation of multiple signaling pathways [99]. Osterman et al. demonstrated
the role of ECM in promoting platinum resistance in ovarian cancer, in which ECM in-
hibits focal adhesion kinase (FAK), a cytosolic tyrosine kinase activated by matrix and
integrin receptors that controls cell motility. High FAK expression is associated with
ovarian cancer cells resistant to platinum chemotherapy. Combining FAK inhibition with
platinum chemotherapy overcame this resistance and increased apoptosis [104]. Cell-
adhesion-mediated drug resistance (CAM-DR) enables cells to rapidly evade cytotoxic
stress by interacting with the elements of the ECM. CAM-DR markers CD44, basigin
(CD147), HE4, integrin α5, and β1 were elevated in chemoresistant HGSOC patients
and were associated with poor outcomes [105]. Growing ovarian cancer cells in collagen
type 1 decreased their platinum sensitivity by activating CAM-DR via integrin β1. Inte-
grin β1 knockdown restored platinum sensitivity in platinum-sensitive ovarian cell lines
but not in platinum-resistant ones, suggesting CAM-DR activation via integrin β1 as an
initial mechanism of resistance in ovarian cancer [106]. Proteomic profiling of chemore-
sistant HGSOC revealed the overexpression of 10 ECM-associated proteins, specifically
decorin, versican, CD147, fibulin-1, extracellular matrix protein 1, biglycan, fibronectin
1, dermatopontin, alpha-cardiac actin, and an EGF-containing fibulin-like extracellular
matrix protein 1 [107]. Additionally, carboplatin treatment increased hyaluronan expres-
sion in ovarian cancer cells, leading to chemoresistance by the upregulation of the mem-
brane ATP-binding cassette transporter proteins (ABCB3, ABCC1, ABCC2, and ABCC3) in
CD44-expressing ovarian cells. Treatment with hyaluronan oligomers restored platinum
sensitivity in chemoresistant cells [108].

Ovarian cancer cell and mesothelial cell crosstalk promotes tumor adhesion and inva-
sion, but ovarian-cancer-associated mesothelial cells also induce chemoresistance through
the ATP-binding cassette transporter protein induction of the fibronectin 1/Akt signaling
pathway [109]. Cancer-associated fibroblasts (CAFs) occur in the TME secondary to inflam-
mation and hypoxia. They promote tumor growth, proliferation, and metastasis; inhibit
immune regulation; and modulate cell metabolism but are also involved in treatment
resistance [110]. CAFs can obstruct chemotherapy transport to the cancer cell by creating
physical barriers and microvascular compression. Additionally, they can mediate resis-
tance by secreting cysteine and glutathione, thus reducing the intracellular concentration
of cisplatin via competition to DNA binding sites and platinum efflux through an ATP-
dependent glutathione S-conjugate export pump [111]. Functional studies have revealed
that CAFs and cancer-associated adipocytes (CAAs) are also able to transfer miR-21 to
the ovarian cancer cell, where it inhibits apoptosis and confers chemoresistance by the
downregulation of APAF1 [112]. CAAs represent essential elements of the ovarian cancer
milieu, promoting metastasis and chemoresistance. Lipidomic analysis found that CAAs
were responsible for the secretion of arachidonic acid, a chemoprotective lipid mediator
that acts directly on the ovarian tumor cell and inhibits cisplatin-induced apoptosis through
Akt pathway activation [113]. Tumor-associated macrophages (TAMs) were also found
to promote chemoresistance. Hypoxic TAMs were responsible for the exosomal trans-
fer of miR-223 to the ovarian cancer cells that promote drug resistance by activating the
PTEN-PI3K/AKT pathway [114].
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3. Overcoming Platinum Resistance in Ovarian Cancer

Platinum resistance is one of the most important prognostic factors in ovarian cancer
and one of the main factors driving HGSOC mortality. Therefore, overcoming platinum
resistance is considered one of the most significant challenges in ovarian cancer. The
current management of platinum-resistant disease involves treatment with nonplatinum
chemotherapy, such as paclitaxel, pegylated liposomal doxorubicin, or topotecan alone or
in association with the antiangiogenic agent bevacizumab, which improved PFS compared
to chemotherapy alone [115]. Alternative treatment strategies may include gemcitabine or
etoposide. Nevertheless, platinum rechallenge can also be an option even for platinum-
resistant disease. Various studies demonstrated longer PFS and higher response rates for
platinum-based associations compared with monotherapy, especially in patients with a
platinum-free interval longer than 3 months. However, new biomarkers that may enable
the selection of patients that benefit from this strategy are needed [27,116–118].

PARP inhibitors make up a class of drugs that inhibits the activity of an alternate
DNA repair pathway. Single-strand DNA breaks are detected by the PARP family of
proteins that initiate DNA repair through the BER pathway. PARPis block the activity
of PARP1, leading to the accumulation of single-strand DNA breaks and, eventually,
double-stranded DNA breaks, which only a functional HR pathway can repair. Therefore,
PARPis exploit HR deficiency to promote cancer cell death [119]. Although platinum and
PAPRis share a common mechanism of resistance, specifically through the reactivation of
the HR pathway, PARPis are an option worth exploring in the management of platinum-
resistant disease. Kaufman et al. [120] reported an objective response rate of 31.1% and
stable disease in 40.4% of the platinum-resistant BRCA-mutated ovarian cancer patients
treated with olaparib. A similar response rate of 33.5% was reported by Fong et al. They
demonstrated a clear connection between the platinum response and the clinical benefit
of olaparib in BRCA-mutated ovarian cancer. Further, 61.5% of the platinum-sensitive
patients responded (partial or complete response) according to the RECIS or GCIG
criteria, compared with 41.7% in the platinum-resistant group. Platinum-refractory
patients had the lowest response rates; there were no radiologic responders, and only
one patient had stable disease lasting for more than four cycles [121]. Similar response
rates were reported for rucaparib, niraparib, and veliparib administration in the setting
of platinum-resistant HGSOC [121–124].

Recently, combinational therapy with PARPi has gained attention. The association
between PARPis and antiangiogenic agents was investigated across several clinical trials.
Niraparib and the antiangiogenic tyrosine kinase inhibitor (TKI) anlotinib demonstrated
promising objective response rates (ORR): 50% with a PFS of 9.2 months in platinum-resistant
ovarian cancer patients [125]. A combined treatment of olaparib and bevacizumab resulted
in a superior response and 3-year survival compared with bevacizumab and albumin-bound
paclitaxel [126]. However, the association of cediranib and olaparib failed to achieve superior
outcomes in platinum-resistant disease compared with chemotherapy [127,128].

Ataxia telangiectasia and RAD3-related protein kinase (ATR)/checkpoint kinase
1 (CHK1) have attracted significant attention as possible targets for anticancer therapy
because of their role in regulating cell-cycle checkpoints. The ATR/CHK1 pathway acts
as a sensor detecting single-stranded DNA breaks that lead to cell-cycle arrest. Combined
ATR and PARP inhibition has been evaluated across multiple studies; despite promis-
ing preclinical data, the phase 2 CAPIRI trial failed to demonstrate a clinical benefit in
platinum-resistant epithelial ovarian cancer [129,130]. Prexasertib, a CHK1 inhibitor, was
also evaluated in BRCA wild-type HGSOC, where the majority (79%) of the patients had
platinum-resistant or refractory disease. Prexasertib showed clinical activity, where 33% of
the patients had a partial response (PR) and 29% had stable disease (SD) [131]. WEE-1 in-
hibitors target the WEE-1 kinase, a G2 cell-cycle checkpoint regulator, resulting in increased
apoptosis secondary to the accumulation of irreparable genetic lesions [132]. The WEE-1
inhibitor AZD1775 was evaluated in a phase 2 trial and demonstrated clinical activity, with
a 43% ORR and 5.3-month PFS in p53-mutated platinum-resistant or refractory ovarian
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cancer patients [132]. BET inhibitors bind the bromodomains of BET proteins interfering
with BRCA1 and RAD51 expression. BET inhibition in ovarian cancer cell lines resulted
in HR deficiency, thus providing an argument for combined BET and PARP inhibition.
Olaparib combined with various BET acted synergistically, increasing either treatment’s
efficacy alone, irrespective of HR status. Additionally, the association of BET inhibition
with cisplatin chemotherapy exhibited the same synergistic activity. The coadministration
of cisplatin and BET inhibitors increased ovarian cancer cells’ sensitivity to cisplatin even
in resistant cell lines [133,134].

Epigenetic dysregulation is involved in the acquisition of the platinum-resistant phe-
notype through multiple mechanisms; thus, epigenetic modulators have been investigated
as potential therapies to reverse platinum resistance and resensitize tumors to platinum
salts. DNMT inhibitors showed modest clinical activity in monotherapy, but combined
treatment may enhance sensitivity to platinum compounds. When combined with carbo-
platin, the DNMT inhibitor guadecitabine showed a superior 6-month PFS compared with
physicians’ choice treatment: 37% vs. 11% [135]. Similarly, combining carboplatin with
low-dose decitabine resulted in a clinical benefit rate of 70%, with an ORR of 35% and a
median PFS of 309 days [136]. Hypermethylation has been associated with an immuno-
suppressive tumoral milieu by silencing tumoral antigen expression and downregulating
programmed death ligand (PDL) expression [137,138]. On the basis of these findings, it was
hypothesized that the association of epigenetic therapy and immune checkpoint inhibitors
(ICIs) could boost ovarian cancer tumoral immunogenicity and increase ICI efficiency [139].
Chen et al. [140] evaluated the hypomethylating agent guadecitabine in association with
pembrolizumab in 35 platinum-resistant ovarian cancer patients, where 8.6% of the patients
had PR and 22.9% SD, resulting in a clinical benefit rate of 31.4%, with a median response
duration of 6.8 months. The association of the CC-486 hypomethylating agent and dur-
valumab was also investigated in a phase II basket trial that included platinum-resistant
ovarian cancer; however, the association failed to achieve any clinical activity [141].

HDAC inhibitors were also evaluated; however, they failed to demonstrate consis-
tent efficacy across studies [142,143]. An association between avelumab and entinostat, a
class I selective HDAC inhibitor, was also assessed in pretreated ovarian cancer patients
but failed to improve PFS compared with avelumab alone [144]. The association between
HDAC inhibitors and DNMT inhibitors was also evaluated to determine their synergistic
activity [145]. Falchook et al. [146] investigated the association of azacytidine and val-
proic acid in restoring carboplatin sensitivity in a phase 1 trial, with a clinical benefit rate
of 18.8% but with high toxicity, where 81% of the patients reported grade ≥ 3 adverse
events, including fatigue, neutropenia, and vomiting. Preclinical models evaluated the
association between immunotherapy and the combination of DNMT1 with an enhancer
of zeste homologue 2 (EZH2) inhibition in ovarian cancer cells. EZH2-mediated histone
H3 lysine 27 trimethylation and DNMT1-mediated DNA methylation were shown to
repress the production of the T helper 1 type of chemokines: CXC-motif chemokine
9 (CXCL9) and CXCL10. Combined EZH2 and DNMT1 inhibition increased effector
T-cell tumor infiltration, inhibited tumor progression, and improved the therapeutic
efficacy of PDL-1 blockade [147].

An immune checkpoint blockade aims to restore T-cell function and reverse tumor-
associated immune-evasion mechanisms, with the aim of producing a sustained T-cell-
mediated antitumoral response. Unfortunately, despite promising results in various solid
tumors, checkpoint inhibition has failed to provide a significant benefit in ovarian cancer.
Immune checkpoint inhibitor monotherapy with nivolumab, pembrolizumab, avelumab,
or atezolizumab showed a favorable toxicity profile but was unable to provide substantial
clinical benefit, with an ORR of 6–22% [148].

The disappointing efficacy of ICI monotherapy represented the rationale for investi-
gating ICI-combined treatment strategies. One promising combination is ICIs and PARPi
because HR-deficient tumors display high PD-1 expression, and the accumulation of
double-stranded DNA breaks enables the buildup of neoantigens [149]. The efficacy of the
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niraparib and pembrolizumab combination was assessed in recurrent platinum-resistant
ovarian cancer patients. An ORR of 18% with a disease control rate of 65% was observed
irrespective of platinum sensitivity, BRCA, or HR status [150]. Lampert et al. evaluated
a durvalumab and olaparib combination in recurrent ovarian cancer. Most patients were
platinum resistant (86%) and had the BRCA wild type (77%). Although the disease control
rate was 71%, the clinical activity was modest, with an ORR of 14% [151].

The association between antiangiogenic therapy and ICI was also investigated.
Hypoxia and VEGF dysregulation promote an immunosuppressive microenvironment
by shifting the T helper 1 antitumoral response to a T helper 2 protumorigenic response;
antigen presentation by dendritic cells is also inhibited; and VEGF itself has immuno-
suppressive properties [152]. Liu et al. [153] assessed the efficacy of a nivolumab and
bevacizumab combination in relapsed ovarian cancer. The ORR was 40% in platinum-
sensitive and 16.7% in platinum-resistant disease. The median PFS was 7.7 months in
the platinum-resistant subgroup and 12.1 months in the platinum-sensitive one. Beva-
cizumab was also evaluated in combination with pembrolizumab and cyclophosphamide
in recurrent ovarian cancer. Patients with platinum-resistant disease had an ORR of
43.3%, where 93.3% of patients exhibited a clinical benefit and had a 5.5-month median
duration of response [154].

Chemotherapy was shown to induce an immunogenic antitumoral response and pro-
mote a proinflammatory tumoral microenvironment through the release of inflammatory
signals from dying tumor cells [155]. This rationale was the basis for investigating the
safety and efficacy of chemotherapy and ICI association in multiple solid tumors, including
ovarian cancer. The JAVELIN Ovarian 200 trial evaluated compared avelumab and pegy-
lated liposomal doxorubicin (PLD) monotherapy to the avelumab and PLD combination in
566 platinum-resistant ovarian cancer patients. Neither avelumab monotherapy nor the
combination of avelumab and PLD improved PFS or OS compared with PLD monotherapy.
However, there was a higher ORR for the combo in the PDL1-positive group compared
with the PDL1-negative one: 18.5% vs. 3.4%. This ORR also translated into a survival
advantage for the PDL1-positive patient subgroup [156]. The association between PLD and
pembrolizumab was also evaluated in 23 platinum-resistant ovarian cancer patients, where
52.2% of patients achieved a clinical benefit from the combinational treatment, with an
ORR of 26.1% and a favorable toxicity profile. There was no significant correlation between
PDL1 expression and an objective response [157].

Copper transporter dysregulation has been validated as a critical mechanism of plat-
inum resistance in HGSOC, and this is the basis for targeting copper homeostasis as a
mechanism to resensitize ovarian cancer cells to platinum compounds. Using cisplatin-
resistant ovarian cancer cell lines, Liang et al. [158] demonstrated that cisplatin resistance is
associated with the decreased expression of the high-affinity copper transporter 1 (hCTR1).
Furthermore, they revealed that copper chelators resensitize cells to cisplatin by enhancing
hCTR1 expression. Following this preclinical data, the association between carboplatin
and the copper-lowering agent trientine was evaluated in platinum-resistant patients. The
association was well tolerated and displayed antitumor activity, especially in patients with
lowered ceruloplasmin and copper levels, but the response rates remained low, warranting
improvement [159]. The association between trientine carboplatin and PLD was also as-
sessed in a dose escalation study involving patients with relapsed epithelial ovarian, tubal,
and peritoneal cancers. The combination was well tolerated and safe, rendering a clinical
benefit rate of 33.3% in the platinum-resistant group and 50% in the partially platinum-
sensitive group [160]. Tranilast (an analog of tryptophan metabolite and an inhibitor of
histamine release) and telmisartan (an angiotensin II receptor antagonist) were shown to
facilitate platinum compound delivery to the nucleus by targeting ATP7B expression and
trafficking in platinum-resistant IGROV-CP20 ovarian cancer cell lines. Amphotericin B
was also shown to promote cisplatin toxicity by inhibiting ATP7B expression but with an in-
ferior safety profile compared with tranilast and telmisartan [161]. Theaflavin-3,3′-digallate
(TF3), a black tea polyphenol, was also shown to enhance ovarian cancer cells’ sensitivity to
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cisplatin. TF3 increased the intracellular accumulation of cisplatin and enhanced platinum
DNA damage by decreasing glutathione levels and upregulating CTR1 levels [162].

4. Conclusions

Alongside surgery, chemotherapy is the cornerstone of treatment in advanced ovar-
ian cancer, and platinum-based combinations continue to be the most effective first-line
treatment for these patients. Despite the initial efficacy, most patients will present recurrent
disease. Rechallenge with platinum-based chemotherapy is the treatment of choice for
patients with platinum-sensitive disease, defined as a platinum-free interval longer than
6 months. These patients usually respond to platinum rechallenge and have a better prog-
nosis than those who are platinum resistant. Therefore, we can safely consider platinum
resistance as one of the most important prognostic factors in ovarian cancer.

Although classically defined on the basis of the 6-month platinum-free cutoff interval,
the concept of platinum resistance is an everchanging concept owing to the widespread
availability of CA125, high-resolution and functional imaging that enables early recurrence
detection, and the changes in maintenance therapy now that bevacizumab and PARPis
have managed to prolong PFS, thus delaying recurrence. Nevertheless, resistance to
platinum-based cytotoxic agents is a complex concept resulting from an interplay between
mechanisms. Tumor cells can modify the intracellular concentration of chemotherapy by
changing the expression of cellular influx and efflux transporters. Changes in the DNA
repair pathways are involved in platinum resistance, but they can also represent targetable
therapeutic opportunities. Recent data have revealed that the dysregulation of epigenetic
control processes with aberrant miR expression, histone acetylation, and DNA methylation
modulates these resistance mechanisms’ expression. The tumoral microenvironment is
essential in ovarian cancer carcinogenesis and progression but can also promote treatment
resistance through EMT and various adaptative signals modulated by the stromal cells
of the tumoral milieu. Despite the substantial progress in understanding the underlying
mechanisms of platinum resistance, more research is necessary to understand their interplay
and contribution to achieving the resistant phenotype.

Several treatment strategies have been evaluated in the setting of platinum-resistant
ovarian cancer, and treatment associations involving PARP inhibition, antiangiogenic agents,
immune checkpoint inhibitors, and chemotherapy have shown promising results. However,
more research is necessary to identify biomarkers that enable better patient stratification.
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